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HEAT TRANSFER EQUATION SHEET 
Heat Conduction Rate Equations (Fourier's Law) 

 Heat Flux:    𝑞𝑞𝑥𝑥
′′ = −𝑘𝑘 𝑑𝑑𝑑𝑑

𝑑𝑑𝑥𝑥
      𝑊𝑊

𝑚𝑚2        k : Thermal Conductivity 
𝑊𝑊

𝑚𝑚∙𝑘𝑘
 

 Heat Rate:    𝑞𝑞𝑥𝑥 =  𝑞𝑞𝑥𝑥
′′𝐴𝐴𝑐𝑐          𝑊𝑊      Ac : Cross-Sectional Area 

Heat Convection Rate Equations (Newton's Law of Cooling) 

 Heat Flux:    𝑞𝑞′′ = ℎ(𝑇𝑇𝑠𝑠 − 𝑇𝑇∞)     𝑊𝑊
𝑚𝑚2      h : Convection Heat Transfer Coefficient 

𝑊𝑊
𝑚𝑚2∙𝐾𝐾

 

 Heat Rate:    𝑞𝑞 = ℎ𝐴𝐴𝑠𝑠(𝑇𝑇𝑠𝑠 − 𝑇𝑇∞)   𝑊𝑊      As : Surface Area 𝑚𝑚2 

Heat Radiation emitted ideally by a blackbody surface has a surface emissive power:  𝐸𝐸𝑏𝑏 =  𝜎𝜎 𝑇𝑇𝑠𝑠
4     𝑊𝑊

𝑚𝑚2   

 Heat Flux emitted:   𝐸𝐸 =  𝜀𝜀𝜎𝜎𝑇𝑇𝑠𝑠
4     𝑊𝑊

𝑚𝑚2    where ε is the emissivity with range of 0 ≤  𝜀𝜀 ≤ 1   

              and  𝜎𝜎 = 5.67 × 10−8     𝑊𝑊
𝑚𝑚2𝐾𝐾4  is the Stefan-Boltzmann constant 

 Irradiation: 𝐺𝐺𝑎𝑎𝑏𝑏𝑠𝑠 =  𝛼𝛼𝐺𝐺 but we assume small body in a large enclosure with 𝜀𝜀 = 𝛼𝛼 so that 𝐺𝐺 =  𝜀𝜀 𝜎𝜎 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠
4  

 Net Radiation heat flux from surface: 𝑞𝑞𝑠𝑠𝑎𝑎𝑑𝑑
′′ = 𝑞𝑞

𝐴𝐴
=  𝜀𝜀𝐸𝐸𝑏𝑏(𝑇𝑇𝑠𝑠) −  𝛼𝛼𝐺𝐺 =  𝜀𝜀𝜎𝜎(𝑇𝑇𝑠𝑠

4 −  𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠
4 ) 

 Net radiation heat exchange rate:  𝑞𝑞𝑠𝑠𝑎𝑎𝑑𝑑 =  𝜀𝜀𝜎𝜎𝐴𝐴𝑠𝑠(𝑇𝑇𝑠𝑠
4 −  𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠

4 )  where for a real surface  0 ≤ 𝜀𝜀 ≤ 1 

This can ALSO be expressed as: 𝑞𝑞𝑠𝑠𝑎𝑎𝑑𝑑 =  ℎ𝑠𝑠𝐴𝐴(𝑇𝑇𝑠𝑠 −  𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠) depending on the application 

 where ℎ𝑠𝑠  is the radiation heat transfer coefficient  which is: ℎ𝑠𝑠 =  𝜀𝜀𝜎𝜎(𝑇𝑇𝑠𝑠 +  𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠)(𝑇𝑇𝑠𝑠
2 +  𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠

2 )    𝑊𝑊
𝑚𝑚2∙𝐾𝐾

 

