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Abstract: - In this paper we examine a spatially two–dimensional forced, damped Boussinesq equation with
quadratic nonlinearity. This equation describes small, nonlinear oscillations of a circular, elastic membrane in
the presence of viscosity. The eigenfunction expansion method is used for the purpose of constructing solutions
for small initial data analytically. The constructive method enables us to perform numerical simulations as well.
The conservative theoretical results are extended through numerical simulations: we examine the convergence
properties, the smallness requirement on the perturbation parameter, and the long–time behavior of the system.
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1 Introduction

Membrane structures have been used since the earliest of
times. However, in the past their analysis has relied mostly
on trial and error, while modern analysis provides powerful
tools for creating mathematical theory of description of their
motions. The deformations of these structures are essen-
tially nonlinear. Nevertheless the linear theory provides an
important starting point for understanding this complicated
behavior.

The first membrane structures were biological organisms
which probably represent the widest usage of this structure
type [3]. Examples range from dragonfly and bat wings to
the bullfrog’s inflatable throat [4]. Investigations of biome-
chanics of flexible membranes is a current activity.

The necessity of creation of passive sensor technologies
determines the importance of study of oscillations of elas-
tic membranes. Unattended ground sensors can have as
their basic element a circular membrane with fixed ends
(clamped, simply supported or even nonlinearly damped).
Circular geometry is not the only option, geometric opti-
mization (shape or form finding) is one of the two main
branches of research in this area, the other one being re-
sponse analysis. The latter represents the topic of the present
investigation.

Although all processes in the nature are eventually nonlin-
ear, small perturbations of thin elastic plates in “normal con-
ditions” can be often described in the framework of linear
models. However extreme weather conditions like intense
heat, high humidity etc. can increase the influence of non-
linearity, i.e., make the behavior of the membrane “more

nonlinear” than in normal conditions [9]. That is to say
nothing of the change of amplitude of the incident external
perturbation which may also provoke essentially nonlinear
response. All this is quite relevant to our primary interest in
the models describing acoustic detection via registration of
membrane oscillations.

2 Problem Statement and Main Results

The so called “good” Boussinesq equation is well known
in the context of governing small nonlinear oscillations of
elastic beams. This equation can be written in the form (see
[14, 8])

utt +α2uxxxx = uxx +β(u2)xx, (1)

where α = const > 0 is the dispersion parameter depending
on the compression and rigidity characteristics of the mate-
rial and β is the constant coefficient controlling nonlinearity
(it can be set equal to one by appropriate scaling, but we will
keep it in order to trace the influence of the nonlinearity).
The quadratic nonlinearity appearing in (1) accounts for the
curvature of the bending beam. In many practical situations
damping effects are comparable in strength to nonlinear and
dispersive ones and in such cases the model equation pre-
sented above requires a dissipative term [1]. One possibility
is to introduce the so called internal damping term due to
friction [14]. The equation becomes then

utt −2butxx = −α2uxxxx +uxx +β(u2)xx, (2)

where b = const > 0 is the viscosity coefficient. Another
possibility would be to replace the second term on the
left–hand side by −but (usually called weak damping al-
though the damping effect in fact depends on the frequency



of oscillations). Two–dimensional analog of equation (2)
(sometimes called damped plate equation [6? ]) appears
in the context of modeling small nonlinear oscillations of
elastic membranes. It can be written as

utt −2b∆ut = −α2∆2u+∆u+β∆(u2). (3)

Consider now the nonlinear analog of the model presented
above with a forcing term a f (r,θ, t) due to acoustic pres-
sure. In order to simplify some considerations we consider
now the simply supported edge of the membrane (see [7]).
We can pose the problem for the vertical deflection of the
plate u as follows

utt −2b∆ut = −α∆2u+∆u+β∆(u2)+a f (r,θ, t),
u|∂Ω = ∆u|∂Ω = 0, (4)

