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Relevant Equations, Formulas, Tables and Figures 

Conservation of Mass (Continuity Equation) 
       

                         (Integral Form) 
 

 
                           

                                                  (Differential Form) 
 

 
 

                (Rectangular Coordinates) 
 

 
 
       (Cylindrical Coordinates) 
 
 

Stream Function for Two-Dimensional Incompressible Flow (Rectangular Coordinates) 
 
 (2-D Continuity Equation, Constant Density) 
 

 
               (Stream Function ψ) 
       

 

Stream Function for Two-Dimensional Incompressible Flow (Cylindrical Coordinates) 
 
 (2-D Continuity Equation, Constant Density) 

 
                 (Stream Function ψ) 

 

Momentum Equation for Control Volume Moving with Constant Velocity 

 
Momentum Equation for Inertial Control Volume with Rectilinear Acceleration 

         

 
 

 
For a Newtonian fluid:  Shear Stress  = 
 
Where μ is the dynamic viscosity of the fluid. 
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For a Plane Submerged Surface: 
 

 
 
 

where             𝐼𝐼𝑥𝑥�𝑥𝑥� = 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ×ℎ𝑒𝑒𝑤𝑤𝑒𝑒ℎ𝑤𝑤3

12
 

Pressure Variation in a Static Fluid 

hgppp atmabsgage ρ=−=  
where  ρ = density of the fluid ; g = gravitational acceleration (9.81 m/s2 or 32.2 ft/s2) ; h = height of 
fluid column   
 
Absolute pressure = atmospheric pressure + gauge pressure reading 

Absolute pressure = atmospheric pressure – vacuum pressure reading 

Specific Gravity = SG = 
𝜌𝜌𝑠𝑠
𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟

 ; where ρs = density of substance  

and ρref  = density of reference liquid which is water at 4°C (39°F) = 1000 kg/m3 (1.94 slug/ft3) 

Fluid Translation: Acceleration of a Fluid Particle in a Velocity Field, pa  

 
Fluid Deformation: Linear Deformation 

 
 

 
Fluid Rotation: 
 
         𝝎𝝎� =  𝟏𝟏

𝟐𝟐
𝛁𝛁 × 𝑽𝑽�    ; If   𝛁𝛁× 𝑽𝑽� = 𝟎𝟎  then flow is irrotational 

 
The Bernoulli Equation is derived when the energy equation is applied to one-dimensional flows.  
Assuming no friction losses and that no pump or turbine exists between sections 1 and 2 in the system, 
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,     where 

21 , pp  = pressure at sections 1 and 2, 

21 ,VV  = average velocity of the fluid at the sections, 

21 , zz  = the vertical distance from a datum to the sections (the potential energy), 
γ  = the specific weight of the fluid ( gρ ), and 
g = the acceleration of gravity. 
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Internal Pipe Flow 

Energy Equation:            

 

 
 

𝛼𝛼 = �2.0  𝑓𝑓𝑓𝑓𝑓𝑓 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
1.0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡𝑓𝑓𝑡𝑡𝑡𝑡𝑓𝑓𝑡𝑡𝐿𝐿𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

 

Minor losses:                                                                                                or    

 
Major Losses:  

 

Average Velocity: 
 

Reynolds Number:     
νµ

ρ DVDV
==Re          

Laminar Friction Factor:     Re
64

=f     →   Re < 2300          
 

Turbulent Friction Factor - Implicit Relation: 
                                                                          

→  Re ≥ 2300           
 

Turbulent Friction Factor Estimate (within 1% of actual value) – Explicit Relation:  

  𝒇𝒇𝒐𝒐 = 𝟎𝟎.𝟐𝟐𝟐𝟐 �𝒍𝒍𝒐𝒐𝒍𝒍 �𝒆𝒆/𝑫𝑫
𝟑𝟑.𝟕𝟕

+ 𝟐𝟐.𝟕𝟕𝟕𝟕
𝑹𝑹𝒆𝒆𝟎𝟎.𝟗𝟗��

−𝟐𝟐
   →  Re ≥ 2300 

 

∫== dAu
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QV 1
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Pumps, Fans, and Blowers (Energy Equation and Other Useful Relations): 

 

 

 

 

 

Mass Flow Rate:            �̇�𝒎 = 𝝆𝝆𝝆𝝆 = 𝝆𝝆𝑽𝑽𝝆𝝆 ; where Q = Volume Flow Rate 

Ideal Gas Law:              𝑷𝑷 =  𝝆𝝆 𝑹𝑹 𝑻𝑻 ; where T = Absolute Temperature 

Hydraulic Gradient (Grade Line) 
The hydraulic gradient (grade line) is defined as an imaginary line above a pipe so that the vertical 
distance from the pipe axis to the line represents the pressure head at that point.  If a row of piezometers 
were placed at intervals along the pipe, the grade line would join the water levels in the piezometer 
water columns. 
 