 TOTAL heat transfer from a surface: 𝑞𝑞 = 𝑞𝑞𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑞𝑞𝑠𝑠𝑎𝑎𝑑𝑑 = ℎ𝐴𝐴𝑠𝑠(𝑇𝑇𝑠𝑠 − 𝑇𝑇∞) + 𝜀𝜀𝜎𝜎𝐴𝐴𝑠𝑠(𝑇𝑇𝑠𝑠
4 −  𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠

4 )   𝑊𝑊  

Conservation of Energy (Energy Balance) 

�̇�𝐸𝑖𝑖𝑐𝑐 + �̇�𝐸𝑔𝑔 −  �̇�𝐸𝑐𝑐𝑠𝑠𝑜𝑜 =  �̇�𝐸𝑠𝑠𝑜𝑜  (Control Volume Balance)    ;    �̇�𝐸𝑖𝑖𝑐𝑐 −  �̇�𝐸𝑐𝑐𝑠𝑠𝑜𝑜 =  0  (Control Surface Balance) 

where �̇�𝐸𝑔𝑔 is the conversion of internal energy (chemical, nuclear, electrical) to thermal or mechanical energy, and 

�̇�𝐸𝑠𝑠𝑜𝑜 = 0 for steady-state conditions. If not steady-state (i.e., transient) then �̇�𝐸𝑠𝑠𝑜𝑜 = 𝜌𝜌𝜌𝜌𝑐𝑐𝑝𝑝
𝑑𝑑𝑑𝑑
𝑑𝑑𝑜𝑜

   
 

Heat Equation (used to find the temperature distribution) 

Heat Equation (Cartesian):  
𝜕𝜕

𝜕𝜕𝑥𝑥
�𝑘𝑘 𝜕𝜕𝑑𝑑

𝜕𝜕𝑥𝑥
� +  𝜕𝜕

𝜕𝜕𝜕𝜕
�𝑘𝑘 𝜕𝜕𝑑𝑑

𝜕𝜕𝜕𝜕
�  +  𝜕𝜕

𝜕𝜕𝜕𝜕
�𝑘𝑘 𝜕𝜕𝑑𝑑

𝜕𝜕𝜕𝜕
� +  �̇�𝑞 = 𝜌𝜌𝑐𝑐𝑝𝑝

𝜕𝜕𝑑𝑑
𝜕𝜕𝑜𝑜

     

If 𝑘𝑘 is constant then the above simplifies to:  
𝜕𝜕2𝑑𝑑
𝜕𝜕𝑥𝑥2 +  𝜕𝜕2𝑑𝑑

𝜕𝜕𝜕𝜕2 +  𝜕𝜕2𝑑𝑑
𝜕𝜕𝜕𝜕2 + �̇�𝑞

𝑘𝑘
= 1

𝛼𝛼
𝜕𝜕𝑑𝑑
𝜕𝜕𝑜𝑜

   where 𝛼𝛼 = 𝑘𝑘
𝜌𝜌𝑐𝑐𝑝𝑝

  is the thermal diffusivity 

Heat Equation (Cylindrical):  
1
𝑠𝑠

𝜕𝜕
𝜕𝜕𝑠𝑠

�𝑘𝑘𝑘𝑘 𝜕𝜕𝑑𝑑
𝜕𝜕𝑠𝑠

� + 1
𝑠𝑠2

𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑘𝑘 𝜕𝜕𝑑𝑑
𝜕𝜕𝜕𝜕

�  +  𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑘𝑘 𝜕𝜕𝑑𝑑
𝜕𝜕𝜕𝜕

� +  �̇�𝑞 = 𝜌𝜌𝑐𝑐𝑝𝑝
𝜕𝜕𝑑𝑑
𝜕𝜕𝑜𝑜

 

