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Abstract

We design a Lyapunov based boundary feedback controller for achieving mixing
in a 3D pipe flow governed by Navier-Stokes equations. We show that the control
law maximizes a measure related to mixing (that incorporates stretching and folding of
material elements), while at the same time minimizing the control effort and the sensing
effort. The penalty on sensing results in a static output -feedback control law (rather
than full-state feedback). We also derive a lower bound on the gain from the control
effort to the mixing measure. Furthermore, we establish input/output-to-state-stability
properties for the open-loop system. These results show a form of detectability of mixing
in the interior of the pipe from the chosen outputs on the wall. The effectiveness of
the optimal control in achieving mixing enhancement is demonstrated in numerical
simulations.
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1 Introduction

The process of mixing is encountered frequently in engineering applications, with the mixing
of air and fuel in combustion engines being a prime example [8, 3]. Approaches to analysing
mixing range from experimental design and testing to modern applications of dynamical
systems theory (see [24, 25] for thorough reviews). The latter was initiated by Aref [4], and
followed by [5, 13, 17, 31, 28]. A framework in which to analyse mixing properties of (non-
periodic) finite-time flow fields, was developed in [9, 10, 11, 12], and applied to geophysical
flows in [27, 22]. Another method for identifying regions in a flow that have similar finite-time
statistical properties based on ergodic theory was developed and applied in [19, 18, 20]. The
relationship between the two methods mentioned, focusing on geometrical and statistical
properties of particle motion, respectively, was examined in [26]. Rigorous application of
control systems theory to problems in mixing appeared for the first time in [6, 7], and more
recently in [23]. For a more elaborate review of these works, see [1].

In [1], we applied active feedback control in order to enhance existing instability mech-
anisms in a 2D model of plane channel flow. By applying boundary control intelligently
in a feedback loop, mixing was considerably enhanced with relatively small control effort.
Wall-normal suction and blowing was used for actuation, and the pressure difference between
opposite points on the wall for sensing. The control law was decentralized and designed using
Lyapunov stability analysis.

In the current work, these efforts are successfully extended to 3D pipe flow, which, in the
uncontrolled case, has a parabolic steady state solution (known as Hagen-Poiseuille flow).
With mixing in mind, we quantify the flow perturbations (away from the Hagen-Poiseuille
flow) in terms of the L2-norm of their first order spatial derivatives. This norm is a volume
integral over the entire flow domain. It explicitly incorporates stretching of material elements,
and due to the boundedness of the domain, and the fact that the flow field satisfies the
Navier-Stokes equations, folding is implicit in the measure. Since stretching and folding are
key ingredients in mixing, the measure appears to be strongly related to mixing.

We design a Lyapunov based control law and show that it maximizes the measure of
mixing described above, while at the same time minimizing the control effort and the sensing
effort. The penalty on sensing results in a static output-feedback control law (rather than
full-state feedback). We also derive a lower bound on the gain from the control effort to the
mixing measure.

In separate results, we establish input/output-to-state-stability properties for the open-
loop system. These results show a form of detectability of mixing in the interior of the pipe
from the chosen outputs on the wall.

The effectiveness of the optimal control in achieving mixing enhancement is demonstrated
in numerical simulations of the full, nonlinear, Navier-Stokes equations for 3D pipe flow at
Reynolds number 2100. To quantify mixing, massless particles are placed into the flow, sim-
ulating passive tracer dye. Visualizations compare perturbation energy, enstrophy, vorticity,
and dye distribution for the uncontrolled and controlled cases.

The feedback system designed in this work stands a good chance of being realizable, due
to its simplicity: sensing and actuation are restricted to the pipe wall; and the feedback law
is decentralized and static. Furthermore, simulations show that the spatial changes in the
control velocity are smooth and small, promising that a low number of actuators will suffice
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Figure 1: Geometry of the pipe flow.

in practice.
This paper is organized as follows: in Section 2 we present the governing equations; in

Section 3 we introduce our choices of sensing and actuation; in Section 4 we define two
measures of the fluid flow field which are instrumental to the theoretical analysis; in Section
5 we provide an energy analysis resulting in two technical lemmas that are frequently used
in the analysis; in Section 6 we present the main result on control design and optimality; in
Section 7 we discuss detectability of mixing; in Section 8 numerical simulations are presented,
and finally; in Section 9 we offer some concluding remarks.

2 Navier-Stokes Equations for 3D Pipe Flow

The non-dimensionalized Navier-Stokes equation is given by

∂W

∂t
+ (W · ∇)W = −∇P +

1

Re
∆W, (1)

div (W) = 0, (2)

where ∇ denotes the gradient operator, ∆ denotes the Laplace operator, and div is short for
divergence. W : Ω × R+ → R

