HEAT TRANSFER EQUATION SHEET

Heat Conduction Rate Equations (Fourier's Law)

Heat Convection Rate Equations (Newton's Law of Cooling)

▶ Heat Flux:
$$q'' = h(T_s - T_\infty)$$
 $\frac{W}{m^2}$ h : Convection Heat Transfer Coefficient $\frac{W}{m^2 \cdot K}$
▶ Heat Rate: $q = hA_s(T_s - T_\infty)$ W A_s : Surface Area m^2
Heat Radiation emitted ideally by a blackbody surface has a surface emissive power: $E_b = \sigma T_s^4 \frac{W}{m^2}$
▶ Heat Flux emitted: $E = \varepsilon \sigma T_s^4 \frac{W}{m^2}$ where ε is the emissivity with range of $0 \le \varepsilon \le 1$
and $\sigma = 5.67 \times 10^{-8} \frac{W}{m^2 K^4}$ is the Stefan-Boltzmann constant
▶ Irradiation heat flux from surface: $q''_{rad} = \frac{q}{A} = \varepsilon E_b(T_s) - \alpha G = \varepsilon \sigma (T_s^4 - T_{sur}^4)$
▶ Net Radiation heat exchange rate: $q_{rad} = \varepsilon \sigma A_s(T_s^4 - T_{sur}^4)$ where for a real surface $0 \le \varepsilon \le 1$
This can ALSO be expressed as: $q_{rad} = h_r A(T_s - T_{sur})$ depending on the application

where h_r is the radiation heat transfer coefficient which is: $h_r = \varepsilon \sigma (T_s + T_{sur})(T_s^2 + T_{sur}^2) \frac{w}{m^2 \cdot K}$ \succ TOTAL heat transfer from a surface: $q = q_{conv} + q_{rad} = hA_s(T_s - T_{\infty}) + \varepsilon \sigma A_s(T_s^4 - T_{sur}^4) W$ Conservation of Energy (Energy Balance)

 $\dot{E}_{in} + \dot{E}_g - \dot{E}_{out} = \dot{E}_{st}$ (Control Volume Balance) ; $\dot{E}_{in} - \dot{E}_{out} = 0$ (Control Surface Balance) where \dot{E}_g is the conversion of internal energy (chemical, nuclear, electrical) to thermal or mechanical energy, and $\dot{E}_{st} = 0$ for steady-state conditions. If not steady-state (*i.e.*, transient) then $\dot{E}_{st} = \rho V c_p \frac{dT}{dt}$

Heat Equation (used to find the temperature distribution)

Heat Equation (Cartesian): $\frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \dot{q} = \rho c_p \frac{\partial T}{\partial t}$

If k is <u>constant</u> then the above simplifies to: $\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} + \frac{\dot{q}}{k} = \frac{1}{\alpha} \frac{\partial T}{\partial t}$ where $\alpha = \frac{k}{\rho c_p}$ is the *thermal diffusivity*

Heat Equation (Cylindrical):
$$\frac{1}{r}\frac{\partial}{\partial r}\left(kr\frac{\partial T}{\partial r}\right) + \frac{1}{r^2}\frac{\partial}{\partial \phi}\left(k\frac{\partial T}{\partial \phi}\right) + \frac{\partial}{\partial z}\left(k\frac{\partial T}{\partial z}\right) + \dot{q} = \rho c_p \frac{\partial T}{\partial t}$$

Heat Eqn. (Spherical):
$$\frac{1}{r^2}\frac{\partial}{\partial r}\left(kr^2\frac{\partial T}{\partial r}\right) + \frac{1}{r^2\sin\theta^2}\frac{\partial}{\partial\phi}\left(k\frac{\partial T}{\partial\phi}\right) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial\theta}\left(k\sin\theta\frac{\partial T}{\partial\theta}\right) + \dot{q} = \rho c_p \frac{\partial T}{\partial t}$$

Thermal Circuits

Plane Wall:
$$R_{t,cond} = \frac{L}{kA}$$
 Cylinder: $R_{t,cond} = \frac{\ln(\frac{r_2}{r_1})}{2\pi kL}$ Sphere: $R_{t,cond} = \frac{(\frac{1}{r_1} - \frac{1}{r_2})}{4\pi k}$

$$R_{t,conv} = \frac{1}{hA} \qquad \qquad R_{t,rad} = \frac{1}{h_rA}$$

General Lumped Capacitance Analysis

$$q_s''A_{s,h} + \dot{E_g} - [h(T - T_{\infty}) + \varepsilon\sigma(T^4 - T_{sur}^4)]A_{s(c,r)} = \rho V c \frac{dI}{dt}$$

Radiation Only Equation

$$t = \frac{\rho V c}{4 \varepsilon A_{s,r} \sigma T_{sur}^3} \left\{ \ln \left| \frac{T_{sur} + T}{T_{sur} - T} \right| - \ln \left| \frac{T_{sur} + T_i}{T_{sur} - T_i} \right| + 2 \left[\tan^{-1} \left(\frac{T}{T_{sur}} \right) - \tan^{-1} \left(\frac{T_i}{T_{sur}} \right) \right] \right\}$$

Heat Flux, Energy Generation, Convection, and No Radiation Equation

$$\frac{T - T_{\infty} - \left(\frac{b}{a}\right)}{T_i - T_{\infty} - \left(\frac{b}{a}\right)} = \exp(-at) \quad \text{; where} \quad a = \left(\frac{hA_{s,c}}{\rho Vc}\right) \quad \text{and} \quad b = \frac{q_s''A_{s,h} + \dot{E}_g}{\rho Vc}$$

Convection Only Equation

$$\frac{\theta}{\theta_i} = \frac{T - T_{\infty}}{T_i - T_{\infty}} = \exp\left[-\left(\frac{hA_s}{\rho Vc}\right)t\right]$$
$$\tau_t = \left(\frac{1}{hA_s}\right)(\rho Vc) = R_t C_t \quad ; \quad Q = \rho Vc \ \theta_i \left[1 - \exp\left(-\frac{t}{\tau_t}\right)\right] \quad ; \quad Q_{max} = \ \rho Vc \ \theta_i$$
$$Bi = \frac{hL_c}{k}$$

If there is an additional resistance either in series or in parallel, then replace h with U in all the above lumped capacitance equations, where

$$U = \frac{1}{R_t A_s} \left[\frac{W}{m^2 \cdot K}\right] \quad ; \ U = \text{overall heat transfer coefficient, } R_t = \text{total resistance, } A_s = \text{surface area.}$$
Convection Heat Transfer

$$Re = \frac{\rho V L_c}{\mu} = \frac{V L_c}{\nu}$$
 [Reynolds Number] ; $\overline{Nu} = \frac{h L_c}{k_f}$ [Average Nusselt Number]

where ρ is the density, V is the velocity, L_c is the characteristic length, μ is the dynamic viscosity, ν is the kinematic viscosity, \dot{m} is the mass flow rate, \bar{h} is the average convection coefficient, and k_f is the fluid thermal conductivity.

177

Internal Flow

$$Re = rac{4 \, \dot{m}}{\pi D \mu}$$
 [For Internal Flow in a Pipe of Diameter D]

For Constant Heat Flux $[q_s^{"} = constant]$: $q_{conv} = q_s^{"}(P \cdot L)$; where P = Perimeter, L = Length $T_m(x) = T_{m,i} + \frac{q_s' \cdot P}{\dot{m} \cdot c_s} x$

For Constant Surface Temperature $[T_s = constant]$:

If there is only convection between the surface temperature, T_s , and the mean fluid temperature, T_m , use

$$\frac{T_s - T_m(x)}{T_s - T_{m,i}} = exp\left(-\frac{P \cdot x}{\dot{m} \cdot c_p}\bar{h}\right)$$

If there are multiple resistances between the outermost temperature, T_{∞} , and the mean fluid temperature, T_m , use

 $\ln\left(\frac{\sigma}{\Delta T_i}\right)$

$$\frac{T_{\infty} - T_m(x)}{T_{\infty} - T_{m,i}} = exp\left(-\frac{P \cdot x}{\dot{m} \cdot c_p}U\right) = exp\left(-\frac{1}{\dot{m} \cdot c_p \cdot R_t}\right)$$

Total heat transfer rate over the entire tube length:

$$q_{t} = \dot{m} \cdot c_{p} \cdot (T_{m,o} - T_{m,i}) = \bar{h} \cdot A_{s} \cdot \Delta T_{lm} \text{ or } U \cdot A_{s} \cdot \Delta T_{lm} \quad ; \quad T_{s} = constant$$

an temperature difference:
$$\Delta T_{lm} = \frac{\Delta T_{o} - \Delta T_{i}}{(\Delta T_{o})} \quad ; \quad \Delta T_{o} = T_{s} - T_{m,o} \quad ; \quad \Delta T_{i} = T_{s} - T_{m,i}$$

Log mea

Free Convection Heat Transfer

$$Gr_L = rac{geta(T_s - T_\infty)L_c^3}{
u^2}$$
 [Grashof Number]

$$Ra_L = \frac{g\beta(T_s - T_\infty)L_c^3}{\nu\alpha} \qquad [\text{Rayleigh Number}]$$

Vertical Plates:
$$\overline{Nu}_{L} = \left\{ 0.825 + \frac{0.387 \operatorname{Ra}_{L}^{1/6}}{\left[1 + \left(\frac{0.492}{\operatorname{Pr}}\right)^{9/16}\right]^{8/27}} \right\}^{2}; \text{ [Entire range of } \operatorname{Ra}_{L}; \text{ properties evaluated at } T_{f} \text{]}$$

- For better accuracy for Laminar Flow: $\overline{Nu}_L = 0.68 + \frac{0.670 Ra_L^{1/4}}{\left[1 + \left(\frac{0.492}{Pr}\right)^{9/16}\right]^{4/9}}$; $Ra_L \lesssim 10^9$ [Properties evaluated at T_f]

Inclined Plates: for the top and bottom surfaces of cooled and heated inclined plates, respectively, the equations of the vertical plate can be used by replacing (g) with $(g \cos \theta)$ in Ra_{l} for $0 \le \theta \le 60^{\circ}$.

