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Abstract
We consider feedback transformations of the backstepping/feedback linearization type that

have been prevalent in finite dimensional nonlinear stabilization, and, with the objective of ulti-
mately addressing nonlinear PDE’s, generate the first such transformations for a linear PDE that
can have an arbitrary finite number of open-loop unstable eigenvalues. These transformations
have the form of recursive relationships and the fundamental difficulty is that the recursion has
an infinite number of iterations. Naive versions of backstepping lead to unbounded coefficients
in those transformations. We show how to design them such that they are sufficiently regu-
lar (not continuous but L∞). We then establish closed–loop stability, regularity of control, and
regularity of solutions of the PDE.

1 Introduction
Motivation. In finite dimensions, stabilization problems for nonlinear systems are today most
commonly solved using the methods of feedback linearization [20] and backstepping [22]. These
methods apply diffeomorphic coordinate transformations that put the system equations in the form
where the stabilization problem becomes easy (the control input has access to all the nonlinear-
ities). The difference between the two methods is that feedback linearization was invented for
systems with perfect models, while backstepping, developed later, allows some flexibility to deal
with systems that contain perturbations, disturbances, and unmodeled dynamics. For the majority
of nonlinear systems these are not only the most popular but the only stabilization methods avail-
able. It is therefore natural that, in attempting to solve stabilization problems for a broader class
of infinite dimensional nonlinear systems, one first hopes that feedback linearization or backstep-
ping can somehow be extended to infinite dimensions. Unfortunately, the chances that a simple
solution to this problem exists are extremely slim. It is enough to look at what the coordinate trans-
formations in feedback linearization and backstepping involve (repeated differentiation of system
nonlinearities, combined with arithmetic operations on them) to realize that if such procedures take
an infinite number of steps they will result in very problematic nonlinear operators for coordinate
transformations, and also for control laws. This does not mean that proving some desirable proper-
ties for those transformations is impossible—it is just that, if possible, it will be highly nontrivial.

Because of potential significance of feedback linearization and backstepping for nonlinear
infinite–dimensional systems, it is well worth starting the study of these methods on linear infinite–
dimensional systems. It turns out that performing these recursive procedures in infinitely many
steps is nontrivial even for linear systems. The first step in this direction was made by Boskovic
and Krstic [6] who considered the same equation as in this paper (to be introduced below) but
with parameters restricted so that the number of open–loop unstable eigenvalues is no greater than
one. In this limited case they derived a closed–form and smooth coordinate transformation based
on backstepping. This result is peculiar to the mild level of open–loop instability and cannot be
extended to the same equation with an arbitrary level of instability. We stress that allowing an ar-
bitrary level of instability is the whole point here. In finite dimensions backstepping can deal with
systems where actually all the eigenvalues are unstable (and furthermore with finite–escape type
instabilities).

The method we present here reveals a key issue for finding backstepping controls for arbitrarily
unstable linear parabolic PDE systems. This key issue is the target system to which one is trans-
forming the original system by coordinate transformation. For example, if one takes the standard
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feedback linearization route leading to the Brunovsky canonical form, or even the standard back-
stepping route leading to a tri–diagonal form, the resulting transformations, if thought of as integral
transformations, end up with “kernels” that are not even finite. We show how to select the target
system so that the the kernel is bounded and the solutions corresponding to the controlled problem
are at least continuous.

Equation considered. The equation considered in this paper is

ut
�
x � t ��� εuxx

�
x � t ��� λ

�
x � u � x � t ��� x � � 0 � 1 ��� t 	 0 � (1.1)

where ε is a positive constant and λ
�
x �
� L∞

�
0 � 1 � , with initial condition u

�
x � 0 ��� u0

�
x � , for x ��

0 � 1  . The boundary condition at x � 0 is homogeneous Dirichlet,

u
�
0 � t ��� 0 � t 	 0 � (1.2)

and the boundary condition at the other end,

u
�
1 � t ��� α

�
u
�
t ����� t 	 0 � (1.3)

is used as the control input, where α is a linear operator to be designed to achieve stabilization (the
control law). For λ

�
x ��� 0 the open loop system (when α

�
u
�
t ����� 0) is the heat equation, which is

asymptotically stable. However, it is unstable if ��� minx ��� 0 � 1 � λ � x � is large. The growth bound of
the uncontrolled system is at least ω0 ����� επ2.

