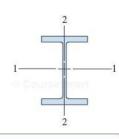


Book: Mechanics of Materials, 7th Edition Page: 972

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law. **Properties of** Structural-Steel **Shapes** In the following tables, the properties of a few structural-steel shapes are presented as an aid to the reader in solving problems in the text. These tables were compiled from the extensive tables in the Manual of Steel Construction, published by the American Institute of Steel Construction, Inc. (Ref. 5-4). Notation:


- I =moment of inertia
- S = section modulus
- $r = \sqrt{I/A}$ = radius of gyration

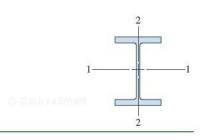
972

Book: Mechanics of Materials, 7th Edition Page: 973

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

APPENDIX E Properties of Structural-Steel Shapes 973

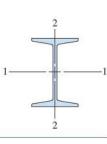
	Weight				Fla	inge		Axis 1-1			Axis 2-2	
Designation	per foot	Area	Depth	Web thickness	Width	Thickness	I	S	r	I	S	r
	lb	in.2	in.	in.	in.	in.	in.4	in. ³	in.	in.4	in. ³	in.
W 30 \times 211	211	62.2	30.9	0.775	15.1	1.32	10300	665	12.9	757	100	3.49
W 30 \times 132	132	38.9	30.3	0.615	10.5	1.00	5770	380	12.2	196	37.2	2.25
W 24 \times 162	162	47.7	25.0	0.705	13.0	1.22	5170	414	10.4	443	68.4	3.05
W 24 \times 94	94.0	27.7	24.3	0.515	9.07	0.875	2700	222	9.87	109	24.0	1.9
W 18 \times 119	119	35.1	19.0	0.655	11.3	1.06	2190	231	7.90	253	44.9	2.69
W 18 \times 71	71.0	20.8	18.5	0.495	7.64	0.810	1170	127	7.50	60.3	15.8	1.70
W 16 \times 100	100	29.5	17.0	0.585	10.4	0.985	1490	175	7.10	186	35.7	2.5
W 16 \times 77	77.0	22.6	16.5	0.455	10.3	0.760	1110	134	7.00	138	26.9	2.4
W 16 \times 57	57.0	16.8	16.4	0.430	7.12	0.715	758	92.2	6.72	43.1	12.1	1.6
W 16 \times 31	31.0	9.13	15.9	0.275	5.53	0.440	375	47.2	6.41	12.4	4.49	1.1
W 14 \times 120	120	35.3	14.5	0.590	14.7	0.940	1380	190	6.24	495	67.5	3.74
W 14 \times 82	82.0	24.0	14.3	0.510	10.1	0.855	881	123	6.05	148	29.3	2.4
W 14 \times 53	53.0	15.6	13.9	0.370	8.06	0.660	541	77.8	5.89	57.7	14.3	1.92
W 14 \times 26	26.0	7.69	13.9	0.255	5.03	0.420	245	35.3	5.65	8.91	3.55	1.0
W 12 \times 87	87.0	25.6	12.5	0.515	12.1	0.810	740	118	5.38	241	39.7	3.0
W 12×50	50.0	14.6	12.2	0.370	8.08	0.640	391	64.2	5.18	56.3	13.9	1.9
W 12 \times 35	35.0	10.3	12.5	0.300	6.56	0.520	285	45.6	5.25	24.5	7.47	1.5
W 12 \times 14	14.0	4.16	11.9	0.200	3.97	0.225	88.6	14.9	4.62	2.36	1.19	0.7
W 10 \times 60	60.0	17.6	10.2	0.420	10.1	0.680	341	66.7	4.39	116	23.0	2.5
W 10 \times 45	45.0	13.3	10.1	0.350	8.02	0.620	248	49.1	4.32	53.4	13.3	2.0
W 10 \times 30	30.0	8.84	10.5	0.300	5.81	0.510	170	32.4	4.38	16.7	5.75	1.3
W 10 \times 12	12.0	3.54	9.87	0.190	3.96	0.210	53.8	10.9	3.90	2.18	1.10	0.7
W 8 × 35	35.0	10.3	8.12	0.310	8.02	0.495	127	31.2	3.51	42.6	10.6	2.0
W 8 \times 28	28.0	8.24	8.06	0.285	6.54	0.465	98.0	24.3	3.45	21.7	6.63	1.6
W 8 \times 21	21.0	6.16	8.28	0.250	5.27	0.400	75.3	18.2	3.49	9.77	3.71	1.2
W 8 \times 15	15.0	4.44	8.11	0.245	4.01	0.315	48.0	11.8	3.29	3.41	1.70	0.8


Note: Axes 1-1 and 2-2 are principal centroidal axes.