Horizontal Plates: use the following correlations with $L = \frac{A_s}{P}$ where A_s = Surface Area and P = Perimeter

- Upper surface of Hot Plate or Lower Surface of Cold Plate:

$$\overline{Nu}_L = 0.54 Ra_L^{1/4}$$
 $(10^4 \le Ra_L \le 10^7, Pr \ge 0.7)$; $\overline{Nu}_L = 0.15 Ra_L^{1/3}$ $(10^7 \le Ra_L \le 10^{11}, all Pr)$

 $\overline{Nu}_L = 0.52 \ Ra_L^{1/5}$ $(10^4 \le Ra_L \le 10^9, Pr \ge 0.7)$

Vertical Cylinders: the equations for the Vertical Plate can be applied to vertical cylinders of height L if the following criterion is

met:
$$\frac{D}{L} \ge \frac{35}{Gr_L^{1/4}}$$

Long Horizontal Cylinders: $\overline{Nu}_D = \left\{ 0.60 + \frac{0.387 R a_D^{1/6}}{\left[1 + \left(\frac{0.559}{Pr}\right)^{9/16}\right]^{8/27}} \right\}^2$; $Ra_D \lesssim 10^{12}$ [Properties evaluated at T_f]

Spheres:
$$\overline{Nu}_D = 2 + \frac{0.589 R a_D^{1/4}}{\left[1 + \left(\frac{0.469}{Pr}\right)^{9/16}\right]^{4/9}}$$
; $Ra_D \lesssim 10^{11}$; $Pr \ge 0.7$ [Properties evaluated at T_f]

Heat Exchangers

Heat Gain/Loss Equations: $q = \dot{m} c_p (T_o - T_i) = U A_s \Delta T_{lm}$; where U is the overall heat transfer coefficient and A_s is the total heat exchanger surface area

Log-Mean Temperature Difference:
$$\Delta T_{lm,PF} = \frac{(T_{h,i}-T_{c,i})-(T_{h,o}-T_{c,o})}{\ln\left[\frac{(T_{h,i}-T_{c,i})}{(T_{h,o}-T_{c,o})}\right]}$$
[Parallel-Flow Heat Exchanger]

Log-Mean Temperature Difference:
$$\Delta T_{lm,CF} = \frac{(T_{h,i} - T_{c,o}) - (T_{h,o} - T_{c,i})}{\ln\left[\frac{(T_{h,i} - T_{c,o})}{(T_{h,o} - T_{c,i})}\right]}$$
[Counter-Flow Heat Exchanger]

For Cross-Flow and Shell-and-Tube Heat Exchangers: $\Delta T_{lm} = F \ \Delta T_{lm,CF}$; where F is a correction factor obtained from the figures by calculating P & R values

Effectiveness – NTU Method (**E** – NTU):

Number of Transfer Units (NTU): $NTU = \frac{UA}{c_{min}}$; where C_{min} is the minimum heat capacity rate in [W/K] Heat Capacity Rates: $C_c = \dot{m}_c c_{p,c}$ [Cold Fluid]; $C_h = \dot{m}_h c_{p,h}$ [Hot Fluid]

$$C_r = \frac{C_{min}}{C_{max}}$$
 [Heat Capacity Ratio]

Note: The condensation or evaporation side of the heat exchanger is associated with $\mathcal{C}_{max}=\infty$

$$q = \dot{m}_{c}C_{p,c}(T_{c,o} - T_{c,i}) = \dot{m}_{h}C_{p,h}(T_{h,i} - T_{h,o}) = UA_{s} \Delta T_{lm}$$

$$q_{max} = C_{min}(T_{h,i} - T_{c,i}) \quad \text{where} \quad \varepsilon = \frac{q}{q_{max}}$$
Use: $\varepsilon = f(NTU, C_{r})$ relations or $NTU = f(\varepsilon, C_{r})$ relations as appropriate

Correlation		Geometry	Conditions
$\delta = 5x Re_x^{-1/2}$	(7.19)	Flat plate	Laminar, T_f
$C_{f,x} = 0.664 Re_x^{-1/2}$	(7.20)	Flat plate	Laminar, local, T_f
$Nu_x = 0.332 Re_x^{1/2} Pr^{1/3}$	(7.23)	Flat plate	Laminar, local, $T_f, Pr \ge 0.6$
$\delta_t = \delta P r^{-1/3}$	(7.24)	Flat plate	Laminar, T _f
$\overline{C}_{f,x} = 1.328 R e_x^{-1/2}$	(7.29)	Flat plate	Laminar, average, T_f
$\overline{Nu}_{x} = 0.664 Re_{x}^{1/2} Pr^{1/3}$	(7.30)	Flat plate	Laminar, average, T_t , $Pr \gtrsim 0.6$
$Nu_x = 0.565 Pe_x^{1/2}$	(7.32)	Flat plate	Laminar, local, $T_f, Pr \leq 0.05, Pe_r \geq 100$
$C_{f,x} = 0.0592 R e_x^{-1/5}$	(7.34)	Flat plate	Turbulent, local, $T_f, Re_x \lesssim 10^8$
$\delta = 0.37x Re_x^{-1/5}$	(7.35)	Flat plate	Turbulent, T_f , $Re_x \lesssim 10^8$
$Nu_x = 0.0296 Re_x^{4/5} Pr^{1/3}$	(7.36)	Flat plate	Turbulent, local, T_f , $Re_x \leq 10^8$, $0.6 \leq Pr \leq 60$
$\overline{C}_{fL} = 0.074 R e_L^{-1/5} - 1742 R e_L^{-1}$	(7.40)	Flat plate	Mixed, average, T_f , $Re_{x, c} = 5 \times 10^5$, $Re_L \leq 10^8$
$\overline{Nu}_L = (0.037Re_L^{4/5} - 871)Pr^{1/3}$	(7.38)	Flat plate	Mixed, average, T_f , $Re_{x, c} = 5 \times 10^5$, $Re_L \leq 10^8$, $0.6 \leq Pr \leq 60$
$\overline{Nu}_D = C R e_D^m P r^{1/3}$ (Table 7.2)	(7.52)	Cylinder	Average, T_f , $0.4 \leq Re_D \leq 4 \times 10^5$, $Pr \geq 0.7$
$\overline{Nu}_D = C R e_D^m P r^n (Pr/Pr_s)^{1/4}$ (Table 7.4)	(7.53)	Cylinder	Average, T_{∞} , $1 \leq Re_D \leq 10^6$, $0.7 \leq Pr \leq 500$
$\overline{Nu}_{D} = 0.3 + [0.62Re_{D}^{1/2} Pr^{1/3} \\ \times [1 + (0.4/Pr)^{2/3}]^{-1/4}]$		Cylinder	Average, T_f , $Re_D Pr \ge 0.2$
$\times [1 + (Re_D/282,000)^{5/8}]^{4/5}$	(7.54)		
$\overline{Nu_D} = 2 + (0.4Re_D^{1/2} + 0.06Re_D^{2/3})Pr^{0.4}$		Sphere	Average, T_{∞} , $3.5 \leq Re_D \leq 7.6 \times 10^4$, $0.71 \leq Pr \leq 380$
$\times (\mu/\mu_s)^{1/4}$	(7.56)		
$\overline{Nu}_D = 2 + 0.6Re_D^{1/2} Pr^{1/3}$	(7.57)	Falling drop	Average, T_{∞}
$\overline{Nu}_D = 1.13C_1C_2 Re_{D,\max}^m Pr^{1/3}$ (Tables 7.5, 7.6)	(7.60), (7.61)	Tube bank ^d	Average, \overline{T}_{f} , 2000 $\leq Re_{D, \max} \leq 4 \times 10^{4}$, $Pr \geq 0.7$
$Nu_D = CC_2 Re_{D,\max}^m Pr^{0.36} (Pr/Pr_s)^{1/4}$ Tables 7.7, 7.8)	(7.64), (7.65)	Tube bank ^d	Average, \overline{T} , 1000 $\leq Re_D \leq 2 \times 10^6$, 0.7 $\leq Pr \leq 500$

 TABLE 7.9
 Summary of convection heat transfer correlations for external flow^{a, b}

^aCorrelations in this table pertain to isothermal surfaces; for special cases involving an unheated starting length or a uniform surface heat flux, see Section 7.2.4 or 7.2.5.

^bWhen the heat and mass transfer analogy is applicable, the corresponding mass transfer correlations may be obtained by replacing Nu and Pr by Sh and Sc, respectively.

"The temperature listed under "Conditions" is the temperature at which properties should be evaluated.

.

^dFor tube banks and packed beds, properties are evaluated at the average fluid temperature, $\overline{T} = (T_i + T_o)/2$, or the average film temperature, $\overline{T}_f = (T_s + \overline{T})/2$.

fully developed if <u>L</u> >10 use Egn 8.60 or 8.61 * If length of tube L < Xfd, & Xfd, t then use Eqn 8.57 Iurbulent if Kep >2300 L < Xflyt & > Xflyh then use Egn 8.56 4m/MDM CHAPTER 8 Eq1 8.53 or 8.55 Vup = constant Len II deve loped Ken ≤2300 Jaminar it Egn 8.57 Entry Region Compined length entry Adyt -> Egn 8.23 Afd, h→ Eqn 8.3 $\left(\frac{\chi_{fd,h}}{D}\right) = 0.05 ReD \\ \frac{\chi_{fd,h}}{E_{10}}$ Summary (Xfdst) = 0.05 Rep Pr entry length Eqn 8.56 Thermal JI

Correlation		Conditions
$f = 64/Re_D$	(8.19)	Laminar, fully developed
$\overline{Nu_D} = 4.36$	(8.53)	Laminar, fully developed, uniform q_s''
$\overline{Nu_D = 3.66}$	(8.55)	Laminar, fully developed, uniform T_s
$\overline{Nu}_{D} = 3.66 + \frac{0.0668(D/L)Re_{D}Pr}{1 + 0.04[(D/L)Re_{D}Pr]^{2/3}}$	(8.56)	Laminar, thermal entry (or combined entry with $Pr \gtrsim 5$), uniform T_s
or		
$\overline{Nu}_D = 1.86 \left(\frac{Re_D Pr}{L/D}\right)^{1/3} \left(\frac{\mu}{\mu_s}\right)^{0.14}$	(8.57)	Laminar, combined entry, $0.6 \leq Pr \leq 5$, $0.0044 \leq (\mu/\mu_s) \leq 9.75$, uniform T_s
$f = 0.316 R e_D^{-1/4}$	(8.20a) ^c	Turbulent, fully developed, $Re_D \leq 2 \times 10^4$
$f = 0.184 Re_D^{-1/5}$	(8.20b) ^c	Turbulent, fully developed, $Re_D \gtrsim 2 \times 10^4$
or		
$f = (0.790 \ln Re_D - 1.64)^{-2}$	(8.21) ^c	Turbulent, fully developed, $3000 \leq Re_D \leq 5 \times 10^6$
$Nu_D = 0.023 Re_D^{4/5} Pr^n$	(8.60) ^d	Turbulent, fully developed, $0.6 \leq Pr \leq 160$, $Re_D \geq 10,000$, $(L/D) \geq 10$, $n = 0.4$ for $T_s > T_m$ and $n = 0.3$ for $T_s < T_m$
or $Nu_D = 0.027 Re_D^{4/5} Pr^{1/3} \left(\frac{\mu}{\mu_s}\right)^{0.14}$ or	$(8.61)^d$	Turbulent, fully developed, $0.7 \leq Pr \leq 16,700$, $Re_D \geq 10,000$, $L/D \geq 10$
$Nu_D = \frac{(f/8)(Re_D - 1000)Pr}{1 + 12.7(f/8)^{1/2}(Pr^{2/3} - 1)}$	(8.62) ^d	Turbulent, fully developed, $0.5 \leq Pr \leq 2000$, $3000 \leq Re_D \leq 5 \times 10^6$, $(L/D) \geq 10$
$Nu_D = 4.82 + 0.0185 (Re_D Pr)^{0.827}$	(8.64)	Liquid metals, turbulent, fully developed, uniform $q_{s}^{"}$, 3.6 × 10 ³ ≤ $Re_D \le 9.05 \times 10^5$, $10^2 \le Pe_D \le 10^4$
$Nu_D = 5.0 + 0.025 (Re_D Pr)^{0.8}$	(8.65)	Liquid metals, turbulent, fully developed, uniform T_s , $Pe_D \gtrsim 100$

TABLE 8.4Summary of convection correlations for flow in a circular tube a,b,e

"The mass transfer correlations may be obtained by replacing Nu_D and Pr by Sh_D and Sc, respectively.

^bProperties in Equations 8.53, 8.55, 8.60, 8.61, 8.62, 8.64, and 8.65 are based on T_m ; properties in Equations 8.19, 8.20, and 8.21 are based on $T_f \equiv (T_s + T_m)/2$; properties in Equations 8.56 and 8.57 are based on $\overline{T}_m \equiv (T_{m,i} + T_{m,o})/2$.