The physical motivation for considering equation (1.1) is that it represents the linearization
of the class of reaction–diffusion equations that model many physical phenomena. An example
is the problem of compressor rotating stall for which the most recent model due to Mezic [19]
is ut � εuxx � u � u3, whose linearization is (1.1) with λ

�
x ��� 1. The Dirichlet boundary control

problem that we are pursuing here corresponds to actuation via air injection on only a small interval
of the compressor annulus. Control via air injectors distributed along the entire annulus was first
reported in [3].

We use a backstepping method for the finite difference semi–discretized approximation of (1.1)
to derive a boundary feedback control law that makes the infinite dimensional closed loop system
stable with an arbitrary prescribed stability margin. We show that the integral kernel in the con-
trol law resides in the function space L∞

�
0 � 1 � and that solutions corresponding to the controlled

problem are classical.

Prior work. The problem of boundary feedback stabilization of general parabolic equations is
not new. In dimension higher than one Triggiani [30] and Lasiecka [23] considered a general
framework for the structural assignment of eigenvalues in parabolic problems through the use of
semigroup theory. In their approach the open loop system is separated into a finite dimensional
unstable part and an infinite dimensional stable part. They applied feedback control that stabi-
lizes the unstable part while leaving the stable part stable. A unified treatment of both interior and
boundary observations/control generalized to semilinear problems can be found in [2]. Nambu [27]
developed auxiliary functional observers to stabilize diffusion equations using boundary observa-
tion and feedback. Stabilizability by boundary control in the optimal control setting is discussed by
Bensoussan et al. [4]. For the general Pritchard–Salamon class of state–space systems a number
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of frequency–domain results has been established on stabilization during the last decade (see, e.g.
[15] and [26] for a survey). While these approaches give an answer to our stabilization problem
in principle, ours offers an implementable, closed–form solution that avoids the additional steps of
estimating eigenfunctions or solving operator Riccati equations, which are formidable tasks in the
case when λ

�
x � is not a constant.

The stabilization problem can be also approached using the abstract theory of boundary control
systems developed by Fattorini [17] as described in [16, Section 3.3 and Exercise 5.25] and used
in papers by Curtain and coworkers in the 1980’s (e.g., [14]). While this approach results in a
mathematically simple problem formulation, it has the disadvantage of producing a dynamical
feedback as a result of the artificial state space introduced (see remarks in [16, Section 3.5]).

Our work is related to Burns, King and Rubio [9]. They already discovered there the applicabil-
ity of boundary controls in the form of integral operators. Their result is quite different because the
control objective is different (theirs is LQR optimal control, ours is stabilization), and their plant is
open–loop stable but the spatial domain is of dimension higher than ours. Nonetheless the technical
problem of proving some regularity of the gain kernel ties the two results together. In the paper [9]
numerical evidence is presented that suggests that the gain kernel is an L2 function with compact
support concentrated near the boundary. We prove the existence of a non–smooth but bounded (L∞)
gain kernel.

Backstepping was applied to PDEs in [13, 25, 7] but in settings with only a finite number
of steps. An approach for control of a fairly broad class of nonlinear parabolic PDEs based on
approximate inertial manifolds was developed by Christofides [11, 12].

Organization. This paper is organized as follows. In Section 2 we formulate our problem and its
discretization and we lay out our strategy for the solution of the stabilization problem. The precise
formulation of our main theorem is contained in Section 3. In Lemma 1 of Section 4 we design
a coordinate transformation for a semi–discretization of our system which maps it into an expo-
nentially stable system. We show in Lemma 2 that the discrete coordinate transformation remains
uniformly bounded as the grid gets refined and hence it converges to a coordinate transformation of
the infinite dimensional system. The regularity Cw

���
0 � 1 �� L∞

�
0 � 1 ��� of the transformation is estab-

lished in Lemma 3. The stability of the infinite dimensional controlled system is shown in Lemma
4 completing the proof of our main theorem. Finally we present numerical simulations in Section 5
showing, besides the effectiveness of our control, that reduced versions of the controller stabilizes
the infinite dimensional system as well.