Book: Mechanics of Materials, 7th Edition Page: 974

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

TABLE E-1(b) PROPERTIES OF WIDE-FLANGE SECTIONS (W SHAPES) - SI UNITS


	Mass			Web		Flange		Axis 1-1			Axis 2-2	
Designation	per meter	Area	Depth	thickness	Width	Thickness	I	S	r	Ι	S	r
	kg	mm ²	mm	mm	mm	mm	$\times 10^{6} \mathrm{mm^{4}}$	$\times 10^3 \mathrm{mm^3}$	mm	\times 10 ⁶ mm ⁴	$\times 10^3 \text{mm}^3$	mm
W 760 \times 314	314	40100	785	19.7	384	33.5	4290	10900	328	315	1640	88.6
W 760 \times 196	196	25100	770	15.6	267	25.4	2400	6230	310	81.6	610	57.2
W 610 \times 241	241	30800	635	17.9	330	31.0	2150	6780	264	184	1120	77.
W 610 \times 140	140	17900	617	13.1	230	22.2	1120	3640	251	45.4	393	50.3
W 460 \times 177	177	22600	483	16.6	287	26.9	912	3790	201	105	736	68.
W 460 \times 106	106	13400	470	12.6	194	20.6	487	2080	191	25.1	259	43.2
W 410 \times 149	149	19000	432	14.9	264	25.0	620	2870	180	77.4	585	63.
$W 410 \times 114$	114	14600	419	11.6	262	19.3	462	2200	178	57.4	441	62.
W 410 × 85	85.0	10800	417	10.9	181	18.2	316	1510	171	17.9	198	40.
W 410 \times 46.1	46.1	5890	404	6.99	140	11.2	156	773	163	5.16	73.6	29.
W 360 \times 179	179	22800	368	15.0	373	23.9	574	3110	158	206	1110	95.
W 360 × 122	122	15500	363	13.0	257	21.7	367	2020	154	61.6	480	63.
W 360 × 79	79.0	10100	353	9.40	205	16.8	225	1270	150	24.0	234	48.
W 360 × 39	39.0	4960	353	6.48	128	10.7	102	578	144	3.71	58.2	27.
W 310 \times 129	129	16500	318	13.1	307	20.6	308	1930	137	100	651	78.
W 310 \times 74	74.0	9420	310	9.40	205	16.3	163	1050	132	23.4	228	49.
W 310 × 52	52.0	6650	318	7.62	167	13.2	119	747	133	10.2	122	39
W 310 \times 21	21.0	2680	302	5.08	101	5.72	36.9	244	117	0.982	19.5	19.
W 250 \times 89	89.0	11400	259	10.7	257	17.3	142	1090	112	48.3	377	65
W 250 × 67	67.0	8580	257	8.89	204	15.7	103	805	110	22.2	218	51
W 250 \times 44.8	44.8	5700	267	7.62	148	13.0	70.8	531	111	6.95	94.2	34
W 250 \times 17.9	17.9	2280	251	4.83	101	5.33	22.4	179	99.1	0.907	18.0	19
$W 200 \times 52$	52.0	6650	206	7.87	204	12.6	52.9	511	89.2	17.7	174	51
$W 200 \times 41.7$	41.7	5320	205	7.24	166	11.8	40.8	398	87.6	9.03	109	41
W 200 \times 31.3	31.3	3970	210	6.35	134	10.2	31.3	298	88.6	4.07	60.8	32
W 200 \times 22.5	22.5	2860	206	6.22	102	8.00	20.0	193	83.6	1.42	27.9	22

Note: Axes 1-1 and 2-2 are principal centroidal axes.

Book: Mechanics of Materials, 7th Edition Page: 975

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

APPENDIX E Properties of Structural-Steel Shapes 975

CourseSmart

TABLE E-2(a) PROPERTIES OF I-BEAM SECTIONS (S SHAPES) – USCS UNITS (ABRIDGED LIST)

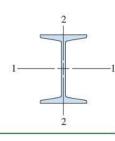
	Weight				F	lange		Axis 1-1		Axis 2-2			
Designation	per foot	Area	Depth	Web thickness	Width	Average thickness	I	S	r	I	S	r	
	lb	in.2	in.	in.	in.	in.	in.4	in. ³	in.	in.4	in. ³	in.	
S 24 × 100	100	29.3	24.0	0.745	7.25	0.870	2380	199	9.01	47.4	13.1	1.27	
$S 24 \times 80$	80.0	23.5	24.0	0.500	7.00	0.870	2100	175	9.47	42.0	12.0	1.34	
S 20 × 96	96.0	28.2	20.3	0.800	7.20	0.920	1670	165	7.71	49.9	13.9	1.33	
S 20 × 75	75.0	22.0	20.0	0.635	6.39	0.795	1280	128	7.62	29.5	9.25	1.16	
$S 18 \times 70$	70.0	20.5	18.0	0.711	6.25	0.691	923	103	6.70	24.0	7.69	1.08	
S 18 \times 54.7	54.7	16.0	18.0	0.461	6.00	0.691	801	89.0	7.07	20.7	6.91	1.14	
S 15 × 50	50.0	14.7	15.0	0.550	5.64	0.622	485	64.7	5.75	15.6	5.53	1.03	
S 15 × 42.9	42.9	12.6	15.0	0.411	5.50	0.622	446	59.4	5.95	14.3	5.19	1.06	
S 12 × 50	50.0	14.6	12.0	0.687	5.48	0.659	303	50.6	4.55	15.6	5.69	1.03	
S 12 \times 35	35.0	10.2	12.0	0.428	5.08	0.544	228	38.1	4.72	9.84	3.88	0.98	
S 10 × 35	35.0	10.3	10.0	0.594	4.94	0.491	147	29.4	3.78	8.30	3.36	0.89	
S 10 × 25.4	25.4	7.45	10.0	0.311	4.66	0.491	123	24.6	4.07	6.73	2.89	0.950	
S 8 × 23	23.0	6.76	8.00	0.441	4.17	0.425	64.7	16.2	3.09	4.27	2.05	0.79	
$S 8 \times 18.4$	18.4	5.40	8.00	0.271	4.00	0.425	57.5	14.4	3.26	3.69	1.84	0.82	
S 6 × 17.2	17.3	5.06	6.00	0.465	3.57	0.359	26.2	8.74	2.28	2.29	1.28	0.67	
S 6 × 12.5	12.5	3.66	6.00	0.232	3.33	0.359	22.0	7.34	2.45	1.80	1.08	0.70	
S4×9.5	9.50	2.79	4.00	0.326	2.80	0.293	6.76	3.38	1.56	0.887	0.635	0.56	
S4×7.7	7.70	2.26	4.00	0.193	2.66	0.293	6.05	3.03	1.64	0.748	0.562	0.57	