Heat Eqn. (Spherical):  
1

𝑠𝑠2
𝜕𝜕

𝜕𝜕𝑠𝑠
�𝑘𝑘𝑘𝑘2 𝜕𝜕𝑑𝑑

𝜕𝜕𝑠𝑠
� + 1

𝑠𝑠2 sin 𝜃𝜃2
𝜕𝜕

𝜕𝜕𝜕𝜕
�𝑘𝑘 𝜕𝜕𝑑𝑑

𝜕𝜕𝜕𝜕
�  + 1

𝑠𝑠2 sin 𝜃𝜃
 𝜕𝜕
𝜕𝜕𝜃𝜃

�𝑘𝑘 sin 𝜃𝜃 𝜕𝜕𝑑𝑑
𝜕𝜕𝜃𝜃

� +  �̇�𝑞 = 𝜌𝜌𝑐𝑐𝑝𝑝
𝜕𝜕𝑑𝑑
𝜕𝜕𝑜𝑜

 

Thermal Circuits 

 Plane Wall:  𝑅𝑅𝑜𝑜,𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑 = 𝐿𝐿
𝑘𝑘𝐴𝐴

          Cylinder:  𝑅𝑅𝑜𝑜,𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑 =
ln�𝑟𝑟2

𝑟𝑟1
�

2𝜋𝜋𝑘𝑘𝐿𝐿
             Sphere:  𝑅𝑅𝑜𝑜,𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑 =

( 1
r1

− 1
r2

)

4𝜋𝜋𝑘𝑘
 



 2 
    𝑅𝑅𝑜𝑜,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 1

ℎ𝐴𝐴
     𝑅𝑅𝑜𝑜,𝑠𝑠𝑎𝑎𝑑𝑑 = 1

ℎ𝑟𝑟𝐴𝐴
 

_____________________________________________________________________________________________________________ 

General Lumped Capacitance Analysis 

 

𝑞𝑞𝑠𝑠
′′𝐴𝐴𝑠𝑠,ℎ +  𝐸𝐸�̇�𝑔 −  [ℎ(𝑇𝑇 − 𝑇𝑇∞) +  𝜀𝜀𝜎𝜎(𝑇𝑇4 −  𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠

4 )]𝐴𝐴𝑠𝑠(𝑐𝑐,𝑠𝑠) =  𝜌𝜌𝜌𝜌𝑐𝑐
𝑑𝑑𝑇𝑇
𝑑𝑑𝑑𝑑

 

