8.53 It has been suggested in the design of an agricultural sprinkler that a structural member be held in place by a wire placed along the centerline of a pipe, it is surmised that a relatively small wire would have little effect on the pressure drop for a given flow rate. Using the result of Problem 8.52, derive an expression giving the percentage change in pressure drop as a function of the ratio of wire diameter to pipe diameter for laminar flow. Plot the percentage change in pressure drop as a function of radius ratio \(\frac{r}{D} \) for 0.001 ≤ \(\frac{r}{D} \) ≤ 0.10.

8.54 A in food industry plant two immiscible fluids are pumped through a tube such that fluid 1 (\(\mu_1 = 0.02 \) Re \(\frac{L}{d} \)) forms an inner core and fluid 2 (\(\mu_2 = 0.03 \) Re \(\frac{L}{d} \)) forms an outer annulus. The tube has \(D = 2 \) in. diameter and length \(L = 50 \) ft. Derive and plot the velocity distribution if the applied pressure difference, \(\Delta p \), is 1 psi.

8.55 A horizontal pipe carries fluid in a fully developed turbulent flow. The static pressure difference measured between two sections is 35 kPa. The distance between the sections is 10 m and the pipe diameter is 150 mm. Calculate the shear stress, \(\tau_w \), that acts on the walls.

8.56 One end of a horizontal pipe is attached using glue to a pressurized tank containing liquid, and the other has a cap attached. The inside diameter of the pipe is 2.5 cm, and the tank pressure is 250 kPa (gage). Find the force the glue must withstand, and the force it must withstand when the cap is off and the liquid is discharged to atmosphere.

8.57 The pressure drop between two taps separated in the streamwise direction by 30 ft in a horizontal, fully developed channel flow of water is 1 psi. The cross-section of the channel is a 1 in. \(\times \) 9 in. rectangle. Calculate the average wall shear stress.

8.58 Kerosene is pumped through a smooth tube with inside diameter \(D = 30 \) mm at close to the critical Reynolds number. The flow is unstable and fluctuations between laminar and turbulent states, causing the pressure gradient to intermittently change from approximately 4.5 kPa/m to \(-11\) kPa/m. Which pressure gradient corresponds to laminar, and which to turbulent, flow? For each flow, compute the shear stress at the tube wall, and sketch the shear stress distributions.

8.59 A liquid drug, with the viscosity and density of water, is to be administered through a hypodermic needle. The inside diameter of the needle is 0.25 mm and its length is 50 mm. Determine (a) the maximum volume flow rate for which the flow will be laminar, (b) the pressure drop required to deliver the maximum flow rate, and (c) the corresponding wall shear stress.

8.60 Consider the empirical “power-law” profile for turbulent pipe flow, Eq. 8.22. For \(n = 7 \) determine the value of \(\frac{r}{R} \) at which \(u \) is equal to the average velocity, \(V \). Plot the results over the range 0 ≤ \(n \) ≤ 10 and compare with the case of fully developed laminar pipe flow, Eq. 8.14.

8.61 Laufer [5] measured the following data for mean velocity in fully developed turbulent pipe flow at \(Re_p = 50,000 \):

\(\frac{y}{D} \)	\(0.096 \)	\(0.981 \)	\(0.983 \)	\(0.971 \)	\(0.979 \)	\(0.984 \)	\(0.987 \)	\(0.999 \)	\(0.999 \)	\(0.999 \)	\(0.999 \)
\(y \)	\(0.981 \)	\(0.974 \)	\(0.961 \)	\(0.958 \)	\(0.963 \)	\(0.965 \)	\(0.967 \)	\(0.969 \)	\(0.971 \)	\(0.973 \)	\(0.975 \)
\(y \)	\(0.982 \)	\(0.974 \)	\(0.961 \)	\(0.958 \)	\(0.963 \)	\(0.965 \)	\(0.967 \)	\(0.969 \)	\(0.971 \)	\(0.973 \)	\(0.975 \)