3 is the velocity of the fluid, P : Ω × R+ → R is the pressure,
and Re is the Reynolds number. The Reynolds number is defined as Re = ρD̆V̆ /µ, where ρ
and µ are the density and viscosity of the fluid, respectively, and D̆ and V̆ are characteristic
length and characteristic velocity of the problem. The pipe radius is chosen as characteristic
length, and the center velocity of the steady flow (Hagen-Poiseuille flow, given by equation
(3) below) is chosen as characteristic velocity. The domain, Ω, for the 3D pipe flow is most
easily defined in terms of cylindrical coordinates (r, θ, z), configured as shown in Figure 1.
The domain is thus given by Ω = {(r, θ, z) ∈ [0, 1) × [0, 2π) × [0, L)}, where L is the length
of the pipe. In the angular (θ) direction the boundary conditions are clearly periodic. In the
streamwise (z) direction, we also use periodic boundary conditions. That is, we equate the
flow quantities at θ = 0 and θ = 2π, and at z = 0 and z = L. In the radial direction (r) we
impose the boundary conditions that the velocity be finite at r = 0, and at the wall (r = 1)
we will eventually specify the flow velocity as a boundary control law, but for now we use
no-slip. Under these boundary conditions, one may verify that the velocity field, W̄, and
pressure P̄ , defined by

(

W̄, P̄
)

=
(

V̄r, V̄θ, V̄z, P̄
)

=

(

0, 0, 1 − r2,− 4

Re
z

)

, (3)
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is a steady state solution of (1)–(2), where V̄r, V̄θ, and V̄z are the velocity components in the
radial (r), angular (θ), and streamwise (z) directions, respectively. Equation (1)–(2) in terms
of perturbation variables, defined as

w , W − W̄, and p , P − P̄ , (4)

becomes

∂w

∂t
+ (w · ∇)w + (w · ∇)W̄ +

(

W̄ · ∇
)

w = −∇p +
1

Re
∆w, (5)

div (w) = 0. (6)

In cylindrical coordinates, we will denote the perturbation variables

w = (vr, vθ, vz) ,
(

Vr, Vθ, Vz − V̄z

)

, and p , P − P̄ . (7)

We will frequently need volume integrals over the domain Ω, as well as area integrals over the
boundary, which we denote ∂Ω. In view of the periodic boundary conditions in the angular
and streamwise directions, the boundary is simply the pipe wall, ∂Ω = {(r, θ, z) : r = 1}.
The volume and area integrals are denoted in the usual manner as

∫

Ω

(·) dV, and

∫

∂Ω

(·) dA, (8)

respectively. The equivalent integrals in cylindrical coordinates are

L
∫

0

2π
∫

0

1
∫

0

(·) rdrdθdz, and

L
∫

0

2π
∫

0

(·) dθdz. (9)

3 Sensing and Actuation

As mentioned in the previous section, the boundary conditions on the wall of the pipe incor-
porate our actuation. The fluid velocity at the wall is restricted to be normal to the wall,
that is, vr(1, θ, z, t) = u(θ, z, t), and vθ(1, θ, z, t) = vz(1, θ, z, t) = 0, where u(θ, z, t) is the
control input. Thus, w · n = u on ∂Ω, where n is the outward pointing unit normal vector.
We also impose on the control input that it satisfies

u (θ, z, t) = −u (θ + π, z, t) , (10)

which states that if suction is applied at a point (θ, z) on the pipe wall, then an equal amount
of blowing is applied at the opposite point (θ + π, z). This is illustrated in Figure 2. It is
clear that condition (10) ensures a zero net mass flux across the pipe wall, and therefore it is
a natural condition to impose from a mass balance point of view. The measurement available
is the pressure drop, denoted y, from any point (θ, z) on the pipe wall to the opposite point
(θ + π, z). That is,

y(θ, z, t) , p (1, θ, z, t) − p (1, θ + π, z, t) . (11)
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Figure 2: Actuation is symmetric about the pipe centerline.

We also define the instantaneous control effort and sensing effort as

U(t) =

∫

∂Ω

u2dA, (12)

and

Y (t) =

∫

∂Ω

y2dA, (13)

respectively.

4 Measures of Mixing

There are two key ingredients to effective mixing. The fluid flow field must inflict extensive
stretching to material elements, and the stretching should be accompanied by folding. In this
work, we define two measures of the fluid flow field that are instrumental to our development
below. One is the kinetic energy of the perturbation, termed turbulent kinetic energy in the
fluid mechanics literature, defined as

E (w) ,
1

2

∫

Ω

|w|2 dV =
1

2

L
∫

0

2π
∫

0

1
∫

0

(

v2
r + v2

θ + v2
z

)

rdrdθdz, (14)

and the other is a measure of spatial velocity gradients, defined as

m (w) ,

∫

Ω

|∇w|2 dV =

∫

Ω

Tr
{

∇wT∇w
}

dV

=

L
∫

0

2π
∫

0

1
∫

0

[

(

∂vr

∂z

)2

+

(

∂vθ

∂z

)2

+

(

∂vz

∂r

)2

+

(

1

r

∂vz

∂θ

)2

+

(

∂vz

∂z

)2

+

(

∂vr

∂r

)2

+

(

∂vθ

∂r

)2

+

(

vr

r
+

1

r

∂vθ

∂θ

)2

+

(

vθ

r
− 1

r

∂vr

∂θ

)2
]

rdrdθdz. (15)