u(r,θ,0) = ut(r,θ,0) = 0,

u(r,θ+2π, t) = u(r,θ, t) ,
for(r,θ) ∈ Ω, t > 0

boundedness of u at the origin,

where α, b and a are positive constants, β is a real constant,
Ω denotes the unit disk, and ∂Ω is its boundary, the unit
circle. The parameter a controls the forcing term and must
be bounded in order to guarantee convergence of a certain
series. Therefore acoustic pressure is expected to be not too
big in the framework of the current model. Large nonlinear
oscillations will be considered in the future. We consider
the case when the edge of the disk is clamped. Paper [11]
dealt with the nonlinear beam oscillations for the case of
simply supported ends (one–dimensional case) and in [12]
nonlinear oscillations of an elastic ball (three–dimensional
case) were studied in the framework of the same Boussinesq
model.

We restrict our attention to the most interesting case α2 > b2

of small damping which corresponds to the existence of
an infinite number of damped oscillations. If the inverse
relation holds (the so called overdamping case), aperiodic
processes play the main role.

We seek solutions of the problem (4) in the form of the
eigenfunction expansion

u(r,θ, t) =
∞

∑
m=−∞

∞

∑
n=1

ûmn(t)Φmn(r,θ) (5)

where

Φmn(r,θ) = Jm(λmnr)eimθ, m ∈ Z, n ∈ N (6)

are eigenfunctions of the Laplace operator in a disk, i.e.
solutions to the eigenvalue problem

∆Φ(r,θ) = −ΛΦ(r,θ) , (r,θ) ∈ Ω,

Φ|∂Ω = 0, Φ(r,θ+2π) = Φ(r,θ) ,

|Φ(0,θ)| < ∞.

In this way we can satisfy the boundary conditions, periodic-
ity conditions in θ and the boundedness condition for u. The
function Jm is the Bessel function of the first kind of order

m for m ∈ N. In order to satisfy the boundary conditions
{λmn}

∞
n=1 should be positive zeros of the dispersion equation

Jm(λ) = 0 form ∈ Z.

Our choice of the boundary condition simplifies the disper-
sion relation. So far our approach resembles the classical
method of separation of variables, but now the necessity to
solve the nonlinear equation brings new ideas into consider-
ation.

The sequence {Φmn}m∈Z,n∈N
forms a complete orthogonal

set in L2 (Ω). Expanding the source term of the equation into
the series of the (5) type we obtain

f (r,θ, t) =
∞

∑
m=−∞

∞

∑
n=1

f̂mn(t)Φmn(r,θ).

Using notation 〈·, ·〉 and ‖·‖ for the L2–inner product and
norm respectively we have

f̂mn(t) =
< f ,Φmn >

‖Φmn‖
2 , (7)

and recalling the initial conditions for u we obtain the
following nonlinear initial value problem for the coefficients
ûmn(t) :

û′′mn(t)+2bλ2
mnû′mn(t)+(αλ4

mn +λ2
mn)ûmn(t)

= −βλ2
mnû2mn(t)+a f̂mn(t), t > 0, (8)

ûmn(0) = û′mn(0) = 0,

where the coefficients of the eigenfunction expansion of the
nonlinearity are calculated by the formulae

û2mn(t) =
< u2,Φmn >

‖Φmn‖
2

=

〈

∑
p,q

ûpq(t)Φpq ·∑
k,s

ûks(t)Φks,Φmn

〉

= ∑
p,q,k,s

b(m, n; p, q, k, s)ûpq(t)ûks(t),

and

b(m,n, p,q,k,s) =
< Φpq ·Φks,Φmn >

‖Φmn‖
2 . (9)

Integrating (8) with respect to t we get the nonlinear integral
equation

ûmn(t) =
a

σmn

∫ t

0
e−bλ2

mn(t−τ) sin [σmn(t − τ)] f̂mn(τ)dτ

−
βλ2

mn

σmn

∫ t

0
e−bλ2

mn(t−τ) sin [σmn(t − τ)] û2mn(τ)dτ, (10)

where

σmn = λmn

√
kλ2

mn +1 and k = α−b2 > 0.