Note: Axes 1-1 and 2-2 are principal centroidal axes.

© CourseSmart

CourseSmart - Instructors - Print

User name: Constantine Tarawneh

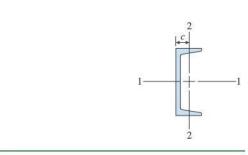

Book: Mechanics of Materials, 7th Edition Page: 976

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

TABLE E-2(b) PROPERTIES OF I-BEAM SECTIONS (S SHAPES) - SI UNITS

CourseSmart

(ABRIDGED LIST) Flange Axis 1-1 Axis 2-2 Mass Web thickness Average thickness per meter Width I S I S r Designation Area Depth r mm² $\times 10^{6} \, \mathrm{mm}^{4}$ $\times 10^3 \,\mathrm{mm^3}$ $\times 10^{6} \text{ mm}^{4}$ $\times 10^3 \text{ mm}^3$ mm kg mm mm mm mm mm $S 610 \times 149$ 149 18900 610 18.9 184 22.1 991 3260 229 19.7 215 32.3 $S 610 \times 119$ 119 15200 610 12.7 178 22.1 874 2870 241 17.5 197 34.0 $S510 \times 143$ 143 18200 695 196 228 33.8 516 20.3 183 234 2700 20.8 $S510 \times 112$ 112 14200 508 162 20.2 533 2100 194 12.3 152 29.5 16.1 $S460 \times 104$ 104 13200 457 1690 170 10.0 27.4 18.1 159 17.6 384 126 10300 $S460 \times 81.4$ 81.4 457 11.7 152 17.6 333 1460 180 8.62 113 29.0 $S380 \times 74$ 74.0 9480 381 14.0 143 15.8 202 1060 146 6.49 90.6 26.2 $S380 \times 64$ 973 64.0 8130 381 10.4 140 15.8 151 5.95 85.0 26.9 186 $S310 \times 74$ 9420 305 6.49 93.2 74.0 17.4139 16.7 126 829 116 26.2 $S310 \times 52$ 52.0 6580 305 10.9 129 13.8 94.9 624 120 4.10 63.6 24.9 $S250 \times 52$ 482 52.0 6650 254 15.1 125 12.5 61.2 96.0 3.45 55.1 22.8 $S 250 \times 37.8$ 37.8 4810 254 7.90 118 12.5 51.2 403 103 2.80 47.4 24.1 $S200 \times 34$ 34.0 4360 203 11.2 106 10.8 26.9 265 78.5 1.78 33.6 20.2 $S200 \times 27.4$ 27.4 3480 203 6.88 102 10.8 23.9 236 1.54 30.2 21.0 82.8 $S 150 \times 25.7$ 25.7 3260 152 11.8 90.7 9.12 10.9 143 57.9 0.953 21.0 17.1 $S 150 \times 18.6$ 18.6 2360 152 5.89 84.6 9.12 9.16 120 62.2 0.749 17.7 17.8 $S 100 \times 14.1$ 14.1 1800 102 8.28 71.1 7.44 2.81 55.4 39.6 0.369 10.4 14.3 $S 100 \times 11.5$ 11.5 1460 102 4.90 67.6 7.44 2.52 49.7 41.7 0.311 9.21 14.6


Note: Axes 1-1 and 2-2 are principal centroidal axes.