Equations 8.20 and 8.21 pertain to smooth tubes. For rough tubes, Equation 8.62 should be used with the results of Figure 8.3.

^dAs a first approximation, Equations 8.60, 8.61, or 8.62 may be used to evaluate the average Nusselt number \overline{Nu}_D over the entire tube length, if $(L/D) \ge 10$. The properties should then be evaluated at the average of the mean temperature, $\overline{T}_m \equiv (T_{m,i} + T_{m,o})/2$.

For tubes of noncircular cross section, $Re_D \equiv D_h u_m / \nu$, $D_h \equiv 4A_c / P$, and $u_m = m / \rho A_c$. Results for fully developed laminar flow are provided in Table 8.1. For turbulent flow, Equation 8.60 may be used as a first approximation.

8		
Geometry	Recommended Correlation	Restrictions
1. Vertical plates ^a		
2. Inclined plates Cold surface up or hot surface down	Equation 9.26	None
 Horizontal plates (a) Hot surface up or cold surface down 	Equation 9.26 $g \longrightarrow g \cos \theta$	$0 \le \theta \lesssim 60^{\circ}$
(b) Cold surface up or	Equation 9.30 Equation 9.31	$10^4 \lesssim Ra_L \lesssim 10^7$ $10^7 \lesssim Ra_L \lesssim 10^{11}$
hot surface down	Equation 9.32	$10^5 \lesssim Ra_L \lesssim 10^{10}$
5. Sphere	Equation 9.34	$Ra_D \lesssim 10^{12}$
× CO ×	Equation 9.35	$Ra_D \lesssim 10^{11}$ $Pr \ge 0.7$

TABLE 9.2 Summary of free convection empirical correlations for immersed geometries

^{*a*} The correlation may be applied to a vertical cylinder if $(D/L) \ge (35/Gr_L^{1/4})$

TABLE 3.1 Thermal contact resistance for (a) metallic interfacesunder vacuum conditions and (b) aluminum interface $(10-\mu m)$ surface roughness, 10^5 N/m^2) with different interfacial fluids [1]

Thermal Resistance, $R''_{t,c} \times 10^4 (\mathrm{m}^2 \cdot \mathrm{K/W})$									
(a) Vacuum Interfa	ce		(b) Interfacial Fluid						
Contact pressure	100 kN/m ²	10,000 kN/m ²	Air	2.75					
Stainless steel	6-25	0.7 - 4.0	Helium	1.05					
Copper	1-10	0.1-0.5	Hydrogen	0.720					
Magnesium	1.5-3.5	0.2-0.4	Silicone oil	0.525					
Aluminum	1.5-5.0	0.2-0.4	Glycerine	0.265					

TABLE 3.2Thermal resistance of representative solid/solid interfaces

Interface	$R_{t,c}'' \times 10^4 (\mathrm{m}^2 \cdot \mathrm{K/W})$	Source
Silicon chip/lapped aluminum in air (27–500 kN/m ²)	0.3-0.6	[2]
Aluminum/aluminum with indium foil filler ($\sim 100 \text{ kN/m}^2$)	~ 0.07	[1, 3]
Stainless/stainless with indium foil filler (\sim 3500 kN/m ²)	~ 0.04	[1, 3]
Aluminum/aluminum with metallic (Pb) coating	0.01-0.1	[4]
Aluminum/aluminum with Dow Corning 340 grease ($\sim 100 \text{ kN/m}^2$)	~ 0.07	[1, 3]
Stainless/stainless with Dow Corning 340 grease (\sim 3500 kN/m ²)	~ 0.04	[1, 3]
Silicon chip/aluminum with 0.02-mm epoxy	0.2-0.9	[5]
Brass/brass with 15- μ m tin solder	0.025-0.14	[6]

Case	Tip Condition (x = L)	Temperature Distribution θ/θ_b		Fin Heat Transfer Rate	q _f
A	Convection heat transfer: $h\theta(L) = -kd\theta/dx _{x=L}$	$\frac{\cosh m(L-x) + (h/mk)\sinh m(x)}{\cosh mL + (h/mk)\sinh mL}$	$\frac{L-x}{2}$	$M\frac{\sinh mL + (h/mk)}{\cosh mL + (h/mk)}$	$\cosh mL$ $\sinh mL$ (3,72)
В	$\begin{array}{l} \text{Adiabatic} \\ d\theta/dx \Big _{x=L} = 0 \end{array}$	$\frac{\cosh m(L-x)}{\cosh mL}$	(3.75)	M tanh mL	(3.76)
С	Prescribed temperature: $\theta(L) = \theta_L$	$\frac{(\theta_L/\theta_b)\sinh mx + \sinh m(L - m)}{\sinh mL}$	(0.75)	$M\frac{(\cosh mL - \theta_L)}{\sinh mL}$	$\frac{\theta_b}{\theta_b}$
D	Infinite fin $(L \rightarrow \infty)$: $\theta(L) = 0$	e^{-mx}	(3.77) (3.79)	М	(3.78) (3.80)

TABLE 3.4 Temperature distribution and heat loss for fins of uniform cross section

$$\begin{split} \theta &\equiv T - T_{\infty} & m^2 \equiv h P / k A_c \\ \theta_b &= \theta(0) = T_b - T_{\infty} & M \equiv \sqrt{h P k A_c} \theta_b \end{split}$$

TABLE 7.2 Constants of Equation 7.52 for the circular cylinder in cross flow [11, 12]

ReD	С	m		
0.4-4	0.989	0.330		
4-40	0.911	0.385		
40-4000	0.683	0.466		
4000-40,000	0.193	0.618		
40,000-400,000	0.027	0.805		

TABLE 7.4Constants ofEquation 7.53 for the circularcylinder in cross flow [17]

and the second se	Creater -	
Re _D	С	m
1-40	0.75	0.4
40-1000	0.51	0.5
$10^{3}-2 \times 10^{5}$	0.26	0.6
$2 \times 10^{5} - 10^{6}$	0.076	0.7

$ f Dr < 10 \rightarrow n = 0.27$
$ P \le 10 - 7 - 0.37$
If $Pr \ge 10 \rightarrow n = 0.36$

TABLE A.7 Thermophysical Properties of Liquid Metals^a

Composition	Melting Point (K)	<i>Т</i> (К)	ρ (kg/m ³)	$c_p \over (\mathbf{kJ}/\mathbf{kg} \cdot \mathbf{K})$	$ \frac{\nu \cdot 10^7}{(m^2/s)} $	$k \over (W/m \cdot K)$	$\begin{array}{c} \alpha \cdot 10^5 \\ (m^2/s) \end{array}$	Pr
Bismuth	544	589 811 1033	10,011 9739 9467	0.1444 0.1545 0.1645	1.617 1.133 0.8343	16.4 15.6 15.6	1.138 1.035 1.001	0.0142 0.0110 0.0083
Lead	600	644 755 977	10,540 10,412 10,140	0.159 0.155	2.276 1.849 1.347	16.1 15.6 14.9	1.084 1.223	0.024 0.017
Potassium	337	422 700 977	807.3 741.7 674.4	0.80 0.75 0.75	4.608 2.397 1.905	45.0 39.5 33.1	6.99 7.07 6.55	0.0066 0.0034 0.0029
Sodium	371	366 644 977	929.1 860.2 778.5	1.38 1.30 1.26	7.516 3.270 2.285	86.2 72.3 59.7	6.71 6.48 6.12	0.011 0.0051 0.0037
NaK, (45%/55%)	292	366 644 977	887.4 821.7 740.1	1.130 1.055 1.043	3.270 72.3 6.48 2.285 59.7 6.12 6.522 25.6 2.552 2.871 27.5 3.17 2.174 28.9 3.74		2.552 3.17 3.74	0.026 0.0091 0.0058
NaK, (22%/78%)	262	366 672 1033	849.0 775.3 690.4	0.946 0.879 0.883	5.797 2.666 2.118	24.4 26.7	3.05 3.92	0.019 0.0068
PbBi, (44.5%/55.5%)	398	422 644 922	10,524 10,236 9835	0.147 0.147	1.496 1.171	9.05 11.86	0.586 0.790	0.189
Mercury	234			See Table A	4.5			

TADLE A 1	Thormonbysical	Properties of	Salastad	Motallia Solida ^a
IABLE A. I	1 nermophysical	roperues of	Selected	Metanic Sonds

								Pro	perties a	t Various	Tempera	tures (K)		
	Maltina		Propertie	s at 300 K					k (W	//m • K)/c	p (J/kg ⋅ K	()			
Composition	Point (K)	$ ho \ (kg/m^3)$	$c_p \over (J/kg \cdot K)$	$k \over (W/m \cdot K)$	$rac{lpha\cdot 10^6}{(\mathrm{m}^2\!/\mathrm{s})}$	100	200	400	600	800	1000	1200	1500	2000	2500
Aluminum															
Pure	933	2702	903	237	97.1	302 482	237 798	240 949	231 1033	218 1146					
Alloy 2024-T6 (4.5% Cu, 1.5% Mg, 0.6% Mp)	775	2770	875	177	73.0	65 473	163 787	186 925	186 1042						
Alloy 195, Cast (4.5% Cu)		2790	883	168	68.2			174	185						
Beryllium	1550	1850	1825	200	59.2	990 203	301 1114	161 2191	126 2604	106 2823	90.8 3018	78.7 3227	3519		
Bismuth	545	9780	122	7.86	6.59	16.5 112	9.69 120	7.04 127							
Boron	2573	2500	1107	27.0	9.76	190 128	55.5 600	16.8 1463	10.6 1892	9.60 2160	9.85 2338				
Cadmium	594	8650	231	96.8	48.4	203 198	99.3 222	94.7 242							
Chromium	2118	7160	449	93.7	29.1	159 192	111 384	90.9 484	80.7 542	71.3 581	65.4 616	61.9 682	57.2 779	49.4 937	
Cobalt	1769	8862	421	99.2	26.6	167 236	122 379	85.4 450	67.4 503	58.2 550	52.1 628	49.3 733	42.5 674		
Copper Pure	1358	8933	385	401	117	482	413	393 307	379	366	352	339			
Commercial bronze (90% Cu, 10% Al)	1293	8800	420	52	14	232	42 785	52 460	59 545	455	451	400			
Phosphor gear bronze (89% Cu, 11% Sn)	1104	8780	355	54	17		41	65	74						
Cartridge brass (70% Cu, 30% Zn)	1188	8530	380	110	33.9	75	95 360	137 395	149 425						
Constantan (55% Cu, 45% Ni)	1493	8920	384	23	6.71	17 237	19 362								
Germanium	1211	5360	322	59.9	34.7	232 190	96.8 290	43.2 337	27.3 348	19.8 357	17.4 375	17.4 395			
TABLE A.1 Cont	inued														