In addition, Laufer measured the following data for mean velocity in fully developed turbulent pipe flow at \(Re_p = 50,000 \):

\(\frac{y}{R} \)	\(0.897 \)	\(0.998 \)	\(0.975 \)	\(0.959 \)	\(0.934 \)	\(0.908 \)	\(0.883 \)	\(0.858 \)	\(0.838 \)	\(0.818 \)
\(y \)	\(0.898 \)	\(0.984 \)	\(0.969 \)	\(0.955 \)	\(0.941 \)	\(0.927 \)	\(0.912 \)	\(0.898 \)	\(0.884 \)	\(0.870 \)
\(y \)	\(0.874 \)	\(0.847 \)	\(0.818 \)	\(0.781 \)	\(0.736 \)	\(0.690 \)	\(0.643 \)	\(0.596 \)	\(0.550 \)	\(0.504 \)
\(y \)	\(0.850 \)	\(0.824 \)	\(0.798 \)	\(0.771 \)	\(0.744 \)	\(0.717 \)	\(0.691 \)	\(0.665 \)	\(0.639 \)	\(0.614 \)

Using Excel’s trendline analysis, fit each set of data to the “power-law” profile for turbulent flow, Eq. 8.22, and obtain a value of \(n \) for each set. Do the data tend to confirm the validity of Eq. 8.22? Plot the data and their corresponding trendlines on the same graph.

8.62 Equation 8.23 gives the power-law velocity profile exponent, \(n \), as a function of centerline Reynolds number, \(Re_p \), for fully turbulent flow in smooth pipes. Equation 8.24 relates mean velocity, \(V \), to centerline velocity, \(U \), for various values of \(n \). Prepare a plot of \(U/V \) as a function of Reynolds number, \(Re_p \).

8.63 A momentum coefficient, \(\beta \), is defined by

\[
\int_a \frac{u}{\sqrt{V}} \, da = \beta \int_a \frac{\sqrt{U}}{\sqrt{V}} \, da = \beta \frac{U}{V}
\]

Evaluate \(\beta \) for the laminar velocity profile, Eq. 8.14, and for a “power-law” turbulent velocity profile, Eq. 8.22. Plot \(\beta \) as a function of \(n \) for turbulent power-law profiles over the range 6 ≤ \(n \) ≤ 10 and compare with the case of fully developed laminar pipe flow.

8.64 Consider fully developed laminar flow of water between stationary parallel plates. The maximum flow speed, plate spacing, and width are 30 ft/s, 0.075 in. and 1.25 in., respectively. Find the kinetic energy coefficient, \(k \).

8.65 Consider fully developed laminar flow in a circular tube. Evaluate the kinetic energy coefficient for this flow.

8.66 Show that the kinetic energy coefficient, \(k \), for the “power-law” turbulent velocity profile of Eq. 8.22 is given by Eq. 8.27. Plot \(k \) as a function of \(Re_p \) for \(Re_p = 1 \times 10^6 \) to \(1 \times 10^7 \). When analyzing pipe flow problems it is common practice to assume \(n \approx 1 \). Plot the error associated with this assumption as a function of \(Re_p \) for \(Re_p = 1 \times 10^6 \) to \(1 \times 10^7 \).

8.67 Measurements are made for the flow configuration shown in Fig. 8.12. At the inlet, section (1), the pressure is 70 kPa (gage), the average velocity is 1.75 m/s, and the elevation is 2.25 m. At the outlet, section (2), the pressure, average velocity, and elevation are 45 kPa (gage), 3.5 m/s, and 3 m, respectively. Calculate the head loss in meters. Convert to units of energy per unit mass.