© CourseSmart

Book: Mechanics of Materials, 7th Edition Page: 977

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

APPENDIX E Properties of Structural-Steel Shapes 977

a Anniseaman

TABLE E-3(a) PROPERTIES OF CHANNEL SECTIONS (C SHAPES) – USCS UNITS (ABRIDGED LIST)

	337-1-1-4				F	ange		Axis 1-1			Axis 2-2		
Designation	Weight per foot	Area	Depth	Web thickness	Width	Average thickness	ĩ	S	r	I	S	r	с
	Ib	in. ²	in.	in.	in.	in. in.	in.4	in. ³	in.	in.4	in. ³	in.	in.
C 15 × 50	50.0	14.7	15.0	0.716	3.72	0.650	404	53.8	5.24	11.0	3.77	0.865	0.799
$C 15 \times 40$	40.0	11.8	15.0	0.520	3.52	0.650	348	46.5	5.45	9.17	3.34	0.883	0.77
C 15 × 33.9	33.9	10.0	15.0	0.400	3.40	0.650	315	42.0	5.62	8.07	3.09	0.901	0.78
C 12 × 30	30.0	8.81	12.0	0.510	3.17	0.501	162	27.0	4.29	5.12	2.05	0.762	0.67
$C 12 \times 25$	25.0	7.34	12.0	0.387	3.05	0.501	144	24.0	4.43	4.45	1.87	0.779	0.67
C 12 \times 20.7	20.7	6.08	12.0	0.282	2.94	0.501	129	21.5	4.61	3.86	1.72	0.797	0.69
C 10 × 30	30.0	8.81	10.0	0.673	3.03	0.436	103	20.7	3.42	3.93	1.65	0.668	0.64
$C 10 \times 25$	25.0	7.34	10.0	0.526	2.89	0.436	91.1	18.2	3.52	3.34	1.47	0.675	0.61
$C 10 \times 20$	20.0	5.87	10.0	0.379	2.74	0.436	78.9	15.8	3.66	2.80	1.31	0.690	0.60
$C 10 \times 15.3$	15.3	4.48	10.0	0.240	2.60	0.436	67.3	13.5	3.87	2.27	1.15	0.711	0.63
C 8 × 18.7	18.7	5.51	8.00	0.487	2.53	0.390	43.9	11.0	2.82	1.97	1.01	0.598	0.56
C 8 × 13.7	13.7	4.04	8.00	0.303	2.34	0.390	36.1	9.02	2.99	1.52	0.848	0.613	0.55
$C 8 \times 11.5$	11.5	3.37	8.00	0.220	2.26	0.390	32.5	8.14	3.11	1.31	0.775	0.623	0.57
C 6 × 13	13.0	3.81	6.00	0.437	2.16	0.343	17.3	5.78	2.13	1.05	0.638	0.524	0.51
C 6 × 10.5	10.5	3.08	6.00	0.314	2.03	0.343	15.1	5.04	2.22	0.860	0.561	0.529	0.50
$C 6 \times 8.2$	8.20	2.39	6.00	0.200	1.92	0.343	13.1	4.35	2.34	0.687	0.488	0.536	0.51
C4×7.2	7.20	2.13	4.00	0.321	1.72	0.296	4.58	2.29	1.47	0.425	0.337	0.447	0.45
$C4 \times 5.4$	5.40	1.58	4.00	0.184	1.58	0.296	3.85	1.92	1.56	0.312	0.277	0.444	0.45

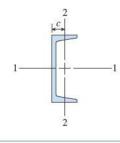
Notes: 1. Axes 1-1 and 2-2 are principal centroidal axes.

2. The distance c is measured from the centroid to the back of the web.

3. For axis 2-2, the tabulated value of S is the smaller of the two section moduli for this axis.

© CourseSmart

CourseSmart - Instructors - Print


User name: Constantine Tarawneh

Book: Mechanics of Materials, 7th Edition Page: 978

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

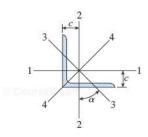
978 APPENDIX E Properties of Structural-Steel Shapes

TABLE E-3(b) PROPERTIES OF CHANNEL SECTIONS (C SHAPES) – SI UNITS (ABRIDGED LIST)