								Pro	perties at	Various	5 Tempera	tures (K)			
	Molting		Propertie	s at 300 K					<i>k</i> (W	/m • K)/a	c _p (J/kg ⋅ K	.)			
Composition	Point (K)	$ ho (kg/m^3)$	$c_p \ (J/kg \cdot K)$	<i>k</i> (W/m · K)	$\frac{\alpha\cdot 10^6}{(\mathrm{m^2\!/\!s})}$	100	200	400	600	800	1000	1200	1500	2000	2500
Gold	1336	19300	129	317	127	327 109	323 124	311 131	298 135	284 140	270 145	255 155			
Iridium	2720	22500	130	147	50.3	172 90	153 122	144 133	138 138	132 144	126 153	120 161	111 172		
Iron															
Pure	1810	7870	447	80.2	23.1	134 216	94.0 384	69.5 490	54.7 574	43.3 680	32.8 975	28.3 609	32.1 654		
Armco (99.75% pure)		7870	447	72.7	20.7	95.6	80.6	65.7	53.1	42.2	32.3	28.7	31.4		
						215	384	490	574	680	975	609	654		
Carbon steels															
Plain carbon (Mn $\leq 1\%$, Si $\leq 0.1\%$)		7854	434	60.5	17.7			56.7 487	48.0 559	39.2 685	30.0 1169				
$\frac{31 \pm 0.170}{\text{AISI 1010}}$		7832	434	63.9	18.8			58.7 487	48.8 559	39.2 685	31.3 1168				
Carbon-silicon (Mn $\leq 1\%$, 0.1% $\leq Si \leq 0.6\%$)		7817	446	51.9	14.9			49.8 501	44.0 582	37.4 699	29.3 971				
Carbon-manganese- silicon $(1\% < Mn \le 1.65\%, 0.1\% < Si \le 0.6\%)$		8131	434	41.0	11.6			42.2 487	39.7 559	35.0 685	27.6 1090				
Chromium (low) stools															
${}^{1}_{2}Cr {}^{-1}_{4}Mo {}^{-Si}$ (0.18% C, 0.65% Cr, 0.23% Mo 0.66% Si)		7822	444	37.7	10.9			38.2 492	36.7 575	33.3 688	26.9 969				
$1 \text{ Cr} - \frac{1}{2}\text{Mo}$ (0.16% C, 1% Cr, 0.54% Mo, 0.20% Si)		7858	442	42.3	12.2			42.0 492	39.1 575	34.5 688	27.4 969				
0.54% Mo, 0.59% SI) 1 Cr–V (0.2% C, 1.02% Cr, 0.15% V)		7836	443	48.9	14.1			46.8 492	42.1 575	36.3 688	28.2 969				

TABLE A.1Continued

								Pro	perties at	t Various	Tempera	tures (K)			
	Melting		Propertie	es at 300 K					k (W	/m • K)/c _j	₀ (J/kg • K	.)			
Composition	Point (K)	ho (kg/m ³)	$(\mathbf{J}/\mathbf{kg} \cdot \mathbf{K})$	$k (W/m \cdot K)$	$\begin{array}{c} \alpha \cdot 10^6 \\ (\mathrm{m^{2}\!/s}) \end{array}$	100	200	400	600	800	1000	1200	1500	2000	2500
Titanium	1953	4500	522	21.9	9.32	30.5	24.5	20.4	19.4	19.7	20.7	22.0	24.5		
Tungsten	3660	19300	132	174	68.3	208 87	403 186 122	159 137	137 142	125 145	118 148	113 152	107 157	100 167	95 176
Uranium	1406	19070	116	27.6	12.5	21.7 94	25.1 108	29.6 125	34.0 146	38.8 176	43.9 180	49.0 161	157	107	170
Vanadium	2192	6100	489	30.7	10.3	35.8 258	31.3 430	31.3 515	33.3 540	35.7 563	38.2 597	40.8 645	44.6 714	50.9 867	
Zinc	693	7140	389	116	41.8	117 297	118 367	111 402	103 436						
Zirconium	2125	6570	278	22.7	12.4	33.2 205	25.2 264	21.6 300	20.7 322	21.6 342	23.7 362	26.0 344	28.8 344	33.0 344	
Stainless steels AISI 302		8055	480	15.1	3.91			17.3	20.0	22.8	25.4				
AISI 304	1670	7900	477	14.9	3.95	9.2	12.6	512 16.6	559 19.8	585 22.6	606 25.4	28.0	31.7		
AISI 316		8238	468	13.4	3.48	212	402	15.2	18.3	21.3	24.2	040	082		
AISI 347		7978	480	14.2	3.71			15.8 513	18.9 559	21.9 585	24.7 606				
Lead	601	11340	129	35.3	24.1	39.7 118	36.7 125	34.0 132	31.4 142						
Magnesium	923	1740	1024	156	87.6	169 649	159 934	153 1074	149 1170	146 1267					
Molybdenum	2894	10240	251	138	53.7	179 141	143 224	134 261	126 275	118 285	112 295	105 308	98 330	90 380	86 459
Nickel Pure	1728	8900	444	90.7	23.0	164	107	80.2	65.6	67.6	71.8	76.2	82.6		
Nichrome (80% Ni 20% Cr)	1672	8400	420	12	3.4	232	383	485	592 16 525	21 545	362	394	010		
(30% Ni, 20% Cl) Inconel X-750 (73% Ni, 15% Cr, 6.7% Fe)	1665	8510	439	11.7	3.1	8.7	10.3 372	13.5 473	17.0 510	20.5 546	24.0 626	27.6	33.0		
Niobium	2741	8570	265	53.7	23.6	55.2	52.6	55.2	58.2	61.3	64.4 201	67.5	72.1	79.1	
Palladium	1827	12020	244	71.8	24.5	76.5 168	71.6 227	73.6 251	285 79.7 261	86.9 271	94.2 281	102 291	110 307	547	
Platinum Pure	2045	21450	133	71.6	25.1	77.5	72.6	71.8	73.2	75.6	78.7	82.6	89.5	99.4	
Alloy 60Pt-40Rh (60% Pt 40% Rh)	1800	16630	162	47	17.4	100	125	52	59	65	69	73	76	179	
Rhenium	3453	21100	136	47.9	16.7	58.9 97	51.0 127	46.1 139	44.2 145	44.1 151	44.6 156	45.7 162	47.8 171	51.9 186	
Rhodium	2236	12450	243	150	49.6	186 147	154	146	136 274	127	121	116	110	112	
Silicon	1685	2330	712	148	89.2	884 259	264 556	98.9 790	61.9 867	42.2 913	31.2 946	25.7 967	22.7 992	570	
Silver	1235	10500	235	429	174	444	430	425	412	396 262	379	361			
Tantalum	3269	16600	140	57.5	24.7	59.2	57.5	57.8	58.6	59.4	60.2	61.0	62.2 160	64.1	65.6
Thorium	2023	11700	118	54.0	39.1	59.8	54.6	54.5	55.8	56.9	56.9	58.7	100	172	107
Tin	505	7310	227	66.6	40.1	85.2 188	73.3	62.2 243	1.34	175	150	107			

		Typical Properties at 300 l	K
Description/Composition	Density, ho (kg/m ³)	Thermal Conductivity, <i>k</i> (W/m⋅K)	Speci fi Heat, c _p (J/kg·K)
Building Boards			
Asbestos-cement board	1920	0.58	_
Gypsum or plaster board	800	0.17	_
Plywood	545	0.12	1215
Sheathing, regular density	290	0.055	1300
Acoustic tile	290	0.058	1340
Hardboard, siding	640	0.094	1170
Hardboard, high density	1010	0.15	1380
Particle board, low density	590	0.078	1300
Particle board, high density	1000	0.170	1300
Hardwoods (oak manla)	720	0.16	1255
Softwoods (fir pipe)	510	0.10	1255
Softwoods (III, plile)	510	0.12	1500
Masonry Materials	1060	0.72	700
Cement mortar	1860	0.72	780
Brick, common	1920	0.72	835
Brick, face	2083	1.3	_
Clay tile, hollow		0.50	
1 cell deep, 10 cm thick	_	0.52	_
3 cells deep, 30 cm thick	_	0.69	_
Concrete block, 3 oval cores			
Sand/gravel, 20 cm thick	_	1.0	_
Cinder aggregate, 20 cm thick Concrete block, rectangular core	—	0.67	_
2 cores, 20 cm thick, 16 kg	_	1.1	_
Same with filled cores	_	0.60	_
Plastering Materials			
Cement plaster, sand aggregate	1860	0.72	_
Gypsum plaster, sand aggregate	1680	0.22	1085
Gypsum plaster, vermiculite aggregate	720	0.25	_

TABLE A.3Thermophysical Properties of Common Materials^a

Structural Building Materials

TABLE A.3 Continued

.

Industrial Insulation	ı															
Description/	Maximum	Typical			Туріс	al Ther	nal Con	ductivit	ty, <i>k</i> (W	/m • K),	at Vari	ous Tem	peratu	es (K)		
Composition	Temperature (K)	(kg/m ³)	200	215	230	240	255	270	285	300	310	365	420	530	645	750
Blankets																
Blanket, mineral fiber, metal reinforced	920 815	96–192 40–96									0.038 0.035	0.046 0.045	0.056 0.058	0.078 0.088		
Blanket, mineral fiber, glass; fine fiber,	450	10				0.036	0.038	0.040	0.043	0.048	0.052	0.076				
organic bonded		12				0.035	0.036	0.039	0.042	0.046	0.049	0.069				
		16				0.033	0.035	0.036	0.039	0.042	0.046	0.062				
		24				0.030	0.032	0.033	0.036	0.039	0.040	0.053				
		32 48				0.029	0.030	0.032	0.033	0.036	0.038	0.048				
Blanket, alumina–																
silica fiber	1530	48												0.071	0.105	0.150
		64												0.059	0.087	0.125
		96												0.052	0.076	0.100
		128												0.049	0.068	0.091
Felt, semirigid;	480	50-125						0.035	0.036	0.038	0.039	0.051	0.063			
organic bonded	730	50	0.023	0.025	0.026	0.027	0.029	0.030	0.032	0.033	0.035	0.051	0.079			
Felt, laminated;																
no binder	920	120											0.051	0.065	0.087	
Blocks, Boards, and Pipe Insulations																
Asbestos paper, laminated and																
corrugated																
4-ply	420	190								0.078	0.082	0.098				
6-ply	420	255								0.071	0.074	0.085				
8-ply	420	300								0.068	0.071	0.082				
Magnesia, 85%	590	185									0.051	0.055	0.061			
Calcium silicate	920	190									0.055	0.059	0.063	0.075	0.089	0.104

TABLE A.3 Continued

Industrial Insulation (Continued)

Description/	Maximum Service	Typical Density			Typic	al Theri	mal Con	ductivit	y, k (W	/m • K),	at Vari	ous Tem	peratur	res (K)		
Composition	Temperature (K)	(kg/m ³)	200	215	230	240	255	270	285	300	310	365	420	530	645	750
Cellular glass	700	145			0.046	0.048	0.051	0.052	0.055	0.058	0.062	0.069	0.079			
Diatomaceous	1145	345												0.092	0.098	0.104
silica	1310	385												0.101	0.100	0.115
Polystyrene, rigid																
Extruded (R-12)	350	56	0.023	0.023	0.022	0.023	0.023	0.025	0.026	0.027	0.029					
Extruded (R-12)	350	35	0.023	0.023	0.023	0.025	0.025	0.026	0.027	0.029						
Molded beads	350	16	0.026	0.029	0.030	0.033	0.035	0.036	0.038	0.040						
Rubber, rigid																
foamed	340	70						0.029	0.030	0.032	0.033					
Insulating Cement Mineral fiber																
(rock, stag or glass) With clay binder With hydraulic	1255	430									0.071	0.079	0.088	0.105	0.123	
setting binder	922	560									0.108	0.115	0.123	0.137		
Loose Fill Cellulose, wood																
or paper pulp	_	45							0.038	0.039	0.042					
Perlite, expanded	_	105	0.036	0.039	0.042	0.043	0.046	0.049	0.051	0.053	0.056					
Vermiculite,																
expanded	—	122 80			0.056 0.049	0.058 0.051	0.061 0.055	0.063 0.058	0.065 0.061	0.068 0.063	0.071 0.066					