The latter measure, (15), which is related to the dissipation function via the factor 1/Re,
appears to be stronger connected to mixing. While it is clear that stretching of material
elements is explicit in a measure of spatial gradients of the flow field, folding is implicit in
the measure due to the boundedness of the flow domain, and the fact that w satisfies the
Navier-Stokes equations. It is recognized, that flow fields having poor mixing properties
and large m (w) exist, but we postulate that such flow fields will not be hydrodynamically
stable under the control actuation to be designed below. Thus, our objective becomes that
of designing a feedback control law, in terms of suction and blowing of fluid normally to the
pipe wall, that is optimal with respect to some meaningful cost functional related to m(w).
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5 Energy Analysis

Before giving the main result on controller design and optimality, we state two key lemmas
that are needed frequently in what follows. The first lemma is a Lyapunov type result
and it relates the time derivative of E (w (t)) to m (w (t)). The second lemma provides a
bound on the crossterm between the perturbation and the Hagen-Poiseuille steady state flow,
originating from the nonlinear convective terms in the Navier-Stokes equation. This term is
called the instantaneous production in the fluid mechanics literature. Proofs of the lemmas
are provided in Appendix A.

Lemma 1 (Balance for the turbulent kinetic energy) For wall-normal actuation, sat-
isfying (10),

Ė(w) = −1

2

∫

∂Ω

uydA− 1

Re
U − 1

Re
m (w) − Γ (w) (16)

along solutions of system (5)–(6), where

Γ (w) =

∫

Ω

[

(w · ∇)W̄ +
(

W̄ · ∇
)

w
]

· wdV. (17)

Lemma 2 (Bound for the instantaneous production) If vz(1, θ, z, t) = 0, then solu-
tions of system (5)–(6) satisfy

Γ (w) ≤ a

2
(1 + b) U + max

{

a

4

(

1 +
1

b

)

,
1

4a

}

m (w) , (18)

for arbitrary positive constants a and b.

The conditions of Lemma 1 and 2 are assumed to hold throughout the analysis that follows,
that is: actuation is wall-normal and satisfies (10).

6 Optimality

The following theorem incorporates the control design and optimality result.

Theorem 1 The control
u = −ky, (19)

with k ∈
(

0, Re
4

)

and Re arbitrary, maximizes the cost functional

J (u) = lim
t→∞



2βE (w (t)) +

t
∫

0

h (w (τ)) dτ



 (20)

where

β =
2k

(

1 − 4
Re

k
)
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and

h (w) =
2β

Re
m (w) + 2βΓ (w) −

(

β

2

)2(

1 +
2β

Re

)−1

Y − U. (21)

Moreover, solutions of system (5)–(6) satisfy

h (w) ≤ c1m (w) − c2Y − 1

2
U (22)

for arbitrary values of the control u, and with

c1 =
2β

Re
+ max

(

1

4
, 2β2

)

> 0 and c2 =

(

β

2

)2(

1 +
2β

Re

)−1

> 0. (23)

Proof. By Lemma 1, we can write (21) as

h (w) = −2βĖ(w) − β

∫

∂Ω

uydA − 2β

Re
U −

(

β

2

)2(

1 +
2β

Re

)−1

Y − U. (24)

Inserting (24) into (20) we get

J(u) = lim
t→∞



2βE (w (t)) +

t
∫

0





(

−2βĖ(w (τ))
)

− β

∫

∂Ω

uydA

−
(

1 +
2β

Re

)

U −
(

β

2

)2(

1 +
2β

Re

)−1

Y

)

dτ

]

= lim
t→∞



2βE (w (t)) − 2β

t
∫

0

Ė(w (τ))dτ

−
(

1 +
2β

Re

)

t
∫

0

∫

∂Ω

(

u2 + β

(

1 +
2β

Re

)−1

uy +

(

β

2

)2(

1 +
2β

Re

)−2

y2

)

dAdτ





= 2βE (w (0)) −
(

1 +
2β

Re

)

lim
t→∞

t
∫

0

∫

∂Ω

(

u +
β

2

(

1 +
2β

Re

)−1

y

)2

dAdτ. (25)

The maximum of (20) is achieved when the integral in (25) is zero. Thus, (19) is the optimal
control. Inequality (22) is obtained by applying Lemma 2 with a = 1

4β
and b = 1, to (21).

The objective of applying the control input (19) is to increase the value of m(w). That
this objective is targeted in the cost functional (20), is clear from inequality (22), which gives
an upper bound on h (w) in terms of m (w). Thus, h (w) cannot be made large without
making m (w) large, so the cost functional (20) is meaningful with respect to our objective.
The cost functional also puts penalty on the output. Since the output is fed back to the
control input, the output penalty works in conjunction with the input penalty to minimize
control effort.