	Mass				F	lange	1	Axis 1-1			Axis 2-2		
Designation	per meter	Area	Depth	Web thickness	Width	Average thickness	I	S	r	I	S	r	с
	kg	mm ²	mm	mm	mm	mm	$\times 10^{6} \mathrm{mm^{4}}$	$\times 10^3 \mathrm{mm^3}$	mm	$\times 10^{6} \mathrm{mm^{4}}$	$\times 10^3 \mathrm{mm^3}$	mm	mm
C 380 × 74	74.0	9480	381	18.2	94.5	16.5	168	882	133	4.58	61.8	22.0	20.3
C 380 × 60	60.0	7610	381	13.2	89.4	16.5	145	762	138	3.82	54.7	22.4	19.
C 380 × 50.4	50.4	6450	381	10.2	86.4	16.5	131	688	143	3.36	50.6	22.9	20.0
C 310 × 45	45.0	5680	305	13.0	80.5	12.7	67.4	442	109	2.13	33.6	19.4	17.
C 310 × 37	37.0	4740	305	9.83	77.5	12.7	59.9	393	113	1.85	30.6	19.8	17.
C 310 × 30.8	30.8	3920	305	7.16	74.7	12.7	53.7	352	117	1.61	28.2	20.2	17.
C 250 × 45	45.0	5680	254	17.1	77.0	11.1	42.9	339	86.9	1.64	27.0	17.0	16.
C 250 × 37	37.0	4740	254	13.4	73.4	11.1	37.9	298	89.4	1.39	24.1	17.1	15.
C 250 × 30	30.0	3790	254	9.63	69.6	11.1	32.8	259	93.0	1.17	21.5	17.5	15.
C 250 × 22.8	22.8	2890	254	6.10	66.0	11.1	28.0	221	98.3	0.945	18.8	18.1	16.
C 200 × 27.9	27.9	3550	203	12.4	64.3	9.91	18.3	180	71.6	0.820	16.6	15.2	14.
C 200 × 20.5	20.5	2610	203	7.70	59.4	9.91	15.0	148	75.9	0.633	13.9	15.6	14.
C 200 × 17.1	17.1	2170	203	5.59	57.4	9.91	13.5	133	79.0	0.545	12.7	15.8	14.
C 150 × 19.3	19.3	2460	152	11.1	54.9	8.71	7.20	94.7	54.1	0.437	10.5	13.3	13.
C 150 × 15.6	15.6	1990	152	7.98	51.6	8.71	6.29	82.6	56.4	0.358	9.19	13.4	12.
C 150 × 12.2	12.2	1540	152	5.08	48.8	8.71	5.45	71.3	59.4	0.286	8.00	13.6	13.
C 100 \times 10.8	10.8	1370	102	8.15	43.7	7.52	1.91	37.5	37.3	0.177	5.52	11.4	11.
C 100 × 8	8.00	1020	102	4.67	40.1	7.52	1.60	31.5	39.6	0.130	4.54	11.3	11.

Notes: 1. Axes 1-1 and 2-2 are principal centroidal axes.

2. The distance c is measured from the centroid to the back of the web.


3. For axis 2-2, the tabulated value of S is the smaller of the two section moduli for this axis.

CourseSmart

Book: Mechanics of Materials, 7th Edition Page: 979

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

APPENDIX E Properties of Structural-Steel Shapes 979

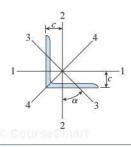
	Weight			Axis 1-1 a	nd Axis 2-2		Axis 3-3
Designation	per foot	Area	Ι	S	r	с	r _{min}
in.	lb	in. ²	in. ⁴	in. ³	in.	in.	in.
$L8 \times 8 \times 1$	51.0	15.0	89.1	15.8	2.43	2.36	1.56
$L 8 \times 8 \times 3/4$	38.9	11.4	69.9	12.2	2.46	2.26	1.57
$L 8 \times 8 \times 1/2$	26.4	7.75	48.8	8.36	2.49	2.17	1.59
L6×6×1 seSmar	37.4	11.0	35.4	8.55	1.79	1.86	1.17
$L 6 \times 6 \times 3/4$	28.7	8.46	28.1	6.64	1.82	1.77	1.17
$L 6 \times 6 \times 1/2$	19.6	5.77	19.9	4.59	1.86	1.67	1.18
$L5 \times 5 \times 7/8$	27.2	7.98	17.8	5.16	1.49	1.56	0.971
$L 5 \times 5 \times 1/2$	16.2	4.75	11.3	3.15	1.53	1.42	0.980
$L 5 \times 5 \times 3/8$	12.3	3.61	8.76	2.41	1.55	1.37	0.986
$L 4 \times 4 \times 3/4$	18.5	5.44	7.62	2.79	1.18	1.27	0.774
$L4 \times 4 \times 1/2$	12.8	3.75	5.52	1.96	1.21	1.18	0.776
$L 4 \times 4 \times 3/8$	9.80	2.86	4.32	1.50	1.23	1.13	0.779
$L 3-1/2 \times 3-1/2 \times 3/8$	8.50	2.48	2.86	1.15	1.07	1.00	0.683
$L 3-1/2 \times 3-1/2 \times 1/4$	5.80	1.69	2.00	0.787	1.09	0.954	0.688
$L 3 \times 3 \times 1/2$	9.40	2.75	2.20	1.06	0.895	0.929	0.580
$L3 \times 3 \times 1/4$	4.90	1.44	1.23	0.569	0.926	0.836	0.585

Notes: 1. Axes 1-1 and 2-2 are centroidal axes parallel to the legs.

2. The distance c is measured from the centroid to the back of the legs.

3. For axes 1-1 and 2-2, the tabulated value of S is the smaller of the two section moduli for those axes.

4. Axes 3-3 and 4-4 are principal centroidal axes.


5. The moment of inertia for axis 3-3, which is the smaller of the two principal moments of inertia, can be found from the equation $I_{33} = Ar_{\min}^2$.

6. The moment of inertia for axis 4-4, which is the larger of the two principal moments of inertia, can be found from the equation $I_{44} + I_{33} = I_{11} + I_{22}$.