Radiation Only Equation 

𝑑𝑑 = 𝜌𝜌𝜌𝜌𝑐𝑐
4 𝜀𝜀 𝐴𝐴𝑠𝑠,𝑟𝑟 𝜎𝜎 𝑑𝑑𝑠𝑠𝑠𝑠𝑟𝑟

3  �ln �𝑑𝑑𝑠𝑠𝑠𝑠𝑟𝑟+𝑑𝑑
𝑑𝑑𝑠𝑠𝑠𝑠𝑟𝑟−𝑑𝑑

� − ln �𝑑𝑑𝑠𝑠𝑠𝑠𝑟𝑟+𝑑𝑑𝑖𝑖
𝑑𝑑𝑠𝑠𝑠𝑠𝑟𝑟−𝑑𝑑𝑖𝑖

� + 2 �tan−1 � 𝑑𝑑
𝑑𝑑𝑠𝑠𝑠𝑠𝑟𝑟

� − tan−1 � 𝑑𝑑𝑖𝑖
𝑑𝑑𝑠𝑠𝑠𝑠𝑟𝑟

���    

Heat Flux, Energy Generation, Convection, and No Radiation Equation 

𝑑𝑑−𝑑𝑑∞− �𝑏𝑏
𝑎𝑎�

𝑑𝑑𝑖𝑖− 𝑑𝑑∞− �𝑏𝑏
𝑎𝑎�

= exp(−𝑎𝑎𝑑𝑑)    ;  where   𝑎𝑎 = �ℎ𝐴𝐴𝑠𝑠,𝑐𝑐

𝜌𝜌𝜌𝜌𝑐𝑐
�     and    𝑏𝑏 = 𝑞𝑞𝑠𝑠

′′𝐴𝐴𝑠𝑠,ℎ+ �̇�𝐸𝑔𝑔

𝜌𝜌𝜌𝜌𝑐𝑐
   

Convection Only Equation 

𝜃𝜃
𝜃𝜃𝑖𝑖

=
𝑇𝑇 −  𝑇𝑇∞

𝑇𝑇𝑖𝑖 −  𝑇𝑇∞
= exp �− �

ℎ𝐴𝐴𝑠𝑠

𝜌𝜌𝜌𝜌𝑐𝑐
� 𝑑𝑑� 

𝜏𝜏𝑜𝑜 = � 1
ℎ𝐴𝐴𝑠𝑠

� (𝜌𝜌𝜌𝜌𝑐𝑐) =  𝑅𝑅𝑜𝑜𝐶𝐶𝑜𝑜       ;      𝑄𝑄 = 𝜌𝜌𝜌𝜌𝑐𝑐 𝜃𝜃𝑖𝑖 �1 − exp �− 𝑜𝑜
𝜏𝜏𝑡𝑡

��      ;      𝑄𝑄𝑚𝑚𝑎𝑎𝑥𝑥 =  𝜌𝜌𝜌𝜌𝑐𝑐 𝜃𝜃𝑖𝑖   

𝐵𝐵𝐵𝐵 = ℎ𝐿𝐿𝑐𝑐
𝑘𝑘

    

If there is an additional resistance either in series or in parallel, then replace ℎ with 𝑈𝑈 in all the above lumped capacitance 

equations, where 

𝑈𝑈 =  1
𝑅𝑅𝑡𝑡𝐴𝐴𝑠𝑠

      � 𝑊𝑊
𝑚𝑚2∙𝐾𝐾

�      ;  𝑈𝑈 = overall heat transfer coefficient, 𝑅𝑅𝑜𝑜  = total resistance, 𝐴𝐴𝑠𝑠  = surface area. 

Convection Heat Transfer 

                  𝑅𝑅𝑅𝑅 =  𝜌𝜌𝜌𝜌𝐿𝐿𝑐𝑐
𝜇𝜇

= 𝜌𝜌𝐿𝐿𝑐𝑐
𝜈𝜈

      [Reynolds Number]         ;           𝑁𝑁𝑁𝑁���� = ℎ�𝐿𝐿𝑐𝑐
𝑘𝑘𝑓𝑓

       [Average Nusselt Number] 

where 𝜌𝜌 is the density, 𝜌𝜌 is the velocity, 𝐿𝐿𝑐𝑐  is the characteristic length, 𝜇𝜇 is the dynamic viscosity, 𝜈𝜈 is the kinematic viscosity, �̇�𝑚 is the mass flow 

rate, ℎ� is the average convection coefficient, and 𝑘𝑘𝑓𝑓  is the fluid thermal conductivity. 

 



 3 
Internal Flow 

𝑅𝑅𝑅𝑅 =  4 �̇�𝑚
𝜋𝜋𝜋𝜋𝜇𝜇

    [For Internal Flow in a Pipe of Diameter D] 

For Constant Heat Flux [𝑞𝑞𝑠𝑠
ʺ = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑎𝑎𝑐𝑐𝑑𝑑]:               𝑞𝑞𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑞𝑞𝑠𝑠

ʺ(𝑃𝑃 ∙ 𝐿𝐿)  ; where P = Perimeter, L = Length  

𝑇𝑇𝑚𝑚(𝑥𝑥) = 𝑇𝑇𝑚𝑚,𝑖𝑖 +
𝑞𝑞𝑠𝑠

ʺ · 𝑃𝑃
�̇�𝑚 ∙ 𝑐𝑐𝑝𝑝

𝑥𝑥 

For Constant Surface Temperature [𝑇𝑇𝑠𝑠 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑎𝑎𝑐𝑐𝑑𝑑]: 

If there is only convection between the surface temperature, 𝑇𝑇𝑠𝑠, and the mean fluid temperature, 𝑇𝑇𝑚𝑚, use 