We apply the perturbation theory in order to solve (10). We
seek the solution in the form

ûmn(t) =
∞

∑
N=0

aN+1v̂(N)
mn (t). (11)



Substituting (11) into equation (10) we obtain the recursion
formulas

v̂(0)
mn(t) =

1
σmn

∫ t

0
e−bλ2

mn(t−τ) sin [σmn(t − τ)] f̂mn(τ)dτ,
(12)

and

v̂(N)
mn (t) = −

βλ2
mn

σmn

∫ t

0
e−bλ2

mn(t−τ) sin [σmn(t − τ)]

× ∑
p,q,k,s

b(m,n, p,q,k,s)
N

∑
j=1

v̂( j−1)
pq (τ)v̂(N− j)

ks (τ)dτ (13)

for N ≥ 1.

Formulas (5), (9), (11), (13) provide the algorithm of com-
putation of the vertical deflection u. In order to guarantee the
absolute and uniform convergence of the series (9), param-
eter a should not exceed some critical value a0 which is de-
termined by the nonlinearity of the equation and the source
term. The following estimate holds for the coefficients v̂mn:

∣∣∣v̂(N)
mn (t)

∣∣∣ ≤ cN (N +1)−2 λ−3/2
mn , (14)

where
c =

1
b

sup
t>0

∣∣ f̂mn (t)
∣∣ . (15)

Substituting estimate (14) into (11) we see that

a < 1/c (16)

is a sufficient condition for convergence.

The following theorem summarizes the above comments.
It’s proof will be presented in details in our forthcoming
paper.

Theorem 1. If α > b2, the external forcing f (r,θ, t) is suffi-
ciently smooth, and a < 1/c, then there exists a unique solu-
tion u ∈C

(
R

+,Hs
0 (Ω)

)
, s < 0 of problem (4). The solution

can be represented as

u(r,θ, t) = ∑
m∈Z,n∈N

ûmn (t)J (λmnr)eimθ. (17)

3 Numerical Results

In this section we apply the eigenfunction method described
in the previous section in order to construct solutions numer-
ically. We emphasize that (4) describes only small nonlinear
oscillations of certain elastic membranes. Large nonlinear
oscillations are described by the general Föppl–von Kármán
system (derived by A. Föppl in 1907 [2] and analyzed by
von Kármán in 1910 [13]). However, in order to test the
convergence properties of the eigenfunction method, we use
parameter values for which oscillation are relatively large,
and hence the nonlinear term will have a prominent effect
on the solution. We used parameter values α = 2, β = 100,
a = 1000 and b = 0.1 in our numerical analysis, with forcing
term f (r,θ, t) = δ(t)cos(rπ/2) for t ≥ 0, r ∈ [0,1] and
θ ∈ [0,2π], where δ is the Dirac Delta function (see, Fig.
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Figure 1. Initial forcing

1). After this initial “kick” the system undergoes nonlinear
oscillation with small damping.

Although these values are not realistic, they are appropriate
for testing the numerical algorithm:

(1) b = 0.1, the damping is small, oscillations are strong.
(2) β = 100 is large, strong nonlinear effect.
(3) a = 1000 is large, shows that condition (16) for conver-

gence of the method is a very conservative estimate.

We used FORTRAN90 with IMSL and CERNLIB subrou-
tines for numerical calculations, and MATLAB 6.5 for visu-
alization on a LINUX workstation with 2×2GHz processors
and 2GB memory.

3.1 The Numerical Procedure

We describe in more details the numerical procedure that is
based on the theoretical results of the previous section. We
consider only real valued solutions, and hence we use cosine
functions instead of the complex exponentials.