Book: Mechanics of Materials, 7th Edition Page: 980

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

TABLE E-4(b) PROPERTIES OF ANGLE SECTIONS WITH EQUAL LEGS (L SHAPES) – SI UNITS (ABRIDGED LIST)

	Mass	art l	A	xis 1-1 and Axi	is 2-2		Axis 3-3
Designation	per meter	Area	I	S	r	с	r _{min}
mm	kg	mm ²	× 10 ⁶ mm ⁴	$\times 10^3 \mathrm{mm^3}$	mm	mm	mm
$L 203 \times 203 \times 25.4$	75.9	9680	37.1	259	61.7	59.9	39.6
$L 203 \times 203 \times 19$	57.9	7350	29.1	200	62.5	57.4	39.9
$L\ 203\times 203\times 12.7$	39.3	5000	20.3	137	63.2	55.1	40.4
L 152 \times 152 \times 25.4	55.7	7100	14.7	140	45.5	47.2	29.7
L 152 × 152 × 19	42.7	5460	11.7	109	46.2	45.0	29.7
$L 152 \times 152 \times 12.7$	29.2	3720	8.28	75.2	47.2	42.4	30.0
L 127 × 127 × 22.2	40.5	5150	7.41	84.6	37.8	39.6	24.7
L 127 × 127 × 12.7	24.1	3060	4.70	51.6	38.9	36.1	24.9
L 127 \times 127 \times 9.5	18.3	2330	3.65	39.5	39.4	34.8	25.0
$L 102 \times 102 \times 19$	27.5	3510	3.17	45.7	30.0	32.3	19.7
$L 102 \times 102 \times 12.7$	19.0	2420	2.30	32.1	30.7	30.0	19.7
$L 102 \times 102 \times 9.5$	14.6	1850	1.80	24.6	31.2	28.7	19.8
L 89 × 89 × 9.5	12.6	1600	1.19	18.8	27.2	25.4	17.3
L 89 \times 89 \times 6.4	8.60	1090	0.832	12.9	27.7	24.2	17.5
L 76 × 76 × 12.7	14.0	1770	0.916	17.4	22.7	23.6	14.7
L 76 × 76 × 6.4	7.30	929	0.512	9.32	23.5	21.2	14.9

Notes: 1. Axes 1-1 and 2-2 are centroidal axes parallel to the legs.

2. The distance c is measured from the centroid to the back of the legs.

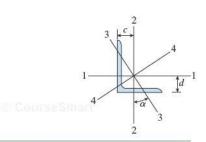
3. For axes 1-1 and 2-2, the tabulated value of S is the smaller of the two section moduli for those axes.

4. Axes 3-3 and 4-4 are principal centroidal axes.

5. The moment of inertia for axis 3-3, which is the smaller of the two principal

moments of inertia, can be found from the equation $I_{33} = Ar_{\min}^2$.

6. The moment of inertia for axis 4-4, which is the larger of the two principal moments of inertia, can be found from the equation $I_{44} + I_{33} = I_{11} + I_{22}$.


© CourseSmart

Book: Mechanics of Materials, 7th Edition Page: 981

981

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

APPENDIX E Properties of Structural-Steel Shapes

TABLE E-5(a)	PROPERTIES OF ANGLE SECTIONS WITH UNEQUAL LEGS (L SHAPES) - USCS UNITS
	(ABRIDGED LIST)

	Weight			Axis	s 1-1			Axis	2-2		Axi	s 3-3
Designation	per foot	Area	Ι	S	r	d	1	S	r	с	r _{min}	tan α
in.	lb	in.2	in.4	in. ³	in.	in.	in.4	in. ³	in.	in.	in.	
$L8 \times 6 \times 1$	44.2	13.0	80.9	15.1	2.49	2.65	38.8	8.92	1.72	1.65	1.28	0.542
$L 8 \times 6 \times 1/2$	23.0	6.75	44.4	8.01	2.55	2.46	21.7	4.79	1.79	1.46	1.30	0.557
$L7 \times 4 \times 3/4$	26.2	7.69	37.8	8.39	2.21	2.50	9.00	3.01	1.08	1.00	0.855	0.324
$L7 \times 4 \times 1/2$	17.9	5.25	26.6	5.79	2.25	2.40	6.48	2.10	1.11	0.910	0.866	0.334
$L6 \times 4 \times 3/4$	23.6	6.94	24.5	6.23	1.88	2.07	8.63	2.95	1.12	1.07	0.856	0.428
$L 6 \times 4 \times 1/2$	16.2	4.75	17.3	4.31	1.91	1.98	6.22	2.06	1.14	0.981	0.864	0.440
$L 5 \times 3 - 1/2 \times 3/4$	19.8	5.81	13.9	4.26	1.55	1.74	5.52	2.20	0.974	0.993	0.744	0.464
$L 5 \times 3 \cdot 1/2 \times 1/2$	13.6	4.00	10.0	2.97	1.58	1.65	4.02	1.55	1.00	0.901	0.750	0.479
$L 5 \times 3 \times 1/2$	12.8	3.75	9.43	2.89	1.58	1.74	2.55	1.13	0.824	0.746	0.642	0.357
$L 5 \times 3 \times 1/4$	6.60	1.94	5.09	1.51	1.62	1.64	1.41	0.600	0.853	0.648	0.652	0.371
$L 4 \times 3 - 1/2 \times 1/2$	11.9	3.50	5.30	1.92	1.23	1.24	3.76	1.50	1.04	0.994	0.716	0.750
$L 4 \times 3 - 1/2 \times 1/4$	6.20	1.81	2.89	1.01	1.26	1.14	2.07	0.794	1.07	0.897	0.723	0.759
$L4 \times 3 \times 1/2$	11.1	3.25	5.02	1.87	1.24	1.32	2.40	1.10	0.858	0.822	0.633	0.542
$L4 \times 3 \times 3/8$	8.50	2.48	3.94	1.44	1.26	1.27	1.89	0.851	0.873	0.775	0.636	0.551
$L4 \times 3 \times 1/4$	5.80	1.69	2.75	0.988	1.27	1.22	1.33	0.585	0.887	0.725	0.639	0.558