𝑑𝑑𝑠𝑠−𝑑𝑑𝑚𝑚(𝑥𝑥)
𝑑𝑑𝑠𝑠−𝑑𝑑𝑚𝑚,𝑖𝑖

= 𝑅𝑅𝑥𝑥𝑒𝑒 �− 𝑃𝑃∙𝑥𝑥
�̇�𝑚∙𝑐𝑐𝑝𝑝

ℎ��    

If there are multiple resistances between the outermost temperature, 𝑇𝑇∞, and the mean fluid temperature, 𝑇𝑇𝑚𝑚, use 

𝑇𝑇∞ − 𝑇𝑇𝑚𝑚(𝑥𝑥)
𝑇𝑇∞ − 𝑇𝑇𝑚𝑚,𝑖𝑖

= 𝑅𝑅𝑥𝑥𝑒𝑒 �−
𝑃𝑃 ∙ 𝑥𝑥

�̇�𝑚 ∙ 𝑐𝑐𝑝𝑝
𝑈𝑈� = 𝑅𝑅𝑥𝑥𝑒𝑒 �−

1
�̇�𝑚 ∙ 𝑐𝑐𝑝𝑝 ∙ 𝑅𝑅𝑜𝑜

� 

Total heat transfer rate over the entire tube length: 

𝑞𝑞𝑜𝑜 = �̇�𝑚 ∙ 𝑐𝑐𝑝𝑝 ∙ �𝑇𝑇𝑚𝑚,𝑐𝑐 − 𝑇𝑇𝑚𝑚,𝑖𝑖� = ℎ� ∙ 𝐴𝐴𝑠𝑠 ∙ ∆𝑇𝑇𝑙𝑙𝑚𝑚 𝑐𝑐𝑘𝑘 𝑈𝑈 ∙ 𝐴𝐴𝑠𝑠 ∙ ∆𝑇𝑇𝑙𝑙𝑚𝑚     ;    𝑇𝑇𝑠𝑠 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑎𝑎𝑐𝑐𝑑𝑑 

Log mean temperature difference:         ∆𝑇𝑇𝑙𝑙𝑚𝑚 = ∆𝑑𝑑𝑜𝑜−∆𝑑𝑑𝑖𝑖

ln�∆𝑇𝑇𝑜𝑜
∆𝑇𝑇𝑖𝑖

�
     ;    ∆𝑇𝑇𝑐𝑐 = 𝑇𝑇𝑠𝑠 − 𝑇𝑇𝑚𝑚,𝑐𝑐    ;     ∆𝑇𝑇𝑖𝑖 = 𝑇𝑇𝑠𝑠 − 𝑇𝑇𝑚𝑚,𝑖𝑖  

Free Convection Heat Transfer 

𝐺𝐺𝑘𝑘𝐿𝐿 = 𝑔𝑔𝑔𝑔(𝑑𝑑𝑠𝑠−𝑑𝑑∞)𝐿𝐿𝑐𝑐
3

𝜈𝜈2            [Grashof Number] 
 

𝑅𝑅𝑎𝑎𝐿𝐿 = 𝑔𝑔𝑔𝑔(𝑑𝑑𝑠𝑠−𝑑𝑑∞)𝐿𝐿𝑐𝑐
3

𝜈𝜈𝛼𝛼
         [Rayleigh Number] 

Vertical Plates:          𝑁𝑁𝑁𝑁����𝐿𝐿 = �0.825 + 0.387 𝑅𝑅𝑎𝑎𝐿𝐿
1/6

�1+�0.492
𝑃𝑃𝑟𝑟 �

9/16
�

8/27�

2

; [Entire range of RaL; properties evaluated at Tf ] 

- For better accuracy for Laminar Flow:    𝑁𝑁𝑁𝑁����𝐿𝐿 = 0.68 + 0.670 𝑅𝑅𝑎𝑎𝐿𝐿
1/4

�1+�0.492
𝑃𝑃𝑟𝑟 �

9/16
�

4/9   ;  𝑅𝑅𝑎𝑎𝐿𝐿 ≲ 109  [Properties evaluated at Tf ] 

Inclined Plates: for the top and bottom surfaces of cooled and heated inclined plates, respectively, the equations of the vertical 

plate can be used by replacing (g) with (𝑔𝑔 cos 𝜃𝜃) in RaL for 0 ≤ 𝜃𝜃 ≤ 60°. 