Energy Line (Bernoulli Equation) 
The Bernoulli equation states that the sum of the pressure, velocity, and elevation heads is constant.  The 
energy line is the sum or the “total head line” above a horizontal datum.  The difference between the 
hydraulic grade line and the energy line is the (V2/2g) term. 
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Fully Developed Laminar Flow between Infinite Parallel Plates: (Both Plates Stationary) 

 
 
Shear Stress Distribution:  
 
 
Volume Flow Rate:   
 
Volume Flow Rate as a Function of Pressure Drop:  
 
Average Velocity:  
 

Maximum Velocity: 
 
Fully Developed Laminar Flow between Infinite Parallel Plates: (Upper Plate Moving with a 
Constant Speed U and Lower Plate Stationary) 

                            

𝑡𝑡 =
𝐿𝐿2

2𝜇𝜇 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕� ��
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𝐿𝐿�

2
− �

𝑦𝑦
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Shear Stress Distribution:      𝜏𝜏𝑦𝑦𝑥𝑥 = 𝐿𝐿 �𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥
� ��𝑦𝑦

𝑎𝑎
� − 1
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Volume Flow Rate:          
𝑄𝑄
𝑙𝑙

= − 1
12𝜇𝜇

�𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥
� 𝐿𝐿3 + 𝑈𝑈𝑎𝑎

2
 

 

Average Velocity:             𝑄𝑄
𝑙𝑙

= − 1
12𝜇𝜇

�𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥
� 𝐿𝐿3 + 𝑈𝑈𝑎𝑎

2
 

Point of Maximum Velocity:  Set   
𝑤𝑤𝑑𝑑
𝑤𝑤𝑦𝑦

= 0 and Solve for y → 𝑦𝑦 = 𝑎𝑎
2
−

𝜇𝜇𝑈𝑈
𝑎𝑎�

�𝜕𝜕𝜕𝜕 𝜕𝜕𝑥𝑥� �
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Fully Developed Laminar Flow in a Pipe: 
 
Velocity Distribution:  
 

Shear Stress Distribution:  
 

Volume Flow Rate:  
 
Volume Flow Rate as a Function of Pressure Drop:  
 

Average Velocity:  
 

Maximum Velocity:  
 

For Non-Circular Ducts:  Replace the Diameter with the Hydraulic Diameter 𝐷𝐷ℎ =  4𝐴𝐴
𝑃𝑃

   
where A = Cross-Sectional Area and P = Perimeter 
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Properties of Water in US and SI Units: 
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Properties of Air in US and SI Units: 
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DIMENSIONAL HOMOGENEITY AND DIMENSIONAL ANALYSIS 
Equations that are in a form that do not depend on the fundamental units of measurement are called 
dimensionally homogeneous equations.  A special form of the dimensionally homogeneous equation is 
one that involves only dimensionless groups of terms. 
 
Buckingham’s Theorem: The number of independent dimensionless groups that may be employed to 
describe a phenomenon known to involve n variables is equal to the number ( )rn − , where r  is the 
number of basic dimensions (i.e., M, L, T) needed to express the variables dimensionally. 
 
SIMILTUDE 
In order to use a model to simulate the conditions of the prototype, the model must be geometrically, 
kinematically, and dynamically similar to the prototype system. 
 
To obtain dynamic similarity between two flow pictures, all independent force ratios that can be written 
must be the same in both the model and the prototype.  Thus, dynamic similarity between two flow 
pictures (when all possible forces are acting) is expressed in the five simultaneous equations below. 
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where the subscripts p and m stand for prototype and model respectively, and 

LF  =     inertia force → 22 LVρ  

PF  =     pressure force → 2LpAp ∆∝∆  

VF  =     viscous force → VLL
L
VA

dy
duA µµµτ =∝= 2  

GF  =     gravity force → 3Lgmg ρ∝  

EF  =     elastic force → 2LEAE vv ∝  

TF  =     surface tension force → Lσ  

Re =     Reynolds number → 
forcesviscous
forcesinertia

v
VDVD

===
µ

ρRe   

We =     Weber number → 
forcestensionsurface

forcesinertiaLVWe ==
σ

ρ 2
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Ca =     Cavitation number → 
forcesinertia
forcespressure

V

pp
Ca v =

−
=

2

2
1 ρ

 

Eu       =     Euler number (pressure coefficient Cp) → 
forcesinertia
forcespressure

V

pEu =
∆

=
2

2
1 ρ

 

Fr =     Froude number → 
forcesgravity
forcesinertia

gL
VFr ==  

M         =     Mach number → 
forcesilitycompressib

forcesinertia
c
VM ==   

L =     characteristic length, 
V =     velocity, 
ρ  =     density, 
σ  =     surface tension, 

VE  =     bulk modulus, 
µ  =     dynamic viscosity, 
p =     pressure,  
pv         =     liquid vapor pressure 
g =     acceleration of gravity, and 
c           =     local sonic speed 
 