The next theorem writes the result of Theorem 1 on a form that puts emphasis on signal
gains.
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Theorem 2 For all Re and t ≥ 0, solutions of system (5)–(6) satisfy

max
u

E (w (0)) 6= 0



















lim
t→∞

2βE (w(t)) +
t
∫

0

g (w (τ)) dτ

2βE (w (0)) + c2

t
∫

0

Y (τ)dτ + 1
2

t
∫

0

U(τ)dτ



















= 1, (26)

where

g (w) , h (w) + c2Y +
1

2
U, (27)

and
g (w) ≤ c1m (w) . (28)

Furthermore, the maximum is achieved with the optimal control (19), for which solutions of
the closed–loop system satisfy

2βE (w (t)) + c1

t
∫

0

m (w (τ)) dτ ≥ 2βE (w (0)) +

(

3

2
+

2β

Re

)

t
∫

0

U(τ)dτ. (29)

Proof. Integration of (27) with respect to time, and adding 2βE (w (t)) to each side, gives

2βE (w (t)) +

t
∫

0

g (w (τ)) dτ = 2βE (w (t)) +

t
∫

0

h (w (τ)) dτ + c2

t
∫

0

Y (τ)dτ +
1

2

t
∫

0

U(τ)dτ.

(30)
The two first terms on the right hand side of (30) is J(u) (without the limit), so inserting
(25) we get

2βE (w (t)) +

t
∫

0

g (w (τ)) dτ = 2βE (w (0))

−
(

1 +
2β

Re

)

t
∫

0

∫

∂Ω

(

u +
β

2

(

1 +
2β

Re

)−1

y

)2

dAdτ

+c2

t
∫

0

Y (τ)dτ +
1

2

t
∫

0

U(τ)dτ. (31)

Dividing both sides of (31) by

2βE (w (0)) + c2

t
∫

0

Y (τ)dτ +
1

2

t
∫

0

U(τ)dτ,
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assuming E (w (0)) 6= 0, taking the limit as t → ∞, and then taking the maximum value
over u, we obtain

max
u

E (w (0)) 6= 0



















lim
t→∞

2βE (w (t)) +
t
∫

0

g (w (τ)) dτ

2βE (w (0)) + c2

t
∫

0

Y (τ)dτ + 1
2

t
∫

0

U(τ)dτ



















= max
u

E (w (0)) 6= 0



















1 − lim
t→∞

(

1 + 2β

Re

)

t
∫

0

∫

∂Ω

(

u + β

2

(

1 + 2β

Re

)−1
y
)2

dAdτ

2βE (w (0)) + c2

t
∫

0

Y (τ)dτ + 1
2

t
∫

0

U(τ)dτ



















. (32)

Since the numerator of the last term in (32) is non-negative, and the denominator is strictly
positive, the maximum on the right hand side of (32) is attained when the numerator is zero,
which is for the optimal control (19). Thus, we obtain (26). Inequality (28) follows from (27)
and (22). Inserting the optimal control into (31) by writing y in terms of u using (19), we
obtain

2βE (w (t)) +

t
∫

0

g (w (τ)) dτ = 2βE (w (0)) + c2

(

2

β

)2(

1 +
2β

Re

)2
t
∫

0

U(τ)dτ +
1

2

t
∫

0

U(τ)dτ.

(33)
Inserting for c2, as defined in (23), and using (28), we get (29).

The result (26) was inspired by the work on optimal destabilization of linear systems
reported in [21]. In view of (28), by maximizing the ratio in the curly brackets of (26), we
make sure that the input and output signals are small compared to the internal states. This
is equivalent to obtaining a large closed-loop gain. In addition, the theorem gives a lower
bound on the states in terms of the control input for system (5)–(6) in closed loop with (19).
Thus, it establishes the fact that the states cannot be small without the control input being
small, and the control input cannot be made large without making the states large. As we
shall see in our simulation study, this will lead to good mixing with low control effort.

7 Detectability of Mixing

Achieving optimality with static output feedback of y is remarkable. In this section we
explain why this special output is strongly related to mixing and allows its enhancement.
The next theorem establishes an open-loop property of system (5)–(6) that is reminiscent of
an integral variant of input/output-to-state-stability (IOSS) for finite dimensional nonlinear
systems.

Theorem 3 If Re ∈ (0, 4), then solutions of system (5)–(6) satisfy

c3

t
∫

0

m (w (τ)) dτ ≤ 2βE (w (0)) + β2

(

1 +
2β

Re

)−1
t
∫

0

Y (τ)dτ + c4

t
∫

0

U(τ)dτ, (34)
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for all t ≥ 0 and for arbitrary values of the control u, with

c3 =
β

4

(

4 − Re

Re

)

> 0 and c4 = 1 + β

(

4 + Re

4 − Re

)

> 0.

Proof. From (20), (21) and (25), we get for all t ≥ 0:

2βE (w (t)) +

t
∫

0

2β

Re
m (w (τ)) dτ ≤ 2βE (w (0)) − 2β

t
∫

0

Γ(w(τ))dτ

+

(

β

2

)2(

1 +
2β

Re

)−1
t
∫

0

Y (τ)dτ +

t
∫

0

U(τ)dτ.(35)

Using Lemma 2 , we obtain

2βE(w(t)) +

t
∫

0

2β

Re
m(w(τ))dτ

≤ 2βE(w(0)) + 2β

t
∫

0

(

a

2
(1 + b)U(τ) + max

{

a

4

(

1 +
1

b

)

,
1

4a

}

m(w(τ))

)

dτ

+

(

β

2

)2(

1 +
2β

Re

)−1
t
∫

0

Y (τ)dτ +

t
∫

0

U(τ)dτ,

so it follows that

2βE(w(t)) +

t
∫

0

2β

Re
m (w (τ)) dτ

≤ 2βE (w (0)) +

t
∫

0

β

2
max

(

a

(

1 +
1

b

)

,
1

a

)

m (w (τ)) dτ

+

(

β

2

)2(

1 +
2β

Re

)−1
t
∫

0

Y (τ)dτ + (1 + βa (1 + b))

t
∫

0

U(τ)dτ.