Horizontal Plates: use the following correlations with 𝐿𝐿 = 𝐴𝐴𝑠𝑠
𝑃𝑃

   where As = Surface Area and P = Perimeter 

- Upper surface of Hot Plate or Lower Surface of Cold Plate:   

𝑁𝑁𝑁𝑁����𝐿𝐿 = 0.54 𝑅𝑅𝑎𝑎𝐿𝐿
1/4   (104 ≤ 𝑅𝑅𝑎𝑎𝐿𝐿 ≤ 107, 𝑃𝑃𝑘𝑘 ≥ 0.7) ; 𝑁𝑁𝑁𝑁����𝐿𝐿 = 0.15 𝑅𝑅𝑎𝑎𝐿𝐿

1/3  (107 ≤ 𝑅𝑅𝑎𝑎𝐿𝐿 ≤ 1011, 𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃𝑘𝑘)    
- Lower Surface of Hot Plate or Upper Surface of Cold Plate: 

𝑁𝑁𝑁𝑁����𝐿𝐿 = 0.52 𝑅𝑅𝑎𝑎𝐿𝐿
1/5      (104 ≤ 𝑅𝑅𝑎𝑎𝐿𝐿 ≤ 109, 𝑃𝑃𝑘𝑘 ≥ 0.7)    



 4 
Vertical Cylinders: the equations for the Vertical Plate can be applied to vertical cylinders of height L if the following criterion is 

met:     
𝜋𝜋
𝐿𝐿

≥ 35
𝐺𝐺𝑠𝑠𝐿𝐿

1/4 

Long Horizontal Cylinders:   𝑁𝑁𝑁𝑁����𝜋𝜋 = �0.60 + 0.387 𝑅𝑅𝑎𝑎𝐷𝐷
1/6

�1+�0.559
𝑃𝑃𝑟𝑟 �

9/16
�

8/27�

2

  ;   𝑅𝑅𝑎𝑎𝜋𝜋 ≲ 1012   [Properties evaluated at Tf ] 

Spheres:        𝑁𝑁𝑁𝑁����𝜋𝜋 = 2 + 0.589 𝑅𝑅𝑎𝑎𝐷𝐷
1/4

�1+�0.469
𝑃𝑃𝑟𝑟 �

9/16
�

4/9   ;  𝑅𝑅𝑎𝑎𝜋𝜋 ≲ 1011 ;  𝑃𝑃𝑘𝑘 ≥ 0.7   [Properties evaluated at Tf ] 

Heat Exchangers 

Heat Gain/Loss Equations:         𝑞𝑞 = �̇�𝑚 𝑐𝑐𝑝𝑝(𝑇𝑇𝑐𝑐 − 𝑇𝑇𝑖𝑖) = 𝑈𝑈𝐴𝐴𝑠𝑠 ∆𝑇𝑇𝑙𝑙𝑚𝑚 ;  where 𝑈𝑈 is the overall heat transfer 

coefficient and As is the total heat exchanger surface area  

Log-Mean Temperature Difference:   ∆𝑇𝑇𝑙𝑙𝑚𝑚,𝑃𝑃𝑃𝑃 = �𝑑𝑑ℎ,𝑖𝑖−𝑑𝑑𝑐𝑐,𝑖𝑖�−�𝑑𝑑ℎ,𝑜𝑜−𝑑𝑑𝑐𝑐,𝑜𝑜�

ln�
�𝑇𝑇ℎ,𝑖𝑖−𝑇𝑇𝑐𝑐,𝑖𝑖�

�𝑇𝑇ℎ,𝑜𝑜−𝑇𝑇𝑐𝑐,𝑜𝑜�
�

                      [Parallel-Flow Heat Exchanger]  