TABLE A.3 Continued

Insulating Materials and Systems

		Typical Properties at 300 K	
Description/Composition	Density, p (kg/m ³)	Thermal Conductivity, <i>k</i> (W/m • K)	Speci fi Heat, c _p (J/kg·K)
Blanket and Batt			
Glass fiber, paper faced	16	0.046	_
	28	0.038	_
	40	0.035	_
Glass fiber, coated; duct liner	32	0.038	835
Board and Slab			
Cellular glass	145	0.058	1000
Glass fiber, organic bonded	105	0.036	795
Polystyrene, expanded			
Extruded (R-12)	55	0.027	1210
Molded beads	16	0.040	1210
Mineral fiberboard; roofing	265	0.049	_
material			
Wood, shredded/cemented	350	0.087	1590
Cork	120	0.039	1800
Loose Fill			
Cork, granulated	160	0.045	_
Diatomaceous silica, coarse	350	0.069	_
Powder	400	0.091	_
Diatomaceous silica, fine powder	200	0.052	_
, I	275	0.061	_
Glass fiber, poured or blown	16	0.043	835
Vermiculite, flakes	80	0.068	835
·	160	0.063	1000
Formed/Foamed-in-Place			
Mineral wool granules with	190	0.046	_
asbestos/inorganic binders, sprayed			
Polyvinyl acetate cork mastic; sprayed or troweled	_	0.100	—
Urethane, two-part mixture; rigid foam	70	0.026	1045
Reflective			
Aluminum foil separating fluffy	40	0.00016	_
glass mats; 10-12 layers, evacuated;			
for cryogenic applications (150 K)			
Aluminum foil and glass paper	120	0.000017	
laminate; 75–150 layers; evacuated;			
for cryogenic application (150 K)			
Typical silica powder, evacuated	160	0.0017	

TABLE A.3 Continued

Other Materials

Description/ Composition	Temperature (K)	Density,	Thermal Conductivity, <i>k</i> (W/m•K)	Speci fi Heat, c _p (J/kg•K)
Asphalt	300	2115	0.062	920
Bakelite	300	1300	1.4	1465
Brick, refractory				
Carborundum	872	_	18.5	_
	1672		11.0	_
Chrome brick	473	3010	2.3	835
	823		2.5	
	1173		2.0	
Diatomaceous	478	_	0.25	_
silica, fired	1145		0.30	
Fireclay, burnt 1600 K	773	2050	1.0	960
	1073		1.1	
Eine dass burnt 1725 K	1373	2225	1.1	060
Fireciay, burnt 1725 K	1072	2325	1.5	900
	1075		1.4	
Fireelay brick	1373	2645	1.4	060
Theelay blek	922	2045	1.0	900
	1478		1.8	
Magnesite	478	_	3.8	1130
5	922	_	2.8	
	1478		1.9	
Clay	300	1460	1.3	880
Coal, anthracite	300	1350	0.26	1260
Concrete (stone mix)	300	2300	1.4	880
Cotton	300	80	0.06	1300
Foodstuffs				
Banana (75.7%				
water content)	300	980	0.481	3350
Apple, red (75%				
water content)	300	840	0.513	3600
Cake, batter	300	720	0.223	_
Cake, fully baked	300	280	0.121	_
Chicken meat, white	198	_	1.60	_
(74.4% water content)	233	_	1.49	
	253		1.35	
	263		1.20	
	273		0.476	
	283		0.480	
Class	293		0.489	
Glass Dista (and lines)	200	0500	1.4	750
Plate (soda lime)	300	2500	1.4	750
Fyrex	300	2225	1.4	833

TABLE A.3 Continued

Other Materials (Continued)

Description/ Composition	Temperature (K)	Density, p (kg/m³)	Thermal Conductivity, <i>k</i> (W/m⋅K)	Specifi Heat, c_p $(J/kg \cdot K)$
Ice	273 253	920	1.88 2.03	2040 1945
Leather (sole)	300	998	0.159	_
Paper	300	930	0.180	1340
Paraffin	300	900	0.240	2890
Rock Granite, Barre Limestone, Salem Marble, Halston Quartzite, Sioux Sandstone, Berea Rubber, vulcanized Soft Hard Sand Soil Snow	300 300 300 300 300 300 300 300 300 300	2630 2320 2680 2640 2150 1100 1515 2050 110 500	2.79 2.15 2.80 5.38 2.90 0.13 0.16 0.27 0.52 0.049 0.190	775 810 830 1105 745 2010 800 1840
Tetton	300 400	2200	0.35	_
Tissue, human Skin Fat layer (adipose) Muscle	300 300 300		0.37 0.2 0.5	
Wood, cross grain Balsa Cypress Fir Oak Yellow pine White pine Wood, radial Oak Fir	300 300 300 300 300 300 300 300	140 465 415 545 640 435 545 420	0.055 0.097 0.11 0.17 0.15 0.11 0.19 0.14	2720 2385 2805 2385 2385 2720

T (K)	ρ	c_p	$\frac{\mu \cdot 10^7}{(N \cdot c/m^2)}$	$\nu \cdot 10^{6}$	$k \cdot 10^3$	$\alpha \cdot 10^6$	D.
(K)	(Kg/III)	(KJ/Kg·K)	(N*8/III)	(111/8)	(w/m·K)	(111/8)	
Air, M	= 28.97 kg/l	kmol					
100	3.5562	1.032	71.1	2.00	9.34	2.54	0.786
150	2.3364	1.012	103.4	4.426	13.8	5.84	0.758
200	1 7458	1.007	132.5	7 590	18.1	10.3	0.737
250	1 3947	1.006	159.6	11.44	22.3	15.9	0.720
200	1.1614	1.000	184.6	15.80	26.3	22.5	0.720
500	1.1014	1.007	104.0	13.09	20.5	22.0	0.707
350	0.9950	1.009	208.2	20.92	30.0	29.9	0.700
400	0.8711	1.014	230.1	26.41	33.8	38.3	0.690
450	0.7740	1.021	250.7	32.39	37.3	47.2	0.686
500	0.6964	1.030	270.1	38.79	40.7	56.7	0.684
550	0.6329	1.040	288.4	45.57	43.9	66.7	0.683
600	0.5904	1.051	205.9	52.60	46.0	76.0	0.695
600	0.5804	1.051	305.8	52.69	46.9	/6.9	0.685
650	0.5356	1.063	322.5	60.21	49.7	87.3	0.690
700	0.4975	1.075	338.8	68.10	52.4	98.0	0.695
750	0.4643	1.087	354.6	76.37	54.9	109	0.702
800	0.4354	1.099	369.8	84.93	57.3	120	0.709
850	0.4097	1.110	384.3	93.80	59.6	131	0.716
900	0.3868	1.121	398.1	102.9	62.0	143	0.720
950	0.3666	1.131	411.3	112.2	64.3	155	0.723
1000	0.3482	1.141	424.4	121.9	66.7	168	0.726
1100	0.3166	1 159	449.0	141.8	71.5	195	0.728
1100	0.5100	1.107	449.0	141.0	71.5	175	0.720
1200	0.2902	1.175	473.0	162.9	76.3	224	0.728
1300	0.2679	1.189	496.0	185.1	82	257	0.719
1400	0.2488	1 207	530	213	91	303	0.703
1500	0.2200	1.2207	557	240	100	350	0.695
1600	0.2322	1.230	594	240	106	330	0.065
1000	0.2177	1.248	384	208	100	390	0.088
1700	0.2049	1.267	611	298	113	435	0.685
1800	0.1935	1.286	637	329	120	482	0.683
1900	0.1833	1.307	663	362	128	534	0.677
2000	0.1741	1.337	689	396	137	589	0.672
2100	0.1658	1.372	715	431	147	646	0.667
2200	0.1590	1.417	740	160	160	714	0.655
2200	0.1582	1.41/	740	408	100	714	0.000
2300	0.1513	1.478	/00	500	1/5	/83	0.647
2400	0.1448	1.558	792	547	196	869	0.630
2500	0.1389	1.665	818	589	222	960	0.613
3000	0.1135	2.726	955	841	486	1570	0.536
Ammo	nia (NH ₃), M	L = 17.03 kg/km	ol				
300	0.6894	2.158	101.5	14.7	24.7	16.6	0.887
320	0.6448	2.170	109	16.9	27.2	19.4	0.870
340	0.6059	2.192	116.5	19.2	29.3	22.1	0.872
360	0.5716	2.221	124	21.7	31.6	24.9	0.872
380	0.5410	2.254	131	24.2	34.0	27.9	0.869

TABLE A.4 Thermophysical Properties of Gases at Atmospheric Pressure^a

Т (К)	$ ho \ (kg/m^3)$	$c_p (kJ/kg \cdot K)$	$\frac{\mu \cdot 10^7}{(\text{N} \cdot \text{s/m}^2)}$	$\frac{\nu \cdot 10^{6}}{(m^{2}/s)}$	$\frac{k \cdot 10^3}{(W/m \cdot K)}$	$rac{lpha\cdot 10^6}{(m^2/s)}$	Pr
Ammo	nia (NH3) (co	ontinued)					
400	0.5136	2.287	138	26.9	37.0	31.5	0.853
420	0.4888	2.322	145	29.7	40.4	35.6	0.833
440	0.4664	2.357	152.5	32.7	43.5	39.6	0.826
460	0.4460	2.393	159	35.7	46.3	43.4	0.822
480	0.4273	2.430	166.5	39.0	49.2	47.4	0.822
500	0.4101	2.467	173	42.2	52.5	51.9	0.813
520	0.3942	2.504	180	45.7	54.5	55.2	0.827
540	0.3795	2.540	186.5	49.1	57.5	59.7	0.824
560	0.3708	2.577	193	52.0	60.6	63.4	0.827
580	0.3533	2.613	199.5	56.5	63.8	69.1	0.817
Carbor	n Dioxide (CC	D_2), $\mathcal{M} = 44.01$ k	g/kmol				
280	1.9022	0.830	140	7.36	15.20	9.63	0.765
300	1.7730	0.851	149	8.40	16.55	11.0	0.766
320	1.6609	0.872	156	9.39	18.05	12.5	0.754
340	1.5618	0.891	165	10.6	19.70	14.2	0.746
360	1.4743	0.908	173	11.7	21.2	15.8	0.741
380	1.3961	0.926	181	13.0	22.75	17.6	0.737
400	1.3257	0.942	190	14.3	24.3	19.5	0.737
450	1.1782	0.981	210	17.8	28.3	24.5	0.728
500	1.0594	1.02	231	21.8	32.5	30.1	0.725
550	0.9625	1.05	251	26.1	36.6	36.2	0.721
600	0.8826	1.08	270	30.6	40.7	42.7	0.717
650	0.8143	1.10	288	35.4	44.5	49.7	0.712
700	0.7564	1.13	305	40.3	48.1	56.3	0.717
750	0.7057	1.15	321	45.5	51.7	63.7	0.714
800	0.6614	1.17	337	51.0	55.1	71.2	0.716
Carbor	n Monoxide (CO), $M = 28.01$	kg/kmol				
200	1.6888	1.045	127	7.52	17.0	9.63	0.781
220	1.5341	1.044	137	8.93	19.0	11.9	0.753
240	1.4055	1.043	147	10.5	20.6	14.1	0.744
260	1.2967	1.043	157	12.1	22.1	16.3	0.741
280	1.2038	1.042	166	13.8	23.6	18.8	0.733
300	1.1233	1.043	175	15.6	25.0	21.3	0.730
320	1.0529	1.043	184	17.5	26.3	23.9	0.730
340	0.9909	1.044	193	19.5	27.8	26.9	0.725
360	0.9357	1.045	202	21.6	29.1	29.8	0.725
380	0.8864	1.047	210	23.7	30.5	32.9	0.729
400	0.8421	1.049	218	25.9	31.8	36.0	0.719
450	0.7483	1.055	237	31.7	35.0	44.3	0.714
500	0.67352	1.065	254	37.7	38.1	53.1	0.710
550	0.61226	1.076	271	44.3	41.1	62.4	0.710
600	0.56126	1.088	286	51.0	44.0	72.1	0.707