Rearranging the terms, we obtain

2βE (w (t)) +

(

2β

Re
− β

2
max

(

a

(

1 +
1

b

)

,
1

a

))

t
∫

0

m (w (τ)) dτ

≤ 2βE (w (0)) +

(

β

2

)2(

1 +
2β

Re

)−1
t
∫

0

Y (τ)dτ + (1 + βa (1 + b))

t
∫

0

U(τ)dτ,

10



which is (34) for a = 1 and b = 2
(

Re
4−Re

)

.

The significance of inequality (34) is that it provides a notion of detectability of internal
states from the output y. In particular, if m(w) is large, y must be large as well, or if y
is small, so is m(w). This is reminiscent of an integral variant of the IOSS property for
finite-dimensional nonlinear systems, as presented in [15] (and motivated by earlier results
in [29, 30]). In the case of (34) we have an integral-to-integral property (iiIOSS) with m(w)
as a measure of the states, so the “energy” of the states is bounded above by the “energy”
of the input and output signals. With E (w) as a measure of the states, we can also find a
uniform upper bound (as opposed to an “energy” upper bound) in terms of the input and
output signals. That is, system (5)–(6) has the IOSS property, as stated formally in the next
theorem.

Theorem 4 For Re ∈ (0, 4), solutions of system (5)–(6) satisfy

E (w (t)) ≤ E (w (0)) e−c5t +
1

4c5

sup
τ∈[0,t]

Y (τ) +
c6

c5

sup
τ∈[0,t]

U(τ) (36)

for all t ≥ 0 and for arbitrary values of the control u, with

c5 = 2 max

(

4

3Re
− 1,

4 − Re

4 + Re

)

> 0 and c6 = max

(

1

4
,
1

4
+

5Re − 4

Re (4 − Re)

)

> 0.

Proof. From (62), (63) and a similar derivation for vθ, we have

2E (w) ≤ 1

2
(1 + b) U+

1

4

L
∫

0

2π
∫

0

1
∫

0

(

(

1 +
1

b

)(

∂vr

∂r

)2

+

(

∂vθ

∂r

)2

+

(

∂vz

∂r

)2
)

rdrdθdz, (37)

and therefore

2E (w) ≤ 1

2
(1 + b) U +

1

4

(

1 +
1

b

)

m (w) . (38)

From Lemma 1 and (38) we get

Ė(w) ≤ −2

(

4

Re

(

b

1 + b

)

− 1

)

E (w) − 1

2

∫

∂Ω

uydA +
2b − 1

Re
U,

so that

Ė(w) ≤ −2

(

4

Re

(

b

1 + b

)

− 1

)

E (w) +
1

4

∫

∂Ω

(

u2 + y2
)

dA +
2b − 1

Re
U.

Setting

b = max

(

1

2
,

2Re

4 − Re

)

we obtain

Ė(w) ≤ −c5E (w) +
1

4
Y + c6U (39)
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with

c5 = 2 max

(

4

3Re
− 1,

4 − Re

4 + Re

)

, and c6 = max

(

1

4
,
1

4
+

5Re − 4

Re (4 − Re)

)

.

Inequality (36) now follows from the comparison principle [16, Lemma C.5] (and the triangle
inequality applied to the two last terms in (39)).

In Theorem 4, the notation sup[0,t] denotes the essential supremum taken over the finite
time interval [0, t]. The detectability properties stated in Theorems 3 and 4 indicate that our
choice of sensing, y, is appropriate.

8 Numerical Simulations

8.1 Computational scheme

The simulations are performed using a flow solver that is based on a second–order staggered
grid discretization, second–order time advancement, and a Poisson equation for pressure,
based on a scheme designed by Akselvoll and P. Moin [2]. The length of the cylinder is L = 3π
and the radius is R = 1. The grid is structured, single-block with cylindrical coordinates. It
is uniform and periodic in z and θ with Fourier–modes 64 and 128 respectively, and linearly
spaced with ratio 8 : 1 in the radial direction in order to achieve high resolution at the wall.
The adaptive time step was in the range of 0.01-0.08 with constant CFL number 0.5 and
constant 1 volume flux per unit span. Numerical results corresponding to three different
Reynolds numbers are presented here. The lowest Reynolds number is Re = 10 which is a
stable, and perhaps nonphysical flow, but it is a good test case for the effectiveness of the
control design. The second Reynolds number we used was Re = 2100 which is slightly higher
than the limiting number Re = 2000 for self–sustained turbulence. Finally for the case of
Re = 5000 we compare natural and controlled turbulence.