Log-Mean Temperature Difference:   ∆𝑇𝑇𝑙𝑙𝑚𝑚,𝐶𝐶𝑃𝑃 = �𝑑𝑑ℎ,𝑖𝑖−𝑑𝑑𝑐𝑐,𝑜𝑜�−�𝑑𝑑ℎ,𝑜𝑜−𝑑𝑑𝑐𝑐,𝑖𝑖�

ln�
�𝑇𝑇ℎ,𝑖𝑖−𝑇𝑇𝑐𝑐,𝑜𝑜�

�𝑇𝑇ℎ,𝑜𝑜−𝑇𝑇𝑐𝑐,𝑖𝑖�
�

                      [Counter-Flow Heat Exchanger]  

For Cross-Flow and Shell-and-Tube Heat Exchangers:        ∆𝑇𝑇𝑙𝑙𝑚𝑚 = 𝐹𝐹 ∆𝑇𝑇𝑙𝑙𝑚𝑚,𝐶𝐶𝑃𝑃   ;   where 𝐹𝐹 is a correction factor 

obtained from the figures by calculating P & R values 

Effectiveness – NTU Method (ε – NTU): 

Number of Transfer Units (NTU):    𝑁𝑁𝑇𝑇𝑈𝑈 = 𝑈𝑈𝐴𝐴
𝐶𝐶𝑚𝑚𝑖𝑖𝑚𝑚

  ;  where 𝐶𝐶𝑚𝑚𝑖𝑖𝑐𝑐 is the minimum heat capacity rate in [W/K] 

 Heat Capacity Rates:   𝐶𝐶𝑐𝑐 = �̇�𝑚𝑐𝑐 𝑐𝑐𝑝𝑝,𝑐𝑐    [Cold Fluid]   ;   𝐶𝐶ℎ = �̇�𝑚ℎ 𝑐𝑐𝑝𝑝,ℎ    [Hot Fluid]  

 𝐶𝐶𝑠𝑠 = 𝐶𝐶𝑚𝑚𝑖𝑖𝑚𝑚
𝐶𝐶𝑚𝑚𝑎𝑎𝑚𝑚

    [Heat Capacity Ratio] 

Note: The condensation or evaporation side of the heat exchanger is associated with 𝐶𝐶𝑚𝑚𝑎𝑎𝑥𝑥 = ∞ 

𝑞𝑞 =  �̇�𝑚𝑐𝑐𝐶𝐶𝑝𝑝,𝑐𝑐�𝑇𝑇𝑐𝑐,𝑐𝑐 − 𝑇𝑇𝑐𝑐,𝑖𝑖� = �̇�𝑚ℎ𝐶𝐶𝑝𝑝,ℎ�𝑇𝑇ℎ,𝑖𝑖 − 𝑇𝑇ℎ,𝑐𝑐� = 𝑈𝑈𝐴𝐴𝑠𝑠 ∆𝑇𝑇𝑙𝑙𝑚𝑚  

𝑞𝑞𝑚𝑚𝑎𝑎𝑥𝑥 = 𝐶𝐶𝑚𝑚𝑖𝑖𝑐𝑐�𝑇𝑇ℎ,𝑖𝑖 − 𝑇𝑇𝑐𝑐,𝑖𝑖�     where       𝜀𝜀 =  𝑞𝑞
𝑞𝑞𝑚𝑚𝑎𝑎𝑚𝑚

 

Use:  𝜀𝜀 = 𝑓𝑓(𝑁𝑁𝑇𝑇𝑈𝑈, 𝐶𝐶𝑠𝑠) relations or  𝑁𝑁𝑇𝑇𝑈𝑈 = 𝑓𝑓(𝜀𝜀, 𝐶𝐶𝑠𝑠) relations as appropriate 
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If Pr ≤ 10 → n = 0.37 
If Pr ≥ 10 → n = 0.36 
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FIGURE 11.12 Effectiveness of a shell-and-
tube heat exchanger with one shell and any
multiple of two tube passes (two, four, etc.
tube passes) (Equation 11.30).