2 Motivation
The semi–discretized version of system (1.1)–(1.3) using central differencing in space is the finite
dimensional system:

u0 � 0 � (2.1)

u̇i � ε
ui � 1 � 2ui � ui  1

h2 � λiui � i � 1 ��!�!�!�� n � (2.2)

un � 1 � αn
�
u1 � u2 ��!�!�!"� un ��� (2.3)
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where n �$# , h � 1
n � 1 and ui � u

�
ih � t � , λi � λ

�
ih � for i � 0 ��!�!�!�� n � 1. With un � 1 as control, this

system is in the strict–feedback form and hence it is readily stabilizable by, for example backstep-
ping, or by transforming the system into the Brunovsky form and applying pole placement, i.e., by
“feedback linearization.” However these naive control laws would have gains that grow unbounded
as n % ∞.

The problem with standard backstepping and feedback linearization is that they would not only
attempt to stabilize the equation, but also place all of its poles, and thus as n % ∞, change its
parabolic character. Indeed, an infinite dimensional version of the Brunovsky form or the tridiago-
nal form in backstepping are not parabolic. Our approach will be to transform the system, but keep
its parabolic character, i.e., keep the second spatial derivative in the transformed coordinates.

Towards this end, we start with a finite dimensional backstepping–style coordinate transforma-
tion

w0 � u0 � 0 � (2.4)
wi � ui � αi  1

�
u1 ��!�!�!�� ui  1 �&� i � 1 ��!�!�!"� n � (2.5)

wn � 1 � 0 � (2.6)

for the discretized system (2.1)–(2.3), and seek the functions αi such that the transformed system
has the form

w0 � 0 � (2.7)

ẇi � ε
wi � 1 � 2wi � wi  1

h2 � cwi � i � 1 ��!�!�!�� n � (2.8)

wn � 1 � 0 ! (2.9)

The finite dimensional system (2.7)-(2.9) is the semi–discretized version of the infinite dimensional
system

wt
�
x � t ��� εwxx

�
x � t �'� cw

�
x � t �(� x � � 0 � 1 �(� t 	 0 � (2.10)

with boundary conditions

w
�
0 � t ��� 0 � (2.11)

w
�
1 � t ��� 0 � (2.12)

which is exponentially stable for c 	)� επ2.
The backstepping coordinate transformation is obtained by combining (2.1)–(2.3), (2.4)–(2.6)

and (2.7)–(2.9) and solving the resulting system for the αi’s. We obtain the recursive form

αi � 1
ε
*
2ε � ch2 + αi  1 � αi  2 � h2

ε
�
λi � c � ui � ∂αi  1

∂u1

,
u2 � 2u1 � 1

ε
h2λ1u1 -� i  1

∑
j . 2

∂αi  1

∂u j

,
u j � 1 � 2u j � u j  1 � 1

ε
h2λ ju j - � (2.13)

for i � 1 ��!�!�!�� n with initial values α0 � α  1 � 0. Writing the αi’s in the linear form

αi � i

∑
j . 1

ki � ju j � i � 1 ��!�!�!"� n (2.14)

4



and performing simple calculations we obtain the general recursive relationship

ki � 1 � h2

ε
�
c � λ1 � ki  1 � 1 � ki  2 � 1 � ki  1 � 2 � (2.15)

ki � j � h2

ε
*
c � λ j

+ ki  1 � j � ki  1 � j  1 � ki  1 � j � 1 � ki  2 � j � j � 2 ��!�!�!�� i � 2 � (2.16)

ki � i  1 � h2

ε
�
c � λi  1 � ki  1 � i  1 � ki  1 � i  2 � (2.17)

ki � i � ki  1 � i  1 � h2

ε
�
c � λi ��! (2.18)

for i � 3 ��!�!�!�� n with initial conditions

k1 � 1 � � h2

ε
�
c � λ1 �/� (2.19)

k2 � 1 � � h4

ε2

�
c � λ1 � 2 � (2.20)

k2 � 2 � � ,
h2

ε
�
c � λ1 ��� h2

ε
�
c � λ2 � - � (2.21)

k3 � 1 � � h6

ε3

�
c � λ1 � 3 � h2

ε
�
c � λ2 ��� (2.22)

k3 � 2 � � h2

ε
�
c � λ2 � , h2

ε
�
c � λ1 ��� h2

ε
�
c � λ2 � - � h4

ε2

�
c � λ1 � 2 � (2.23)

k3 � 3 � � ,
h2

ε
�
c � λ1 ��� h2

ε
�
c � λ2 ��� h2

ε
�
c � λ3 � - ! (2.24)