Although certain values related to special functions are tab-
ulated in the literature, it is simpler and less prone to human
errors if one calculates them through numerical approxima-
tions. One of these quantities are {λmn}

MN
mn=01, a truncated set

of zeros for the Bessel functions, where M and N are posi-
tive integers. We used the CERNLIB subroutine DBZEJY
in order to approximate these zeros. This subroutine uses
an iterative method [10]. Another sequence of quantities
consists of the squared L2–norms of the eigenfunctions,

{
‖Φmn‖

2
}M,N

m,n=0,1
=

∫ 2π

0

∫ 1

0
|Φmn (r,θ)|2 rdθdr. (18)

The method consists of the following main steps:

(1) Calculate the Fourier–Bessel coefficients of the forcing
using formula

f̂mn(t) =
< f ,Φmn >

‖Φmn‖
2

=

∫ 1
0

∫ 2π
0 f (r,θ, t)Jm (λmnr)cos(nθ)r dθdr

∫ 1
0

∫ 2π
0 |Φmn (r,θ)|2 r dθdr

(19)

where m = 0, . . .M and n = 1, . . . ,N. The integrations
in polar coordinates require discretization. We used



simple Riemann sums in polar coordinates with con-
stant dr and dθ mesh sizes.

(2) Calculate the nonlinear coefficients

b(m,n, p,q,k,s) =
< Φpq ·Φks,Φmn >

‖Φmn‖
2

=

∫ 1

0

∫ 2π

0
Jp (λpqr)Jk (λksr)Jm (λmnr)

×cos((p+ k−m)θ)r dθdr
∫ 1

0
∫ 2π

0 |Φmn (r,θ)|2 r dθdr
(20)

where m = 0, . . .M, n = 1, . . . ,N. While there are a total
number of (M +1)3 N3 terms, due to orthogonality we
have that b(m,n, p,q,k,s) 6= 0 only if p + k = m. This
reduces the number of nonzero terms to (M +1)2 N3.
Further reduction in storage can be achieved by using
the symmetry of the terms.

(3) Calculate the perturbation series recursively

v̂(0)
mn(t) =

1
σmn

∫ t

0
e−bλ2

mn(t−τ) sin [σmn(t − τ)]

× f̂mn(τ)dτ, (21)

v̂(l)
mn(t) = −

βλ2
mn

σmn

∫ t

0
e−bλ2

mn(t−τ) sin [σmn(t − τ)]

× ∑
p,q,k,s

b(m,n, p,q,k,s)
l

∑
j=1

v̂( j−1)
pq (τ)v̂(l− j)

ks (τ)dτ (22)

for l = 1, . . . ,Nv, t ∈ [0,T ], m = 0, . . .M and n =
1, . . . ,N. This part is the most demanding computa-
tionally. It requires the evaluation of convolution type
integrals and 5 sums embedded in the integral. We
used Simpson’s method for the approximation of the
convolution with constant step size dt.

(4) Assemble the Fourier–Bessel coefficients of the solu-
tion

ûmn(t) =
Nv

∑
l=0

al+1v̂(l)
mn(t) (23)

at all gridpoints t. This part is trivial.
(5) Assemble the solution

u(r,θ, t) =
M

∑
m=0

N

∑
n=1

ûmn (t)J (λmnr)eimθ (24)

at gridpoints t, r, θ.

3.2 Discretization Errors and Convergence Properties

A clear advantage of this method is that there is no modeling
error involved. Errors are arising only in the discretization
steps and from truncations of infinite series. The method has
several of both steps. Below we examine the convergence
properties of the method regarding these approximations.

A distinctive property of the method is that like a spectral
method, by working in the Fourier–Bessel space the spatial
discretization is present only in the initial (18)–(20) and
final (24) phase of the algorithm. Also, there is no explicit
numerical differentiation involved. The approximation of
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Figure 2. Spatial discretization error
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Figure 3. Time discretization error

zeros {λmn}
M,N
m,n=0,1 can be done off–line and with virtually

arbitrary high precision, hence we do not discuss that part.

In order to examine the convergence properties of solutions
the sample point (1/2,π) (half way between the center and
the edge of the unit disk) was chosen. All the numerical
values below were obtained at that point.

Spatial discretization Fig. 2 shows the convergence prop-
erties with respect to spatial discretization in terms of vari-
ables r and θ. The gridpoints are equally distributed in both
directions.The change in the solution at the point is shown as
the number of gridpoints was increased from 50 to 100 (solid
line) and from 100 to 200 (dash line). Doubling the number
of gridpoints lowered the change by almost one magnitude.