0 1 2 3 4 5
NTU

ε

1.0

0.8

0.6

0.4

0.2

0

1.00
0.75
0.50

0.25

C m
in

/C max
 = 0 

Th,o or Tc,o

Tc,i or Th,i

Tc,o or Th,o

Th,i or Tc,i

FIGURE 11.13 Effectiveness of a shell-and-
tube heat exchanger with two shell passes and
any multiple of four tube passes (four, eight,
etc. tube passes) (Equation 11.31 with n � 2).

0.25

0.50

0.75
1.00

0 1 2 3 4 5
NTU

ε

1.0

0.8

0.6

0.4

0.2

0

C m
in

/C
m

ax
 =

 0
  

FIGURE 11.10 Effectiveness of a parallel-
flow heat exchanger (Equation 11.28).

1.0

0.8

0.6

0.4

0.2

0

NTU

ε

1.00

0 1 2 3 4 5

C m
in

/C
m

ax

 =
 0  

0.75
0.50

0.25

FIGURE 11.11 Effectiveness of a 
counterflow heat exchanger (Equation 11.29).
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FIGURE 11.14 Effectiveness of a single-
pass, cross-flow heat exchanger with both 
fluids unmixed (Equation 11.32).
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FIGURE 11.15 Effectiveness of a single-
pass, cross-flow heat exchanger with one fluid
mixed and the other unmixed (Equations
11.33, 11.34).
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Chapter 11 Supplemental Material

11S.1
Log Mean Temperature Difference 
Method for Multipass and Cross-Flow 
Heat Exchangers

Although flow conditions are more complicated in multipass and cross-flow heat
exchangers, Equations 11.6, 11.7, 11.14, and 11.15 may still be used if the follow-
ing modification is made to the log mean temperature difference [1]:

(11S.1)

That is, the appropriate form of �Tlm is obtained by applying a correction factor to
the value of �Tlm that would be computed under the assumption of counterflow con-
ditions. Hence from Equation 11.17, �T1 � Th,i � Tc,o and �T2 � Th,o � Tc,i.

Algebraic expressions for the correction factor F have been developed for vari-
ous shell-and-tube and cross-flow heat exchanger configurations [1–3], and the
results may be represented graphically. Selected results are shown in Figures 11S.1
through 11S.4 for common heat exchanger configurations. The notation (T, t) is used
to specify the fluid temperatures, with the variable t always assigned to the tube-side

�Tlm � F �Tlm,CF
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 to – ti_____
Ti – ti
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FIGURE 11S.1 Correction factor for a shell-and-tube heat exchanger
with one shell and any multiple of two tube passes (two, four, etc. tube
passes).
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FIGURE 11S.2 Correction factor for a shell-and-tube heat exchanger with two
shell passes and any multiple of four tube passes (four, eight, etc. tube passes).

ti

Ti

To

to

3.0 0.6 0.4 0.20.81.5 1.04.0 2.0

1.0

0.9

0.8

0.7

0.6

0.5
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

R = 
 Ti – To______
 to – ti  

     

F

P =  
 to – ti_____
Ti – ti

FIGURE 11S.3 Correction factor for a single-pass, cross-flow heat 
exchanger with both fluids unmixed.
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FIGURE 11S.4 Correction factor for a single-pass, cross-flow heat
exchanger with one fluid mixed and the other unmixed.

fluid. With this convention it does not matter whether the hot fluid or the cold fluid 
flows through the shell or the tubes. An important implication of Figures 11S.1 
through 11S.4 is that, if the temperature change of one fluid is negligible, either P or 
R is zero and F is 1. Hence heat exchanger behavior is independent of the specific 
configuration. Such would be the case if one of the fluids underwent a phase change.
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