We started both the controlled and the uncontrolled case from a statistically steady state
flow field with control gain k = 0.1 in the controlled case. The initial flow field was obtained
from a random perturbation of the parabolic profile over a large time interval using the
uncontrolled case. All the measured quantities were scaled to unit surface or unit volume,
whichever was appropriate.

8.2 Measuring mixing

We start our comparison with the perturbation energy and the enstrophy. While the pertur-
bation energy is part of the cost functional (20) and it is also one of the simplest quantities
to measure in our numerical simulation, enstrophy provides us with a measurement that is
more closely related to mixing. Figure 3 shows that in the Re = 2100 case our control results
in an approximately 60% increase in the perturbation energy and 100% almost instantaneous
increase in the enstrophy. For the Re = 5000 case these numbers are smaller: approximately
13% and 16% respectively. One sees the largest control effect in the Re = 10 case: “infinite
% increase in the perturbation energy and 140% increase in the enstrophy. Intuitively these
differences are easy to understand. In a laminar flow (Re = 10) there is no mixing, hence
this case can be dramatically improved with control. The Re = 2100 case corresponds to

12



self–sustained turbulence already, but it is not far from the laminar (Re = 2000) case. In this
border case it is expected that our control can easily tip the scale toward increased turbulence
and mixing. In the fully turbulent (Re = 5000) case we can’t expect dramatic changes, but
the increase in the measured quantities would be considered significant in applications.

The instantaneous streamwise vorticity along a cross section of the pipe (Figure 4) also
shows some promise for increased mixing with higher values of vorticity and more complex
vortex structures in the controlled case than in the uncontrolled case. Vorticity is increased
not only near the wall but everywhere in the pipe.

The method we use to quantify and visualize mixing is the tracking of dye in the flow. We
consider the problem of mixing of a single fluid (or similar fluids) governed by the stretching
and folding of material elements. We introduce passive tracer dye along the center of the pipe
represented by a set of 100 particles (Figure 5). We trace the position of these particles using
a particle–line method [14, 32]. The distance between neighboring particles is kept under
0.1 by introducing new particles to halve the distance if necessary to obtain a connected
dye surface at all time. As shown in Figure 6, the number of particles, that is, the length
of the dye, increases in the controlled case at a much higher rate than in the uncontrolled
case. Adding particles is not feasible computationally for an extended period of time. We
stopped adding particles when their number reached two million (t = 4 in the controlled
case and t = 8 in the uncontrolled case), but we continued tracing them. Figure 7 shows
the distribution of particles inside the pipe. In the controlled case we obtain more uniform
particle distribution even for smaller time.

We compare the nine different parts of functional m (w) for different Reynolds numbers
in Figures 8, 9 and 10. In these figures we omit the integral signs as well as the square signs
in order to simplify notations. In all the cases the terms can be divided into two groups: one
dominant group and another group with terms more than a magnitude smaller.

We start the comparison with the large Reynolds number cases Re = 2100 and Re = 5000
(see Figures 8 and 9), because they have similar features. In both of these cases there are

two parts that are significantly larger than the rest: the parts containing
∂vθ

∂r
and

∂vz

∂r
. The

next large term corresponds to the expression
1

r

∂vz

∂θ
and it is 4 to 6 times smaller than the

two largest terms. The rest of the terms are about 30 to 200 times smaller than the two
largest terms.

For Reynolds number Re = 10 some of the terms have large values and their behavior
is chaotic for the initial transient time t ∈ [0, 6]. We only make comparison for larger time

in Figure 10. The dominant terms are the ones containing
∂vr

∂r
,

vθ

r
− 1

r

∂vr

∂θ
,

vr

r
+

1

r

∂vθ

∂θ
and

∂vz

∂r
. Only the last one of these terms, the terms containing

∂vz

∂r
belongs to the dominant

group for larger Reynolds numbers. The term containing
1

r

∂vz

∂θ
is one magnitude smaller

than these four dominant terms. The rest of the terms are all four magnitude smaller and
are omitted from the figure.
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8.3 Measure of control effort

In the previous subsection our numerical simulations show significant mixing results with our
feedback boundary control law. This control law is optimal with respect to the cost functional
(20). In this subsection we measure how big the control effort is relative to natural quantities
in the pipe flow.

Figure 11 compares the natural pressure power (

∫ 2π

0

∫ 1

0

pvzr drdθ) that propels the flow

through the channel to the power of the control actuation (

∫ 2π

0

∫ L

0

pu dzdθ). The actuation

power is four magnitude smaller than the natural pressure power for all three Reynolds
numbers. The negative sign of the actuation power shows that the actuation acts against
high pressure on the wall by blowing inward the pipe.

We compare the pipe flux (

∫ 2π

0

∫ 1

0

vz drdθ) and the actuation flux (

∫ 2π

0

∫ L

0

|u| drdθ)

with the help of Figure 12. As we stated earlier, the pipe flux is set to constant one per unit
span. The actuation flux is one quarter of the pipe flux for Re = 10 and about one eighth of
the pipe flux for Re = 2100 and Re = 5000. The maximum velocity at the wall is 10−3 for
Re = 10 and 5 × 10−4 for Re = 2100 and for Re = 5000.