Time discretization In each time step we have to evaluate
a convolution type integral, which includes the summation
of (M +1)2 N3Nv terms. Fig. 3 shows the change in the
solution as the time step is reduced from dt = 0.02 to 0.01
and from 0.01 to 0.005. The convergence seem to be linear,
and the figure shows the stability in time of the numerical
method.

Convergence of the convolutive sum We examine now
the convergence properties of the convolutive sum

l

∑
j=1

v̂( j−1)
pq v̂(l− j)

ks , l = 1, . . . ,Nv in formula (22). The theoretical
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Figure 4. Convergence of the convolutive sum.

results of Section 2 are concentrated on the convergence
properties of this iteration, and quadratic convergence has
been established in (14) based on somewhat conservative
estimates.

We increased Nv from 5 to 10 and then from 10 to 20.
Fig. 4 shows that doubling the number of terms reduced the
change in the solution by four magnitude. Solutions seem
to diverge from each other in time, indicating that for larger
time intervals one has to increase the number of iteration
steps, Nv. This numerical finding is also in agreement with
the theoretical results, as the convergence of the iteration
was established for given finite time interval [0,T ]. It is also
important to note that the coefficient of the nonlinear term
in (4) was chosen to be β = 100 which is an extremely high
(non–physical) value. As a result the nonlinear dynamics
dominates the solution, and hence it is natural that we have
to take into consideration more nonlinear terms.

The number of basis functions The basis functions

Φmn(r,θ) = Jm(λmnr)eimθ

form a two–parameter family of orthogonal functions, where
m = 0,1, . . . ,M and n = 1,2, . . . ,N. We consider the cases
N = 5, 10, 15 and M = 5, 10, 15. Due to the cubic factor
N3 in the number of coefficients {b(m,n, p,q,k,s)} we were
not able to complete the calculations in a reasonable amount
of time for values of N larger than 15. Both cases show
approximately a magnitude decrease in the change of the
solution. The decrease in error is uniform in time when N,
the number of zeros is increased. Large time solutions do
not show dependence on the number of Bessel functions (M)
used.

3.3 Nonlinear Oscillations

We present here two pictures of forced nonlinear oscilla-
tions of the membrane. Detailed analysis of the long time
asymptotics will be presented in our forthcoming paper. In
this example we use time varying forcing term f (r,θ, t) =
cos(rπ/2)sin(2πt) for t ∈ [0,3], r ∈ [0,1] and θ ∈ [0,2π].
In this time varying case we had to lower the perturbation
parameter to a = 5 in order to prevent the blow up of the
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Figure 5. Convergence as the number of zeros is increased.
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Figure 6. Convergence as the number of Bessel functions is
increased.
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Figure 7. Forced nonlinear oscillations at a sample point

simulation, but this value is still much higher than the value
0.1 obtained by theoretical calculations. In Fig.7 we show
the forced oscillation of a single sample point at (1/2,π)
along with the forcing at the same point. The oscillation of
the membrane slowly takes on the frequency of the forcing.
Fig. 8 shows the shape of the membrane at time t = 2.
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3.4 Effect of Small Damping

Here we consider the case of small damping (d = 0.01)
with the coefficient of the quadratic term having coefficient
β = 1000. The forcing is restricted to an instantaneous
delta function concentrated at (r,θ) = (0.5,π). Figure 9
shows highly nonsymmetric oscillations as a result of the
nonsymmetric initial forcing. Figure 10 shows the very slow
decay of the oscillations.

4 Conclusions and Future Works

The eigenfunctions expansion method was developed for a
forced nonlinear Boussinesq equation representing forced,

small and nonlinear oscillations of an elastic membrane. The
method was used for numerical simulations. The numerical
algorithm required several levels of approximations. All
these steps were tested for convergence. The convergence
properties show that the eigenfunction expansion is a viable
alternative to other numerical methods.

In the future we plan to investigate the long time asymptotics
of the nonlinear forced membrane oscillations for specific
forcing functions. In order to describe large nonlinear oscil-
lations of a membrane we are going to consider the general
Föppl–von Kármán system [2].
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