8.68 Water flows in a horizontal constant-area pipe; the pipe diameter is 50 mm and the average flow speed is 1.5 m/s. At the pipe inlet the gage pressure is 580 kPa, and the outlet is at atmospheric pressure. Determine the head loss in the pipe. If the pipe is now aligned so that the outlet is 25 m above the inlet, what will the inlet pressure need to be to maintain the same flow rate? If the pipe is now aligned so that the outlet is 25 m below the inlet, what will the inlet pressure need to be to maintain the same flow rate? Finally, how much lower than the inlet must the outlet be so that the same flow rate is maintained if both ends of the pipe are at atmospheric pressure (i.e., gravity feed)?
by the pump. The tubing is 75-mm diameter cast iron, and the total length of the circuit is 20 m. Calculate the pressure difference required from the pump for water flow rates Q ranging from 0.01 m³/s to 0.06 m³/s.

8.114 Consider flow of mainsail at 1250 ft³/min. Compare the pressure drop per unit length of a round duct with that for rectangular ducts of aspect ratio 1, 2, and 3. Assume that all ducts are smooth, with cross-sectional areas of 1 ft².

8.116 Two reservoirs are connected by three clean cast-iron pipes in series. L₁ = 600 m, D₁ = 0.3 m, L₂ = 900 m, D₂ = 0.4 m, L₃ = 1500 m, and D₃ = 0.45 m. When the discharge is 0.11 m³/s of water at 15°C, determine the difference in elevation between the reservoirs.

8.117 Water, at volume flow rate Q = 0.75 ft³/min, is delivered by a fire hose and nozzle assembly. The hose (L = 200 ft, D = 5 in and e/D = 0.004) is made up of four 60 ft sections joined by couplings. The entrance is square-edged; the minor loss coefficient for each coupling is Kᵥ = 0.5, based on mean velocity through the hose. The nozzle loss coefficient is Kₚ = 0.02, based on velocity in the exit jet, of Dₚ = 1 in. diameter. Estimate the supply pressure required at this flow rate.

8.118 Data were obtained from measurements on a vertical section of old, corroded, galvanized iron pipe of 25 mm inside diameter. At one section the pressure was p₁ = 700 kPa (gage); at a second section, 6 m lower, the pressure was p₂ = 525 kPa (gage). The volume flow rate of water was 0.2 m³/min. Estimate the relative roughness of the pipe. What percent savings in pumping power would result if the pipe were restored to its new, clean relative roughness?

8.119 Flow in a tube may alternate between laminar and turbulent states for Reynolds numbers in the transition zone. Design a bench-top experiment consisting of a constant-head cylindrical transparent plastic tank with depth graduations, and a length of plastic tubing (assumed smooth) attached at the base of the tank through which the water flows to a measuring container. Select tank and tubing dimensions so that the system is compact, but will operate in the transition zone range. Design the experiment so that you can easily increase the tank head from a low range (laminar flow) through transition to turbulent flow, and vice versa. Write instructions for students on recognizing when the flow is laminar or turbulent.) Generate plots (on the same graph) of tank depth against Reynolds number, assuming laminar or turbulent flow.

8.120 A small swimming pool is drained using a garden hose. The hose has 20 mm inside diameter, a roughness height of 0.2 mm, and is 30 m long. The free end of the hose is located 3 m below the elevation of the bottom of the pool. The average velocity at the hose discharge is 1.2 m/s. Estimate the depth of the water in the swimming pool. If the flow were inviscid, what would be the velocity?

8.121 A compressed air drill requires 0.25 kg/s of air at 650 kPa (gage) at the drill. The hose from the air compressor to the drill is 40 mm inside diameter. The maximum compressor discharge gage pressure is 670 kPa, air leaves the compressor at 40°C, Neglect changes in density and any effects of hose curvature. Calculate the longest hose that may be used.

8.122 What flow rate (gpm) will be produced in a 4-in.-diameter water pipe for which there is a pressure drop of 40 psi over a 300 ft length? The pipe roughness is 0.01 ft. The water is at 68°F.