8.4 Actuator distribution and bandwidth for Re = 2100

Figure 13 shows the instantaneous pressure field in a cross section of the pipe along with
the boundary velocity that is magnified 500 times for visualization. The control “blows in”
when wall pressure is high and “sucks out” when wall pressure is low. Spatial changes in the
control velocity are smooth and small, promising that low number of actuators will suffice in
practice. In order to investigate the density and bandwidth of sensors and actuators needed
we calculate the power spectral densities of the control. The spectral plots alongside with
the original signals are shown in Figure 14. Figures 14(a,b) show that only about 10-15
actuators/sensors are needed along the pipe length. Similarly, in the angular direction (see
Figures 14(c,d)) we need at most 15-20 actuators/sensors. That results in approximately 200
micro–actuators/sensors for the whole pipe surface. The time–frequency analysis (Figures
14(e) and (f)) shows a bandwidth required for sensing/actuation of only 1.5Hz.

9 Concluding Remarks

We have shown that mixing in 3D pipe flow is considerably enhanced by applying small
amounts of blowing and suction across the pipe wall. With the L2-norm of first order spatial
derivatives of the flow perturbations as a measure of mixing, we have designed a Lyapunov
based control law that maximizes this measure, while at the same time minimizing the control
effort and the sensing effort. The penalty on sensing resulted in a static output-feedback
control law (rather than full-state feedback). A lower bound on the gain from the control
effort to the mixing measure was also derived. For the open-loop system, input/output-to-
stability properties were established, which show a form of detectability of mixing in the
interior of the pipe from the chosen outputs on the wall.
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Figure 3: Perturbation Energy and Enstrophy.
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Uncontrolled Controlled

Figure 4: Streamwise vorticity at Re = 2100.

Figure 5: Initial particle distribution.
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Figure 6: Length of dye as a function of time.

17



Uncontrolled, t = 38

Controlled, t = 19

Controlled, t = 38

Figure 7: Particle distribution, Re = 2100.
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Figure 10: Parts of functional m (w) for Re = 10.

The effectiveness of the optimal control in achieving mixing enhancement was demon-
strated in numerical simulations of the 3D pipe flow at Reynolds numbers 10, 2100 and 5000.
Massless particles placed into the flow, simulating passive tracer dye, indicated considerable
mixing enhancement as a result of the control. Simulation results also showed that the spa-
tial changes in the control velocity were smooth and small, promising that a low number of
actuators will suffice in practice.
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A Proofs of Technical Lemmas

A.1 Proof of Lemma 1

The time derivative of E (w) along trajectories of (5)–(6) is

Ė(w) =

∫

Ω

∂w

∂t
· wdV, (40)

so inserting (5) we have

Ė(w) = −
∫

Ω

(w · ∇)w ·wdV −
∫

Ω

[

(w · ∇)W̄ +
(

W̄ · ∇
)

w
]

·wdV

−
∫

Ω

∇p · wdV +
1

Re

∫

Ω

∆w · wdV. (41)

We will now integrate term by term using the divergence theorem of Gauss, and the following
three formulas from vector differential calculus (can be found in any book on calculus)1

div(fw) = w · ∇f, (42)

∆(fg) = g∆f + 2∇f · ∇g + f∆g, (43)

∆f = div(∇f). (44)

1In (42), we have used (6).
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The convective term

−
∫

Ω

(w · ∇)w · wdV = −1

2

∫

Ω

∇(w ·w)wdV = −1

2

∫

Ω

div((w · w)w)dV, (45)

so, by the divergence theorem of Gauss, we get

−
∫

Ω

(w · ∇)w · wdV = −1

2

∫

∂Ω

[(w ·w)w] · ndA. (46)

w · n = u on ∂Ω, so the integrand in the last integral of (46) is simply u3. Since u has the
form (10), we have for odd n

2π
∫

0

undθ =

0
∫

−π

undθ +

π
∫

0

undθ = −
0
∫

−π

un (−θ, z, t) dθ +

π
∫

0

un (θ, z, t) dθ

and by a change of variables in the first integral (θ∗ = −θ), we get

2π
∫

0

undθ = −
π
∫

0

un (θ∗, z, t) dθ∗ +

π
∫

0

un (θ, z, t) dθ = 0.

So we obtain

−
∫

Ω

(w · ∇)w · wdV = 0. (47)

The crossterm

−
∫

Ω

[

(w · ∇)W̄ +
(

W̄ · ∇
)

w
]

· wdV = −Γ(w), (48)

by definition of Γ(w).

