

Notes:

1. Properties of materials vary greatly depending upon manufacturing processes, chemical composition, internal defects, temperature, previous loading history, age, dimensions of test specimens, and other factors. The tabulated values are typical but should never be used for specific engineering or design purposes. Manufacturers and materials suppliers should be consulted for information about a particular product.

2. Except when compression or bending is indicated, the modulus of elasticity *E*, yield stress σ_{Y} , and ultimate stress σ_{U} are for materials in tension.

© CourseSmart

CourseSmart

990

User name: Constantine Tarawneh

Book: Mechanics of Materials, 7th Edition Page: 991

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

APPENDIX H Properties of Materials 991

@ CourseSmar

Material	Weight d	ensity γ	Mass density ρ		
Material	lb/ft ³	kN/m ³	slugs/ft ³	kg/m ³	
luminum alloys 2014-T6, 7075-T6 6061-T6	160–180 175 170	26–28 28 26	5.2–5.4 5.4 5.2	2,600–2,800 2,800 2,700	
Brass	520-540	82-85	16–17	8,400-8,600	
ronze	510-550	80-86	16–17	8,200-8,800	
ast iron	435-460	68–72	13–14	7,000-7,400	
Concrete Plain Reinforced Lightweight	145 150 70–115	23 24 11–18	4.5 4.7 2.2–3.6	2,300 2,400 1,100–1,800	
Copper	556	87	17	8,900	
Hass	150-180	24–28	4.7–5.4	2,400-2,800	
lagnesium alloys	110-114	17–18	3.4–3.5	1,760-1,830	
onel (67% Ni, 30% Cu)	550	87	17	8,800	
ickel	550	87	17	8,800	
lastics Nylon Polyethylene	55–70 60–90	8.6–11 9.4–14	1.7–2.2 1.9–2.8	880–1,100 960–1,400	
Rock Granite, marble, quartz Limestone, sandstone	165–180 125–180	26–28 20–28	5.1–5.6 3.9–5.6	2,600–2,900 2,000–2,900	
Rubber	60-80	9–13	1.9-2.5	960-1,300	
and, soil, gravel	75–135	12-21	2.3-4.2	1,200-2,200	
teel	490	77.0	15.2	7,850	
itanium	280	44	8.7	4,500	
ungsten	1,200	190	37	1,900	
ater, fresh sea	62.4 63.8	9.81 10.0	1.94 1.98	1,000 1,020	
/ood (air dry) Douglas fir Oak Southern pine	30–35 40–45 35–40	4.7–5.5 6.3–7.1 5.5–6.3	0.9–1.1 1.2–1.4 1.1–1.2	480–560 640–720 560–640	

urseSmarl

© CourseSmart

CourseSmart

User name: Constantine Tarawneh

Book: Mechanics of Materials, 7th Edition Page: 992

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

992 APPENDIX H Properties of Materials

Material	Modulus of	elasticity E	Shear modulus		
	ksi	GPa	ksi	GPa	Poisson's ratio v
Aluminum alloys 2014-T6 6061-T6 7075-T6	10,000-11,400 10,600 10,000 10,400	70–79 73 70 72	3,800-4,300 4,000 3,800 3,900	26–30 28 26 27	0.33 0.33 0.33 0.33
Brass	14,000–16,000	96–110	5,200-6,000	36-41	0.34
Bronze	14,000–17,000	96-120	5,200-6,300	36-44	0.34
Cast iron	12,000-25,000	83-170	4,600-10,000	32-69	0.2-0.3
Concrete (compression)	2,500-4,500	17–31			0.1-0.2
Copper and copper alloys	16,000-18,000	110-120	5,800-6,800	40-47	0.33-0.36
Glass	7,000–12,000	48-83	2,700-5,100	19-35	0.17-0.27
Magnesium alloys	6,000-6,500	41-45	2,200–2,400	15–17	0.35
Monel (67% Ni, 30% Cu)	25,000	170	9,500	66	0.32
Nickel	30,000	210	11,400	80	0.31
Plastics Nylon Polyethylene	300–500 100–200	2.1–3.4 0.7–1.4			0.4 0.4
Rock (compression) Granite, marble, quartz Limestone, sandstone	6,000–14,000 3,000–10,000	40–100 20–70			0.2–0.3 0.2–0.3
Rubber	0.1-0.6	0.0007-0.004	0.03-0.2	0.0002-0.001	0.45-0.50
Steel	28,000-30,000	190–210	10,800-11,800	75-80	0.27-0.30
Titanium alloys	15,000-17,000	100-120	5,600-6,400	39-44	0.33
Tungsten CourseSn	50,000-55,000	340-380	21,000-23,000	140-160	0.2
Wood (bending) Douglas fir Oak Southern pine	1,600–1,900 1,600–1,800 1,600–2,000	11–13 11–12 11–14			