8.123 When you drink your beverage with a straw, you need to overcome both gravity and friction in the straw. Estimate the fraction of the total effort you put into quenching your thirst of each factor, making suitable assumptions about the liquid and straw properties, and your drinking rate (for example, how long it would take you to drink a 12 oz drink if you drank it all in one go (quite a feat with a straw). Is the flow laminar or turbulent? (Ignore minor losses.)

8.124 Gasoline flows in a long, underground pipeline at a constant temperature of 15°C. Two pumping stations at the same elevation are located 13 km apart. The pressure drop between the stations is 1.4 MPa. The pipeline is made from 0.6 m diameter pipe. Although the pipe is made from commercial steel, age and corrosion have raised the pipe roughness to approximately that for galvanized iron. Compute the volume flow rate.

8.125 Water flows steadily in a horizontal 125-mm-diameter cast-iron pipe. The pipe is 150 m long and the pressure drop between sections 1 and 2 is 150 kPa. Find the volume flow rate through the pipe.

8.126 Water flows steadily in a 125 mm diameter cast iron pipe 150 m long. The pressure drop between sections 1 and 2 is 150 kPa, and section 2 is located 15 m above section 1. Find the volume flow rate.

8.127 Two open standpipes of equal diameter are connected by a straight tube as shown. Water flows by gravity from one standpipe to the other. For the instant shown, estimate the rate of change of water level in the left standpipe.

8.128 Two galvanized iron pipes of diameter D are connected to a large water reservoir as shown. Pipe A has length L₁ and pipe B has length L₂. Both pipes discharge to atmosphere. Which pipe will pass the larger flow rate? Justify (without calculating the flow rate in each pipe). Compute the flow rates if H = 35 ft, D = 2 in., and L = 200 ft.
8.153 A pump draws water at a steady flow rate of 25 ft³/hr through a piping system. The pressure on the suction side of the pump is 2.5 psig. The pump outlet pressure is 50 psig. The inlet pipe diameter is 3 in.; the outlet pipe diameter is 2 in. The pump efficiency is 70 percent. Calculate the power required to drive the pump.

8.154 The pressure rise across a water pump is 75 kPa when the volume flow rate is 2.5 L/s. If the pump efficiency is 80 percent, determine the power input to the pump.

8.155 A 2.5 (nominal) in. pipeline conveying water contains 250 ft of straight galvanized pipe, 2 fully open gate valves, 1 fully open angle valve, 7 standard 90° elbows, 1 square-edged entrance from a reservoir, and 1 free discharge. The entrance and exit conditions are:

<table>
<thead>
<tr>
<th>Location</th>
<th>Elevation</th>
<th>Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrance</td>
<td>50.0 ft</td>
<td>20 psig</td>
</tr>
<tr>
<td>Discharge</td>
<td>94.0 ft</td>
<td>0 psig</td>
</tr>
</tbody>
</table>

A centrifugal pump is installed in the line to move the water. What pressure rise must the pump deliver so that the volume flow rate will be Q = 0.420 ft³/s?

8.156 Cooling water is pumped from a reservoir to rock drills on a construction job using the pipe system shown. The flow rate must be 600 gpm and water must leave the sprays nozzle at 120 ft/s. Calculate the minimum pressure needed at the pump outlet. Estimate the required power input if the pump efficiency is 70 percent.

8.157 You are asked to size a pump for installation in the water supply system of the Sears Tower in Chicago. The system requires 100 gpm of water pumped to a reservoir at the top of the tower 340 m above the street. City water pressure at the street-level pump inlet is 400 kPa (gage). Piping is to be commercial steel. Determine the diameter required to keep the average water velocity below 3.5 m/s in the pipe. Calculate the pressure rise required across the pump. Estimate the minimum power needed to drive the pump.