The pressure term

−
∫

Ω

∇p · wdV = −
∫

Ω

div(pw)dV, (49)

so by the divergence theorem of Gauss, and the fact that w · n = u on ∂Ω,

−
∫

Ω

∇p · wdV = −
∫

∂Ω

pudA. (50)
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From (10) and (11) we have

2π
∫

0

[up]r=1 dθ =

π
∫

0

[up]r=1 dθ +

2π
∫

π

[up]r=1 dθ

=

π
∫

0

[up]r=1 dθ −
π
∫

0

u (θ, z, t) p (1, θ + π, z, t) dθ

=

π
∫

0

u (θ, z, t) ydθ =
1

2

2π
∫

0

u (θ, z, t) ydθ, (51)

so we obtain

−
∫

Ω

∇p · wdV = −1

2

∫

∂Ω

uydA. (52)

The dissipation term

1

Re

∫

Ω

∆w · wdV =
1

Re

∫

Ω

(∆wi)widV =
1

Re

∫

Ω

[∆(wiwi) − 2∇wi · ∇wi − wi(∆wi)] dV, (53)

where we have adopted the Einstein summation notation. From (53) we get

1

Re

∫

Ω

∆w · wdV =
1

2Re

∫

Ω

∆(wiwi)dV − 1

Re

∫

Ω

|∇w|2 dV. (54)

The integrand of the first integral on the right hand side of (54) can be written as div(∇(|w|2)),
so by the divergence theorem of Gauss, we get

∫

Ω

∆(wiwi)dV =

∫

∂Ω

(∇ |w|2) · ndA. (55)

Since the control is wall-normal, the integrand on the right hand side of (55) reduces to

2vr

∂vr

∂r
. (56)

We now note from incompressibility (6), which in cylindrical coordinates reads

1

r

∂

∂r
(rvr) +

1

r

∂vθ

∂θ
+

∂vz

∂z
= 0, (57)

that
∂vr

∂r
(1, θ, z, t) = −vr(1, θ, z, t). (58)

Thus, by inserting (58) into (56), (56) into (55), and (55) into (54), we obtain

1

Re

∫

Ω

∆w · wdV = − 1

Re

∫

Ω

|∇w|2 dV − 1

Re

∫

∂Ω

u2dA. (59)

Substituting the terms (47), (48), (52), and (59) into (41) yields (16). �
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A.2 Proof of Lemma 2

Using cylindrical coordinates, we have that

Γ(w) =

L
∫

0

2π
∫

0

1
∫

ε

vzvr

∂V̄z

∂r
rdrdθdz. (60)

Since supΩ

∣

∣

∣

∂V̄z

∂r

∣

∣

∣
= 2, we have

L
∫

0

2π
∫

0

1
∫

ε

vzvr

∂V̄z

∂r
rdrdθdz ≤ 2

L
∫

0

2π
∫

0

1
∫

ε

|vz| |vr| rdr

≤ a

L
∫

0

2π
∫

0

1
∫

ε

v2
rrdrdθdz +

1

a

L
∫

0

2π
∫

0

1
∫

ε

v2
zrdrdθdz. (61)

We write

vr(r, θ, z, t) = u −
1
∫

r

∂vr

∂r
dr

so that

v2
r (r, θ, z, t) =



u −
1
∫

r

∂vr

∂r
dr





2

≤ (1 + b) u2 +

(

1 +
1

b

)





1
∫

r

∂vr

∂r
dr





2

.

By the Schwartz inequality,




1
∫

r

1√
r

√
r
∂vr

∂r
dr





2

≤ − ln r

1
∫

r

r

(

∂vr

∂r

)2

dr,

so we have that

rv2
r (r, θ, z, t) ≤ (1 + b) ru2 −

(

1 +
1

b

)

r ln r

1
∫

ε

r

(

∂vr

∂r

)2

dr,

where we have set r = ε in the lower integral limit. We now get

L
∫

0

2π
∫

0

1
∫

ε

v2
rrdrdθdz ≤

L
∫

0

2π
∫

0

1
∫

ε



(1 + b) ru2 −
(

1 +
1

b

)

r ln r

1
∫

ε

r

(

∂vr

∂r

)2

dr



 drdθdz

=
1

2

(

1 − ε2
)

(1 + b)

L
∫

0

2π
∫

0

u2dθdz

+
1

4

(

1 − ε2 + 2ε2 ln ε
)

(

1 +
1

b

)

L
∫

0

2π
∫

0

1
∫

ε

r

(

∂vr

∂r

)2

drdθdz. (62)
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For vz, we have

vz(r, θ, z, t) = −
1
∫

r

∂vz

∂r
dr,

so we get

v2
z (r, θ, z, t) =





1
∫

r

1√
r

√
r
∂vz

∂r
dr





2

≤ − ln r

1
∫

r

r

(

∂vz

∂r

)2

dr.

and, finally

L
∫

0

2π
∫

0

1
∫

ε

v2
zrdrdθdz ≤

L
∫

0

2π
∫

0

1
∫

ε

−r ln r

1
∫

ε

r

(

∂vz

∂r

)2

drdrdθdz

=
1

4

(

1 − ε2 + 2ε2 ln ε
)

L
∫

0

2π
∫

0

1
∫

ε

r

(

∂vz

∂r

)2

drdθdz. (63)

Inserting (62) and (63) into (61), and letting ε → 0, yield

L
∫

0

2π
∫

0

1
∫

0

vzvr

∂V̄z

∂r
rdrdθdz ≤ a

4

(

1 +
1

b

)

L
∫

0

2π
∫

0

1
∫

0

(

∂vr

∂r

)2

rdrdθdz

+
1

4a

L
∫

0

2π
∫

0

1
∫

0

(

∂vz

∂r

)2

rdrdθdz. (64)

(18) now follows from (60), (64), and (15). �

31