Notes: 1. Axes 1-1 and 2-2 are centroidal axes parallel to the legs.

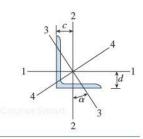
2. The distances c and d are measured from the centroid to the backs of the legs.

3. For axes 1-1 and 2-2, the tabulated value of S is the smaller of the two section moduli for those axes.

4. Axes 3-3 and 4-4 are principal centroidal axes.

5. The moment of inertia for axis 3-3, which is the smaller of the two principal moments of inertia, can be found from the equation $I_{33} = Ar_{\min}^2$.

6. The moment of inertia for axis 4.4, which is the larger of the two principal moments of inertia, can be found from the equation $I_{44} + I_{33} = I_{11} + I_{22}$.


CourseSmart - Instructors - Print

User name: Constantine Tarawneh

Book: Mechanics of Materials, 7th Edition Page: 982

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

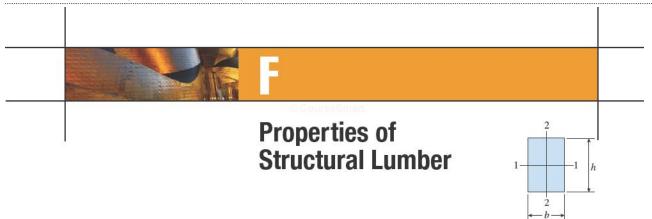
TABLE E-5(b)	PROPERTIES OF ANGLE SECTIONS WITH UNEQUAL LEGS (L SHAPES) - SI UNITS
	(ABRIDGED LIST)

	Mass			Axis 1-1			A	xis 2-2			Axis 3	1-3
Designation	per meter	Area	I	S	r	d	1	S	r	с	r _{min}	tan a
mm	kg	mm ²	$\times 10^{6} \text{mm}^{4}$	$\times 10^3$ mm ³	mm	mm	$\times 10^{6} \text{mm}^{4}$	$\times 10^{3}$ mm ³	mm	mm	mm	
$L 203 \times 152 \times 25.4$	65.5	8390	33.7	247	63.2	67.3	16.1	146	43.7	41.9	32.5	0.542
$L 203 \times 152 \times 12.7$	34.1	4350	18.5	131	64.8	62.5	9.03	78.5	45.5	37.1	33.0	0.55
$L 178 \times 102 \times 19$	38.8	4960	15.7	137	56.1	63.5	3.75	49.3	27.4	25.4	21.7	0.324
$L 178 \times 102 \times 12.7$	26.5	3390	11.1	94.9	57.2	61.0	2.70	34.4	28.2	23.1	22.0	0.334
$L 152 \times 102 \times 19$	35.0	4480	10.2	102	47.8	52.6	3.59	48.3	28.4	27.2	21.7	0.428
$L 152 \times 102 \times 12.7$	24.0	3060	7.20	70.6	48.5	50.3	2.59	33.8	29.0	24.9	21.9	0.44
$L 127 \times 89 \times 19$	29.3	3750	5.79	69.8	39.4	44.2	2.30	36.1	24.7	25.2	18.9	0.46
$L 127 \times 89 \times 12.7$	20.2	2580	4.15	48.7	40.1	41.9	1.67	25.4	25.4	22.9	19.1	0.47
L 127 \times 76 \times 12.7	19.0	2420	3.93	47.4	40.1	44.2	1.06	18.5	20.9	18.9	16.3	0.35
L 127 \times 76 \times 6.4	9.80	1250	2.12	24.7	41.1	41.7	0.587	9.83	21.7	16.5	16.6	0.37
$L 102 \times 89 \times 12.7$	17.6	2260	2.21	31.5	31.2	31.5	1.57	24.6	26.4	25.2	18.2	0.75
$L 102 \times 89 \times 6.4$	9.20	1170	1.20	16.6	32.0	29.0	0.862	13.0	27.2	22.8	18.4	0.75
$L 102 \times 76 \times 12.7$	16.4	2100	2.09	30.6	31.5	33.5	0.999	18.0	21.8	20.9	16.1	0.54
$L 102 \times 76 \times 9.5$	12.6	1600	1.64	23.6	32.0	32.3	0.787	13.9	22.2	19.7	16.2	0.55
$L 102 \times 76 \times 6.4$	8.60	1090	1.14	16.2	32.3	31.0	0.554	9.59	22.5	18.4	16.2	0.55

Notes: 1. Axes 1-1 and 2-2 are centroidal axes parallel to the legs.