 TABLE A.4
 Continued

T (K)	ρ (kg/m ³)	c_p (k $\frac{1}{ka} \cdot K$)	$\frac{\mu \cdot 10^7}{(N \cdot s/m^2)}$	$\nu \cdot 10^{6}$	$k \cdot 10^3$ (W/m · K)	$\alpha \cdot 10^6$	<i>p</i> .
(K)	(Kg/III)	(KJ/Kg K)	(14 8/111)	(11178)	((((((((((((((((((((((((((((((((((((((((11178)	
Carbo	n Monoxide (CO) (continued)				
650	0.51806	1.101	301	58.1	47.0	82.4	0.705
700	0.48102	1.114	315	65.5	50.0	93.3	0.702
750	0.44899	1.127	329	73.3	52.8	104	0.702
800	0.42095	1.140	343	81.5	55.5	116	0.705
Heliun	n (He), $\mathcal{M} = 4$.003 kg/kmol					
100	0.4871	5.193	96.3	19.8	73.0	28.9	0.686
120	0.4060	5.193	107	26.4	81.9	38.8	0.679
140	0.3481	5.193	118	33.9	90.7	50.2	0.676
160		5.193	129		99.2		_
180	0.2708	5.193	139	51.3	107.2	76.2	0.673
200	_	5 103	150	_	115.1	_	
220	0.2216	5 103	160	72.2	123.1	107	0.675
240		5.193	170		130		
260	0.1875	5.193	180	96.0	137	141	0.682
280		5.193	190		145		
200		51175	170		110		
300	0.1625	5.193	199	122	152	180	0.680
350	_	5.193	221	_	170	_	_
400	0.1219	5.193	243	199	187	295	0.675
450	_	5.193	263	_	204	_	_
500	0.09754	5.193	283	290	220	434	0.668
550	_	5.193	_	_		_	_
600	_	5.193	320	_	252	_	
650	_	5.193	332	_	264	_	
700	0.06969	5.193	350	502	278	768	0.654
750	_	5.193	364	—	291	—	_
800	_	5 103	382	_	304	_	_
900	_	5.193	414	_	330	_	_
1000	0.04879	5.193	446	914	354	1400	0.654
Hydro	gen (H ₂), <i>M</i> =	= 2.016 kg/kmol					
100	0.24255	11.23	42.1	17.4	67.0	24.6	0.707
150	0.16156	12.60	56.0	34.7	101	49.6	0.699
200	0.12115	13.54	68.1	56.2	131	79.9	0.704
250	0.09693	14.06	78.9	81.4	157	115	0.707
300	0.08078	14.31	89.6	111	183	158	0.701
350	0.06924	14.43	98.8	143	204	204	0.700
400	0.06059	14.48	108.2	179	226	258	0.695
450	0.05386	14.50	117.2	218	247	316	0.095
500	0.04848	14.50	126.4	261	266	378	0.009
550	0.04407	14.53	134.3	305	285	445	0.685
550	0.04407	1 1 1 1 1 1	1.0-1.0	202	200		0.000

TABLE A.4 Continued

-			4.07	106		1.06	
T (K)	$\frac{ ho}{(kg/m^3)}$	$(k J/kg \cdot K)$	$\mu \cdot 10'$ (N·s/m ²)	$\frac{\nu \cdot 10^{\circ}}{(m^2/s)}$	$\frac{k \cdot 10^3}{(W/m \cdot K)}$	$\frac{\alpha \cdot 10^{\circ}}{(m^2/s)}$	Pr
Hydro	gen (H ₂) (con	ntinued)					
600	0.04040	14.55	142.4	352	305	519	0.678
700	0.03463	14.61	157.8	456	342	676	0.675
800	0.03030	14.70	172.4	569	378	849	0.670
900	0.02694	14.83	186.5	692	412	1030	0.671
1000	0.02424	14 00	201.3	830	448	1230	0.673
1000	0.02424	14.99	201.5	650	440	1250	0.075
1100	0.02204	15.17	213.0	966	488	1460	0.662
1200	0.02020	15.37	226.2	1120	528	1700	0.659
1300	0.01865	15.59	238.5	1279	568	1955	0.655
1400	0.01732	15.81	250.7	1447	610	2230	0.650
1500	0.01616	16.02	262.7	1626	655	2530	0.643
1600	0.0152	16.28	273.7	1801	607	2815	0.630
1700	0.0132	16.58	213.1	1002	740	3120	0.639
1800	0.0145	16.06	204.9	2102	796	2425	0.037
1000	0.0135	10.90	290.1	2195	/80	2422	0.039
1900	0.0128	17.49	307.2	2400	833	3/30	0.643
2000	0.0121	18.25	318.2	2630	878	3975	0.661
Nitrog	en (N ₂), $\mathcal{M} =$	28.01 kg/kmol					
100	3.4388	1.070	68.8	2.00	9.58	2.60	0.768
150	2.2594	1.050	100.6	4.45	13.9	5.86	0.759
200	1.6883	1.043	129.2	7.65	18.3	10.4	0.736
250	1.3488	1.042	154.9	11.48	22.2	15.8	0.727
300	1.1233	1.041	178.2	15.86	25.9	22.1	0.716
350	0.9625	1.042	200.0	20.78	29.3	29.2	0.711
400	0.8425	1.045	220.4	26.16	32.7	37.1	0.704
450	0.7485	1.050	239.6	32.01	35.8	45.6	0.703
500	0.6739	1.056	257.7	38.24	38.9	54.7	0.700
550	0.6124	1.065	274.7	44.86	41.7	63.9	0.702
220			2	1100		0217	
600	0.5615	1.075	290.8	51.79	44.6	73.9	0.701
700	0.4812	1.098	321.0	66.71	49.9	94.4	0.706
800	0.4211	1.122	349.1	82.90	54.8	116	0.715
900	0.3743	1.146	375.3	100.3	59.7	139	0.721
1000	0.3368	1.167	399.9	118.7	64.7	165	0.721
1100	0 3062	1 1 87	123.2	138.2	70.0	103	0.719
1200	0.3002	1.10/	425.2	159.6	75.9	224	0.718
1200	0.2807	1.204	445.5	138.0	/3.8	224	0.707
1300	0.2591	1.219	406.2	179.9	81.0	250	0.701
Oxyge	$n (O_2), \mathcal{M} = 3$	2.00 kg/kmol					
100	3.945	0.962	76.4	1.94	9.25	2.44	0.796
150	2.585	0.921	114.8	4.44	13.8	5.80	0.766
200	1.930	0.915	147.5	7.64	18.3	10.4	0.737
250	1.542	0.915	178.6	11.58	22.6	16.0	0.723
300	1.284	0.920	207.2	16.14	26.8	22.7	0.711
ar 10 M							Sec. 7. 4. 4

TABLE A.4 Continued

$\begin{array}{c} \rho \\ (kg/m^3) \end{array}$	$c_p \over (kJ/kg \cdot K)$	$\mu \cdot 10^{7}$ (N · s/m ²)	ν·10 ⁶ (m ² /s)	<i>k</i> · 10 ³ (W/m · K)	α·10 ⁶ (m²/s)	Pr					
Oxygen (O ₂) (continued)											
1.100	0.929	233.5	21.23	29.6	29.0	0.733					
0.9620	0.942	258.2	26.84	33.0	36.4	0.737					
0.8554	0.956	281.4	32.90	36.3	44.4	0.741					
0.7698	0.972	303.3	39.40	41.2	55.1	0.716					
0.6998	0.988	324.0	46.30	44.1	63.8	0.726					
0.6414	1.003	343.7	53.59	47.3	73.5	0.729					
0.5498	1.031	380.8	69.26	52.8	93.1	0.744					
0.4810	1.054	415.2	86.32	58.9	116	0.743					
0.4275	1.074	447.2	104.6	64.9	141	0.740					
0.3848	1.090	477.0	124.0	71.0	169	0.733					
0.3498	1.103	505.5	144.5	75.8	196	0.736					
0.3206	1.115	532.5	166.1	81.9	22.9	0.725					
0.2960	1.125	588.4	188.6	87.1	262	0.721					
Vapor (Stear	m), $M = 18.02$ kg	g/kmol									
0.5863	2.060	127.1	21.68	24.6	20.4	1.06					
0.5542	2.014	134.4	24.25	26.1	23.4	1.04					
0.4902	1.980	152.5	31.11	29.9	30.8	1.01					
0.4405	1.985	170.4	38.68	33.9	38.8	0.998					
0.4005	1.997	188.4	47.04	37.9	47.4	0.993					
0.3652	2.026	206.7	56.60	42.2	57.0	0.993					
0.3380	2.056	224.7	66.48	46.4	66.8	0.996					
0.3140	2.085	242.6	77.26	50.5	77.1	1.00					
0.2931	2.119	260.4	88.84	54.9	88.4	1.00					
0.2739	2,152	278.6	101.7	59.2	100	1.01					
0.2579	2.186	296.9	115.1	63.7	113	1.02					
	ρ (kg/m ³) (O ₂) (conti 1.100 0.9620 0.8554 0.7698 0.6998 0.6414 0.5498 0.4810 0.4275 0.3848 0.3206 0.2960 Vapor (Stear 0.5863 0.5542 0.4902 0.4405 0.4005 0.3652 0.3380 0.3140 0.2931 0.2739 0.2579	$\begin{array}{c c} \rho & c_p \\ (kg/m^3) & (kJ/kg \cdot K) \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $					