8.158 Air conditioning for the Purdue University campus is provided by chilled water pumped through a main supply pipe. The pipe makes a loop 3 miles in length. The pipe diameter is 2 ft and the material is steel. The maximum design volume flow rate is 11,200 gpm. The circulating pump is driven by an electric motor. The efficiencies of pump and motor are ψp = 0.80 and ψm = 0.90, respectively. Electric power cost is $0.12/kW-hr. Determine (a) the pressure drop, (b) the rate of energy addition to the water, and (c) the daily cost of electrical energy for pumping.

8.159 A fire nozzle is supplied through 100 m of 3.5-cm diameter, smooth, rubber-lined hose. Water from a hydrant is supplied to a booster pump on board the truck at 350 kPa (gage). At design conditions, the pressure at the nozzle inlet is 700 kPa (gage), and the pressure drop along the hose is 750 kPa per 100 m of length. Determine (a) the design flow rate, (b) the nozzle exit velocity, assuming no losses in the nozzle, and (c) the power required to drive the booster pump, if its efficiency is 70 percent.

8.160 Heavy crude oil (SG = 0.925 and ν = 1.0 × 10⁻⁴ m²/s) is pumped through a pipeline laid on flat ground. The line is made from steel pipe with 600 mm i.d. and has a wall thickness of 12 mm. The allowable tensile stress in the pipe wall is limited to 275 MPa by corrosion considerations. It is important to keep the oil under pressure to ensure that gasses remain in solution. The minimum recommended pressure is 500 kPa. The pipeline carries a flow of 400,000 barrels per day (in the petroleum industry, a “barrel” is 42 gal) per day. Determine the maximum spacing between pumping stations. Compute the power added to the oil at each pumping station.

8.161 According to the Purdue student newspaper, the volume flow rate through the fountain in the Engineering Mall is 550 gpm. Each water streamer can rise to a height of 10 m. Estimate the daily cost to operate the fountain. Assume that the pump motor efficiency is 90 percent, the pump efficiency is 80 percent, and the cost of electricity is 12¢/kW-hr.

8.162 Petroleum products are transported over long distances by pipeline, e.g., the Alaskan pipeline (see Example 8.6). Estimate the energy needed to pump a typical petroleum product, expressed as a fraction of the throughout energy carried by the pipeline. State and critique your assumptions clearly.

8.163 The pump testing system of Problem 8.114 is run with a pump that generates a pressure difference given by ΔP = 750 − 15 Q² where ΔP is in kPa, and the generated flow rate is Q m³/s. Find the water flow rate, pressure difference, and power supplied to the pump if it is 70 percent efficient.

8.164 A water pump can generate a pressure difference ΔP (psi) given by ΔP = 145 − 0.1 Q², where the flow rate is Q ft³/hr. It supplies a pipe of diameter 20 in., roughness 0.15 in., and length 2500 ft. Find the flow rate, pressure difference, and the power supplied to the pump if it is 70 percent efficient. If the pipe were replaced with one of roughness 0.25 in., how much would the flow increase, and what would be the required power?

8.165 A square cross-section duct (0.5 m × 0.5 m × 30 m) is used to convey air (ρ = 1.1 kg/m³) into a clean room in an electronics manufacturing facility. The air is supplied by a fan and passes through a filter installed in the duct. The duct friction factor is f = 0.03, the filter has a loss coefficient of K = 12, and the clean room is kept at a positive gage pressure of 50 Pa. The fan performance is given by ΔP = 1020 − 25Q − 30 Q², where ΔP (Pa) is the pressure generated by the fan at flow rate Q (m³/s). Determine the flow rate delivered to the room.

8.166 The head versus capacity curve for a certain fan may be approximated by the equation H = 30 − 10⁻⁷ Q², where H is the output static head in inches of water and Q is the air flow rate in ft³/min. The fan outlet dimensions are 8 × 16 in. Determine the air flow rate delivered by the fan into a 200 ft straight length of 8 × 16 in. rectangular duct.