2. The distances c and d are measured from the centroid to the backs of the legs.

3. For axes 1-1 and 2-2, the tabulated value of S is the smaller of the two section moduli for those axes.


4. Axes 3-3 and 4-4 are principal centroidal axes.

5. The moment of inertia for axis 3-3, which is the smaller of the two principal moments of inertia, can be found from the equation $I_{33} = Ar_{\min}^2$.

6. The moment of inertia for axis 4-4, which is the larger of the two principal moments of inertia, can be found from the equation $I_{44} + I_{33} = I_{11} + I_{22}$.

Book: Mechanics of Materials, 7th Edition Page: 983

No part of any book may be reproduced or transmitted by any means without the publisher's prior permission. Use (other than qualified fair use) in violation of the law or Terms of Service is prohibited. Violators will be prosecuted to the full extent of the law.

PROPERTIES	OF	SURFACED	LIMBER	(ABRIDGED	(TSI)
FNUFENHES	U	SUNTAULD	LUMBLN	MONIDULD	LIJI

			Axis 1-1		Axis 2-2		Weight
Nominal dimensions $b \times h$	Net dimensions $b \times h$	Area A = bh	$\frac{\text{Moment of}}{\text{inertia}}$ $I_1 = \frac{bh^3}{12}$	Section modulus $S_1 = \frac{bh^2}{6}$	Moment of inertia $I_2 = \frac{hb^3}{12}$	Section modulus $S_2 = \frac{hb^2}{6}$	per linear foot (weight density = 35 lb/ft ³)
in.	in.	in. ²	in. ⁴	in. ³	in. ⁴	in. ³	lb
2×4 2×6 2×8 2×10 2×12 3×4 3×6 3×8 3×10 3×12 4×4	$\begin{array}{c} 1.5 \times 3.5 \\ 1.5 \times 5.5 \\ 1.5 \times 7.25 \\ 1.5 \times 9.25 \\ 1.5 \times 11.25 \\ 2.5 \times 3.5 \\ 2.5 \times 5.5 \\ 2.5 \times 7.25 \\ 2.5 \times 9.25 \\ 2.5 \times 9.25 \\ 2.5 \times 11.25 \\ 3.5 \times 3.5 \end{array}$	5.25 8.25 10.88 13.88 16.88 8.75 13.75 18.13 23.13 28.13 12.25	5.36 20.80 47.63 98.93 177.98 8.93 34.66 79.39 164.89 296.63 12.51	3.06 7.56 13.14 21.39 31.64 5.10 12.60 21.90 35.65 52.73 7.15	0.98 1.55 2.04 2.60 3.16 4.56 7.16 9.44 12.04 14.65 12.51	1.31 2.06 2.72 3.47 4.22 3.65 5.73 7.55 9.64 11.72 7.15	1.3 2.0 2.6 3.4 4.1 2.1 3.3 4.4 5.6 6.8 3.0
$ \begin{array}{r} 4 \times 6 \\ 4 \times 8 \\ 4 \times 10 \\ 4 \times 12 \\ 6 \times 6 \\ 6 \times 8 \\ 6 \times 10 \\ 6 \times 12 \\ 8 \times 8 \\ 8 \times 10 \\ 8 \times 12 \\ \end{array} $	$\begin{array}{c} 3.5 \times 5.5 \\ 3.5 \times 7.25 \\ 3.5 \times 9.25 \\ 3.5 \times 11.25 \\ 5.5 \times 5.5 \\ 5.5 \times 7.5 \\ 5.5 \times 9.5 \\ 5.5 \times 11.5 \\ 7.5 \times 7.5 \\ 7.5 \times 9.5 \\ 7.5 \times 9.5 \\ 7.5 \times 11.5 \end{array}$	19.25 25.38 32.38 39.38 30.25 41.25 52.25 63.25 56.25 71.25 86.25	48.53 111.15 230.84 415.28 76.3 193.4 393.0 697.1 263.7 535.9 950.5	17.65 30.66 49.91 73.83 27.7 51.6 82.7 121.2 70.3 112.8 165.3	19.65 25.90 33.05 40.20 76.3 104.0 131.7 159.4 263.7 334.0 404.3	11.23 14.80 18.89 22.97 27.7 37.8 47.9 58.0 70.3 89.1 107.8	4.7 6.2 7.9 9.6 7.4 10.0 12.7 15.4 13.7 17.3 21.0

Note: Axes 1-1 and 2-2 are principal centroidal axes.

983