 TABLE A.4
 Continued

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
Engine Oil (Unused)273 899.1 1.796 385 4280 147 0.910 $47,000$ 280 895.3 1.827 217 2430 144 0.880 $27,500$ 290 890.0 1.868 99.9 1120 145 0.872 $12,900$ 300 884.1 1.909 48.6 550 145 0.859 6400 310 877.9 1.951 25.3 288 145 0.847 3400 320 871.8 1.993 14.1 161 143 0.823 1965 330 865.8 2.035 8.36 96.6 141 0.800 1205 340 859.9 2.076 5.31 61.7 139 0.779 793 350 853.9 2.118 3.56 41.7 138 0.763 546 360 847.8 2.161 2.52 29.7 138 0.753 395 370 841.8 2.206 1.86 22.0 137 0.738 300 380 836.0 2.250 1.41 16.9 136 0.723 233	$\beta \cdot 10^{3}$ (K ⁻¹)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.70 0.70
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.70 0.70
350 803.8 2.053 8.50 90.0 141 0.800 1205 340 859.9 2.076 5.31 61.7 139 0.779 793 350 853.9 2.118 3.56 41.7 138 0.763 546 360 847.8 2.161 2.52 29.7 138 0.753 395 370 841.8 2.206 1.86 22.0 137 0.738 300 380 836.0 2.250 1.41 16.9 136 0.723 233	0.70
350853.92.1183.5641.71380.763546360847.82.1612.5229.71380.753395370841.82.2061.8622.01370.738300380836.02.2501.4116.91360.723233	0.70
370 841.8 2.206 1.86 22.0 137 0.738 300 380 836.0 2.250 1.41 16.9 136 0.723 233	0.70 0.70
390 830.6 2.294 1.10 13.3 135 0.709 187	0.70 0.70 0.70
400 825.1 2.337 0.874 10.6 134 0.695 152	0.70
410 818.9 2.381 0.698 8.52 133 0.682 125 420 812.1 2.427 0.564 6.94 133 0.675 103	0.70
430 806.5 2.471 0.470 5.83 132 0.662 88	0.70
Extryrene Grycor $[C_2H_4(OH)_2]$	0.65
273 1130.8 2.294 6.51 57.6 242 0.933 617 280 1125.8 2.323 4.20 37.3 244 0.933 400 290 1118.8 2.368 2.47 22.1 248 0.936 236	0.65 0.65 0.65
300 1114.4 2.415 1.57 14.1 252 0.939 151 310 1103.7 2.460 1.07 9.65 255 0.939 103	0.65 0.65
320 1096.2 2.505 0.757 6.91 258 0.940 73.5 330 1089.5 2.549 0.561 5.15 260 0.936 55.0 340 1083.8 2.592 0.431 3.08 261 0.920 42.8	0.65
340 1085.8 2.392 0.451 3.98 201 0.929 42.8	0.05
350 1079.0 2.637 0.342 3.17 261 0.917 34.6 360 1074.0 2.682 0.278 2.59 261 0.906 28.6 370 1066.7 2.728 0.228 2.14 262 0.900 23.7	0.65 0.65 0.65
373 1058.5 2.742 0.215 2.03 263 0.906 22.4 Chroanin (C-H (OH))	0.65
273 1276.0 2.261 1060 8310 282 0.977 85,000 280 1271.9 2.298 534 4200 284 0.972 43,200 290 1265.8 2.367 185 1460 286 0.955 15.300	0.47 0.47 0.48
300 1259.9 2.427 79.9 634 286 0.935 6780 310 1253.9 2.490 35.2 281 286 0.916 3060 320 1257.9 2.490 35.2 281 286 0.916 3060	0.48

 TABLE A.5
 Thermophysical Properties of Saturated Fluids^a

		C
ARE	1 5	Continued
I ADLE 7	1	Commucu

Saturated Liquids (Continued)

Т (К)	$\rho \ (kg/m^3)$	$c_p \over (k J/kg \cdot K)$	$\begin{array}{c} \mu \cdot 10^2 \\ (\mathrm{N} \cdot \mathrm{s} / \mathrm{m}^2) \end{array}$	$\frac{\nu \cdot 10^{6}}{(m^{2}/s)}$	<i>k</i> · 10 ³ (W/m · K)	$\frac{\alpha \cdot 10^7}{(m^2/s)}$	Pr	$\beta \cdot 10^{3}$ (K ⁻¹)
Refrig	erant-134a ($C_2H_2F_4$						
230	1426.8	1.249	0.04912	0.3443	112.1	0.629	5.5	2.02
240	1397.7	1.267	0.04202	0.3006	107.3	0.606	5.0	2.11
250	1367.9	1.287	0.03633	0.2656	102.5	0.583	4.6	2.23
260	1337.1	1.308	0.03166	0.2368	97.9	0.560	4.2	2.36
270	1305.1	1.333	0.02775	0.2127	93.4	0.537	4.0	2.53
280	1271.8	1.361	0.02443	0.1921	89.0	0.514	3.7	2.73
290	1236.8	1.393	0.02156	0.1744	84.6	0.491	3.5	2.98
300	1199.7	1.432	0.01905	0.1588	80.3	0.468	3.4	3.30
310	1159.9	1.481	0.01680	0.1449	76.1	0.443	3.3	3.73
320	1116.8	1.543	0.01478	0.1323	71.8	0.417	3.2	4.33
330	1069.1	1.627	0.01292	0.1209	67.5	0.388	3.1	5.19
340	1015.0	1.751	0.01118	0.1102	63.1	0.355	3.1	6.57
350	951.3	1.961	0.00951	0.1000	58.6	0.314	3.2	9.10
360	870.1	2.437	0.00781	0.0898	54.1	0.255	3.5	15.39
370	740.3	5.105	0.00580	0.0783	51.8	0.137	5.7	55.24
Refrig	erant-22 (CI	ICIF ₂)						
230	1416.0	1.087	0.03558	0.2513	114.5	0.744	3.4	2.05
240	1386.6	1.100	0.03145	0.2268	109.8	0.720	3.2	2.16
250	1356.3	1.117	0.02796	0.2062	105.2	0.695	3.0	2.29
260	1324.9	1.137	0.02497	0.1884	100.7	0.668	2.8	2.45
270	1292.1	1.161	0.02235	0.1730	96.2	0.641	2.7	2.63
280	1257.9	1.189	0.02005	0.1594	91.7	0.613	2.6	2.86
290	1221.7	1.223	0.01798	0.1472	87.2	0.583	2.5	3.15
300	1183.4	1.265	0.01610	0.1361	82.6	0.552	2.5	3.51
310	1142.2	1.319	0.01438	0.1259	78.1	0.518	2.4	4.00
320	1097.4	1.391	0.01278	0.1165	73.4	0.481	2.4	4.69
330	1047.5	1.495	0.01127	0.1075	68.6	0.438	2.5	5.75
340	990.1	1.665	0.00980	0.0989	63.6	0.386	2.6	7.56
350	920.1	1.997	0.00831	0.0904	58.3	0.317	2.8	11.35
360	823.4	3.001	0.00668	0.0811	53.1	0.215	3.8	23.88
Mercu	ıry (Hg)							
273	13,595	0.1404	0.1688	0.1240	8180	42.85	0.0290	0 181
300	13,529	0.1393	0.1523	0.1125	8540	45.30	0.0248	0.181
350	13.407	0.1377	0.1309	0.0976	9180	49.75	0.0196	0.181
400	13,287	0.1365	0.1171	0.0882	9800	54.05	0.0163	0.181
450	13,167	0.1357	0,1075	0.0816	10,400	58.10	0.0140	0.181
500	13,048	0.1353	0.1007	0.0771	10,950	61.90	0.0125	0.182
550	12,929	0.1352	0.0953	0.0737	11,450	65.55	0.0112	0.184
600	12,809	0.1355	0.0911	0.0711	11,950	68.80	0.0103	0.187

TABLE A.5 Continued

Saturated Liquid–Vapor, 1 atm^b

Fluid	T _{sat} (K)	$rac{h_{fg}}{(\mathrm{k}\mathrm{J/kg})}$	$rac{ ho_f}{(\mathrm{kg/m^3})}$	$rac{ ho_g}{(\mathrm{kg/m^3})}$	σ·10 ³ (N/m)
Ethanol	351	846	757	1.44	17.7
Ethylene glycol	470	812	1111°		32.7
Glycerin	563	974	1260 ^c	_	63.0 ^c
Mercury	630	301	12,740	3.90	417
Refrigerant R-134a	247	217	1377	5.26	15.4
Refrigerant R-22	232	234	1409	4.70	18.1

TABLE A.6 Thermophysical Properties of Saturated Water^a

Tempera-	Dressure	Speci ti Volume (m³/kg)		Heat of Vapor- ization,	Spe He (kJ/k	ci ti eat g•K)	Visc (N•	cosity s/m²)	The Cond (W/1	ermal uctivity m•K)	Pra Nu	andtl mber	Surface Tension,	Expansion Coeffi cient,	Temper-
(K)	p (bars) ^b	$v_f \cdot 10^3$	v _g	$\frac{n_{fg}}{(kJ/kg)}$	$c_{p,f}$	$c_{p,g}$	$\mu_f \cdot 10^6$	$\mu_g \cdot 10^6$	$k_f \cdot 10^3$	$k_g \cdot 10^3$	Pr _f	<i>Pr</i> _g	(N/m)	(K^{-1})	<i>T</i> (K)
273.15	0.00611	1.000	206.3	2502	4.217	1.854	1750	8.02	569	18.2	12.99	0.815	75.5	-68.05	273.15
275	0.00697	1.000	181.7	2497	4.211	1.855	1652	8.09	574	18.3	12.22	0.817	75.3	-32.74	275
280	0.00990	1.000	130.4	2485	4.198	1.858	1422	8.29	582	18.6	10.26	0.825	74.8	46.04	280
285	0.01387	1.000	99.4	2473	4.189	1.861	1225	8.49	590	18.9	8.81	0.833	74.3	114.1	285
290	0.01917	1.001	69.7	2461	4.184	1.864	1080	8.69	598	19.3	7.56	0.841	73.7	174.0	290
295	0.02617	1.002	51.94	2449	4.181	1.868	959	8.89	606	19.5	6.62	0.849	72.7	227.5	295
300	0.03531	1.003	39.13	2438	4.179	1.872	855	9.09	613	19.6	5.83	0.857	71.7	276.1	300
305	0.04712	1.005	29.74	2426	4.178	1.877	769	9.29	620	20.1	5.20	0.865	70.9	320.6	305
310	0.06221	1.007	22.93	2414	4.178	1.882	695	9.49	628	20.4	4.62	0.873	70.0	361.9	310
315	0.08132	1.009	17.82	2402	4.179	1.888	631	9.69	634	20.7	4.16	0.883	69.2	400.4	315
320	0.1053	1.011	13.98	2390	4.180	1.895	577	9.89	640	21.0	3.77	0.894	68.3	436.7	320
325	0.1351	1.013	11.06	2378	4.182	1.903	528	10.09	645	21.3	3.42	0.901	67.5	471.2	325
330	0.1719	1.016	8.82	2366	4.184	1.911	489	10.29	650	21.7	3.15	0.908	66.6	504.0	330
335	0.2167	1.018	7.09	2354	4.186	1.920	453	10.49	656	22.0	2.88	0.916	65.8	535.5	335
340	0.2713	1.021	5.74	2342	4.188	1.930	420	10.69	660	22.3	2.66	0.925	64.9	566.0	340
345	0.3372	1.024	4.683	2329	4.191	1.941	389	10.89	664	22.6	2.45	0.933	64.1	595.4	345
350	0.4163	1.027	3.846	2317	4.195	1.954	365	11.09	668	23.0	2.29	0.942	63.2	624.2	350
355	0.5100	1.030	3.180	2304	4.199	1.968	343	11.29	671	23.3	2.14	0.951	62.3	652.3	355
360	0.6209	1.034	2.645	2291	4.203	1.983	324	11.49	674	23.7	2.02	0.960	61.4	697.9	360
365	0.7514	1.038	2.212	2278	4.209	1.999	306	11.69	677	24.1	1.91	0.969	60.5	707.1	365
370	0.9040	1.041	1.861	2265	4.214	2.017	289	11.89	679	24.5	1.80	0.978	59.5	728.7	370
373.15	1.0133	1.044	1.679	2257	4.217	2.029	279	12.02	680	24.8	1.76	0.984	58.9	750.1	373.15
375	1.0815	1.045	1.574	2252	4.220	2.036	274	12.09	681	24.9	1.70	0.987	58.6	761	375
380	1.2869	1.049	1.337	2239	4.226	2.057	260	12.29	683	25.4	1.61	0.999	57.6	788	380
385	1.5233	1.053	1.142	2225	4.232	2.080	248	12.49	685	25.8	1.53	1.004	56.6	814	385
390	1.794	1.058	0.980	2212	4.239	2.104	237	12.69	686	26.3	1.47	1.013	55.6	841	390
400	2.455	1.067	0.731	2183	4.256	2.158	217	13.05	688	27.2	1.34	1.033	53.6	896	400
410	3.302	1.077	0.553	2153	4.278	2.221	200	13.42	688	28.2	1.24	1.054	51.5	952	410
420	4.370	1.088	0.425	2123	4.302	2.291	185	13.79	688	29.8	1.16	1.075	49.4	1010	420
430	5.699	1.099	0.331	2091	4.331	2.369	173	14.14	685	30.4	1.09	1.10	47.2		430