TABLE H-2 MODULL OF ELASTICITY AND POISSON'S BATIOS

-Contresimati

User name: Constantine Tarawneh

Book: Mechanics of Materials, 7th Edition Page: 993

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

APPENDIX H Properties of Materials 993

Material	Yield	stress σ_Y	Ultimate stress σ_U		Percent elongation (2 in. gage
	ksi	MPa	ksi	MPa	length)
Aluminum alloys 2014-T6 6061-T6 7075-T6	5–70 60 40 70	35–500 410 270 480	15-80 70 45 80	100–550 480 310 550	1–45 13 17 11
Brass	10-80	70-550	30-90	200-620	4-60
Bronze	12-100	82-690	30-120	200-830	5-60
Cast iron (tension)	17-42	120-290	10-70	69-480	0-1
Cast iron (compression)			50-200	340-1,400	
Concrete (compression)			1.5-10	10–70	
Copper and copper alloys	8-110	55-760	33-120	230-830	4-50
Glass Plate glass Glass fibers			5–150 10 1,000–3,000	30–1,000 70 7,000–20,000	0
Magnesium alloys	12-40	80-280	20-50	140-340	2–20
Monel (67% Ni, 30% Cu)	25-160	170-1,100	65-170	450-1,200	2-50
Nickel	15-90	100-620	45-110	310-760	2-50
Plastics Nylon Polyethylene	© Col	rseSmart	6–12 1–4	40–80 7–28	20–100 15–300
Rock (compression) Granite, marble, quartz Limestone, sandstone			8-40 3-30	50–280 20–200	
Rubber	0.2-1.0	1–7	1-3	7–20	100-800
Steel High-strength Machine Spring Stainless Tool	50–150 50–100 60–240 40–100 75	340–1,000 340–700 400–1,600 280–700 520	80–180 80–125 100–270 60–150 130	550–1,200 550–860 700–1,900 400–1,000 900	5–25 5–25 3–15 5–40 8
Steel, structural ASTM-A36 ASTM-A572 ASTM-A514	30–100 36 50 100	200–700 250 340 700	50–120 60 70 120	340-830 400 500 830	10-40 30 20 15

(Continued)

CourseSmart - Instructors - Print

User name: Constantine Tarawneh

Book: Mechanics of Materials, 7th Edition Page: 994

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

994 APPENDIX H Properties of Materials

Material	Yield	stress σ_Y	Ultimate stress σ_U		Percent elongation
	ksi	MPa	ksi	MPa	(2 in. gage length)
Steel wire	40-150	280-1,000	80-200	550-1,400	5-40
Titanium alloys	110-150	760-1,000	130–170	900-1,200	10
Tungsten			200-600	1,4004,000	0-4
Wood (bending)					3
Douglas fir	5-8	30-50	8-12	50-80	
Oak	6–9	40-60	8-14	50-100	
Southern pine	6–9	40-60	8-14	50-100	
Wood (compression parallel to grain)					
Douglas fir	4-8	30-50	6-10	40-70	
Oak	4-6	30-40	5-8	30-50	
Southern pine	4-8	30-50	6-10	40-70	

TABLE H-3 MECHANICAL PROPERTIES (Continued)

TABLE H-4 COEFFICIENTS OF THERMAL EXPANSION

Material	Coefficient of thermal expansion α		Material	Coefficient of thermal expansion α	
	10 ⁻⁶ /°F	10 ⁻⁶ /°C		10 ⁻⁶ /°F	10 ⁻⁶ /°C
Aluminum alloys	13	23	Plastics		
Brass	10.6-11.8	19.1–21.2	Nylon Polyethylene	40-80 80-160	70–140 140–290
Bronze	9.9–11.6	18-21	18-21	3-5	5-9
Cast iron	5.5-6.6	9.9–12			
Concrete	4-8	7–14	Rubber	70–110	130-200
Copper and copper alloys	9.2–9.8	16.6–17.6	Steel High-strength	5.5–9.9 8.0	10–18 14
Glass	3-6	5-11	Stainless	9.6	17
Magnesium alloys	14.5-16.0	26.1-28.8	Structural	6.5	12
Monel (67% Ni, 30% Cu)	7.7	14	Titanium alloys	4.5-6.0	8.1–11
Nickel	7.2	13	Tungsten	2.4	4.3

CourseSmart