TABLE A.6 Continued

Tempera-	Pressure	Speci fi Volume (m³/kg)		Heat of Vapor- ization,	Sp H (kJ/	eci ti leat kg•K)	Visc (N•	cosity s/m²)	The Condu (W/I	rmal uctivity n•K)	Pr Nu	andtl mber	Surface Tension, α.: 10 ³	Expansion Coeffi cient, Bai 10 ⁶	Temper-
(K)	p (bars) ^b	$v_f \cdot 10^3$	vg	(kJ/kg)	$C_{p,f}$	$C_{p,g}$	$\mu_f \cdot 10^6$	$\mu_g \cdot 10^6$	$k_f \cdot 10^3$	$k_g \cdot 10^3$	Pr _f	P r _g	(N/m)	(K ⁻¹)	<i>T</i> (K)
440	7.333	1.110	0.261	2059	4.36	2.46	162	14.50	682	31.7	1.04	1.12	45.1		440
450	9.319	1.123	0.208	2024	4.40	2.56	152	14.85	678	33.1	0.99	1.14	42.9		450
460	11.71	1.137	0.167	1989	4.44	2.68	143	15.19	673	34.6	0.95	1.17	40.7		460
470	14.55	1.152	0.136	1951	4.48	2.79	136	15.54	667	36.3	0.92	1.20	38.5		470
480	17.90	1.167	0.111	1912	4.53	2.94	129	15.88	660	38.1	0.89	1.23	36.2		480
490	21.83	1.184	0.0922	1870	4.59	3.10	124	16.23	651	40.1	0.87	1.25	33.9	_	490
500	26.40	1.203	0.0766	1825	4.66	3.27	118	16.59	642	42.3	0.86	1.28	31.6	_	500
510	31.66	1.222	0.0631	1779	4.74	3.47	113	16.95	631	44.7	0.85	1.31	29.3	_	510
520	37.70	1.244	0.0525	1730	4.84	3.70	108	17.33	621	47.5	0.84	1.35	26.9	_	520
530	44.58	1.268	0.0445	1679	4.95	3.96	104	17.72	608	50.6	0.85	1.39	24.5	—	530
540	52.38	1.294	0.0375	1622	5.08	4.27	101	18.1	594	54.0	0.86	1.43	22.1	_	540
550	61.19	1.323	0.0317	1564	5.24	4.64	97	18.6	580	58.3	0.87	1.47	19.7		550
560	71.08	1.355	0.0269	1499	5.43	5.09	94	19.1	563	63.7	0.90	1.52	17.3	_	560
570	82.16	1.392	0.0228	1429	5.68	5.67	91	19.7	548	76.7	0.94	1.59	15.0	_	570
580	94.51	1.433	0.0193	1353	6.00	6.40	88	20.4	528	76.7	0.99	1.68	12.8	_	580
590	108.3	1.482	0.0163	1274	6.41	7.35	84	21.5	513	84.1	1.05	1.84	10.5	_	590
600	123.5	1.541	0.0137	1176	7.00	8.75	81	22.7	497	92.9	1.14	2.15	8.4	_	600
610	137.3	1.612	0.0115	1068	7.85	11.1	77	24.1	467	103	1.30	2.60	6.3	_	610
620	159.1	1.705	0.0094	941	9.35	15.4	72	25.9	444	114	1.52	3.46	4.5		620
625	169.1	1.778	0.0085	858	10.6	18.3	70	27.0	430	121	1.65	4.20	3.5	—	625
630	179.7	1.856	0.0075	781	12.6	22.1	67	28.0	412	130	2.0	4.8	2.6	_	630
635	190.9	1.935	0.0066	683	16.4	27.6	64	30.0	392	141	2.7	6.0	1.5	_	635
640	202.7	2.075	0.0057	560	26	42	59	32.0	367	155	4.2	9.6	0.8	_	640
645	215.2	2.351	0.0045	361	90	_	54	37.0	331	178	12	26	0.1	_	645
647.3°	221.2	3.170	0.0032	0	00	00	45	45.0	238	238	00	00	0.0	—	647.3 ^c

Flow Arrangement	Relation	
Concentric tube		
Parallel flow	$\varepsilon = \frac{1 - \exp\left[-\text{NTU}(1 + C_r)\right]}{1 + C_r}$	(11.28a)
Counterflow	$\varepsilon = \frac{1 - \exp[-NTU(1 - C_r)]}{1 - C_r \exp[-NTU(1 - C_r)]} \qquad (C_r < 1)$	
	$\varepsilon = \frac{\text{NTU}}{1 + \text{NTU}} \qquad (C_r = 1)$	(11.29a)
Shell-and-tube		
One shell pass (2, 4, tube passes)	$\varepsilon_1 = 2 \Biggl\{ 1 + C_r + (1 + C_r^2)^{1/2} \Biggr\}$	
	$\times \frac{1 + \exp\left[-(\text{NTU})_1(1 + C_r^2)^{1/2}\right]}{1 - \exp\left[-(\text{NTU})_1(1 + C_r^2)^{1/2}\right]} \bigg\}^{-1}$	(11.30a)
<i>n</i> Shell passes $(2n, 4n, \ldots$ tube passes)	$\varepsilon = \left[\left(\frac{1 - \varepsilon_1 C_r}{1 - \varepsilon_1} \right)^n - 1 \right] \left[\left(\frac{1 - \varepsilon_1 C_r}{1 - \varepsilon_1} \right)^n - C_r \right]^{-1}$	(11.31a)
Cross-flow (single pass)		
Both fluids unmixed	$\varepsilon = 1 - \exp\left[\left(\frac{1}{C_r}\right) (\text{NTU})^{0.22} \left\{\exp\left[-C_r(\text{NTU})^{0.78}\right] - 1\right\}\right]$	(11.32)
C_{\max} (mixed), C_{\min} (unmixed)	$\varepsilon = \left(\frac{1}{C_r}\right) (1 - \exp\left\{-C_r [1 - \exp\left(-\text{NTU}\right)]\right\})$	(11.33a)
C_{\min} (mixed), C_{\max} (unmixed)	$\varepsilon = 1 - \exp(-C_r^{-1} \{1 - \exp[-C_r(\text{NTU})]\})$	(11.34a)
All exchangers $(C_r = 0)$	$\varepsilon = 1 - \exp(-\text{NTU})$	(11.35a)

TABLE 11.3 Heat Exchanger Effectiveness Relations [5]

TABLE 11.4 Heat Exchanger NTU Relations

Flow Arrangement	Relation	
Concentric tube		
Parallel flow	$NTU = -\frac{\ln\left[1 - \varepsilon(1 + C_r)\right]}{1 + C_r}$	(11.28b)
Counterflow	$\text{NTU} = \frac{1}{C_r - 1} \ln \left(\frac{\varepsilon - 1}{\varepsilon C_r - 1} \right) (C_r < 1)$	
	$NTU = \frac{\varepsilon}{1 - \varepsilon} \qquad (C_r = 1)$	(11.29b)
Shell-and-tube		
One shell pass (2, 4,, tube passes)	$(\text{NTU})_1 = -(1+C_r^2)^{-1/2} \ln\left(\frac{E-1}{E+1}\right)$	(11.30b)
(2, 1,	$E = \frac{2/\varepsilon_1 - (1+C_r)}{(1+C_r^2)^{1/2}}$	(11.30c)
n Shell passes	Use Equations 11.30b and 11.30c with	
$(2n, 4n, \ldots$ tube passes)	$\varepsilon_1 = \frac{F-1}{F-C_r}$ $F = \left(\frac{\varepsilon C_r - 1}{\varepsilon - 1}\right)^{1/n}$ NTU = n (NTU) ₁	(11.31b, c, d)
Cross-flow (single pass)		
C_{\max} (mixed), C_{\min} (unmixed)	$\mathrm{NTU} = -\ln\left[1 + \left(\frac{1}{C_r}\right)\ln(1 - \varepsilon C_r)\right]$	(11.33b)
C_{\min} (mixed), C_{\max} (unmixed)	$NTU = -\left(\frac{1}{C_r}\right) \ln[C_r \ln(1-\varepsilon) + 1]$	(11.34b)
All exchangers $(C_r = 0)$	$NTU = -\ln(1-\varepsilon)$	(11.35b)

22

FIGURE 11.10 Effectiveness of a parallel-flow heat exchanger (Equation 11.28).

FIGURE 11.11 Effectiveness of a counterflow heat exchanger (Equation 11.29).

 $T_{h,i} \text{ or } T_{c,i}$

FIGURE 11.12 Effectiveness of a shell-andtube heat exchanger with one shell and any multiple of two tube passes (two, four, etc. tube passes) (Equation 11.30).

FIGURE 11.13 Effectiveness of a shell-andtube heat exchanger with two shell passes and any multiple of four tube passes (four, eight, etc. tube passes) (Equation 11.31 with n = 2).

FIGURE 11.14 Effectiveness of a singlepass, cross-flow heat exchanger with both fluids unmixed (Equation 11.32).

FIGURE 11.15 Effectiveness of a singlepass, cross-flow heat exchanger with one fluid mixed and the other unmixed (Equations 11.33, 11.34).

Chapter 11 Supplemental Material

115.1

Log Mean Temperature Difference Method for Multipass and Cross-Flow Heat Exchangers

Although flow conditions are more complicated in multipass and cross-flow heat exchangers, Equations 11.6, 11.7, 11.14, and 11.15 may still be used if the following modification is made to the log mean temperature difference [1]:

$$\Delta T_{\rm lm} = F \,\Delta T_{\rm lm,CF} \tag{11S.1}$$

That is, the appropriate form of $\Delta T_{\rm lm}$ is obtained by applying a correction factor to the value of $\Delta T_{\rm lm}$ that would be computed *under the assumption of counterflow conditions*. Hence from Equation 11.17, $\Delta T_1 = T_{h,i} - T_{c,o}$ and $\Delta T_2 = T_{h,o} - T_{c,i}$.

Algebraic expressions for the correction factor F have been developed for various shell-and-tube and cross-flow heat exchanger configurations [1–3], and the results may be represented graphically. Selected results are shown in Figures 11S.1 through 11S.4 for common heat exchanger configurations. The notation (T, t) is used to specify the fluid temperatures, with the variable t always assigned to the tube-side

FIGURE 11S.1 Correction factor for a shell-and-tube heat exchanger with one shell and any multiple of two tube passes (two, four, etc. tube passes).

118.1 Log Mean Temperature Difference Method

FIGURE 11S.2 Correction factor for a shell-and-tube heat exchanger with two shell passes and any multiple of four tube passes (four, eight, etc. tube passes).

FIGURE 11S.3 Correction factor for a single-pass, cross-flow heat exchanger with both fluids unmixed.

11S.1 Log Mean Temperature Difference Method

FIGURE 11S.4 Correction factor for a single-pass, cross-flow heat exchanger with one fluid mixed and the other unmixed.

fluid. With this convention it does not matter whether the hot fluid or the cold fluid flows through the shell or the tubes. An important implication of Figures 11S.1 through 11S.4 is that, *if the temperature change of one fluid is negligible*, either P or R is zero and F is 1. *Hence heat exchanger behavior is independent of the specific configuration*. Such would be the case if one of the fluids underwent a phase change.