For the simple case when λ
�
x �/� λ � constant, equations (2.15)–(2.24) can be solved explicitly to

obtain

ki � i  j �0� ,
i

j � 1 -21 �
c � λ �

ε
�
n � 1 � 2 3 j � 1 � � i � j � � j 4 2 �∑

l . 1

1
l

,
j � l
l � 1 - ,

i � l
j � 2l -51 �

c � λ �
ε
�
n � 1 � 2 3 j  2l � 1

(2.25)
for i � 1 ��!�!�!�� n, j � 1 ��!�!�!�� i.

Regarding the infinite dimensional system (1.1)–(1.3), the linearity of the control law in (2.14)
suggests a stabilizing boundary feedback control of the form

α
�
u ���76 1

0
k
�
x � u � x � dx � (2.26)

where the function k
�
x � is obtained as a limit of 8 � n � 1 � kn � j 9 n

j . 1 as n % ∞. From the complicated
expression (2.25) it is not clear if such limit exists. A quick numerical simulation (see Figure 1)
shows that the coefficients 8 � n � 1 � kn � j 9 n

j . 1 remain bounded but it also shows their oscillation, and
increasing n only increases the oscillation (see Figure 2). Clearly, there is no hope for pointwise
convergence to a continuous kernel k

�
x � . However, as we will see in the next sections, there is

weak* convergence in L∞ as we go from the finite dimensional case to the infinite dimensional one.
As a result, we obtain a solution to our stabilization problem (1.1)–(1.3).

5



0 0.2 0.4 0.6 0.8 1
−18

−16

−14

−12

−10

−8

−6

−4

−2

0

k 50
(x

)

x

Figure 1: Oscillation of the approximating kernel for n : 50, λ : 17, ε : 1, c : 0.
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Figure 2: Oscillation of the approximating kernel for n ; 100, λ ; 17, ε ; 1, c ; 0.
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3 Main Result
As we stated earlier, we use a backstepping scheme for the semi–discretized finite difference ap-
proximation of system (1.1)–(1.3), (2.26) to derive a linear boundary feedback control law that
makes the infinite dimensional closed loop system stable with an arbitrary prescribed stability mar-
gin. The precise formulation of our main result is given by the following theorem.

Theorem 1. For any λ
�
x �/� L∞

�
0 � 1 � and ε � c 	 0 there exists a function k � L∞

�
0 � 1 � such that for

any u0 � L∞
�
0 � 1 � the unique classical solution u

�
x � t ��� C1

* �
0 � ∞ � ;C2 � 0 � 1 � + of system (1.1)–(1.3),

(2.26) is exponentially stable in the L2
�
0 � 1 � and maximum norms with decay rate c. The precise

statements of stability properties are the following: There exists a positive constant M a such that
for all t 	 0 <

u
�
t � <�= M

<
u0

<
e  ct (3.1)

and
max

x ��� 0 � 1 ��> u � t � x � > = M sup
x ��� 0 � 1 � > u0

�
x � > e  ct ! (3.2)

Remark 1. For a given integral kernel k � L∞
�
0 � 1 � the existence and regularity results for the

corresponding solution u
�
x � t � follows from trivial modifications in the proof of [24, Thm 4.1]. See

also [18]. ?
4 Proof of Main Result
As it was already mentioned in the introduction, the proof of Theorem 1 requires four lemmas.

Lemma 1. The elements of the sequence 8 ki � j 9 defined in (2.15)–(2.24) satisfy@@ ki � i  j
@@ = ,

i
j � 1 - ,

h2

ε
�
λ � c � - j � 1 � �

i � j � � j 4 2 �∑
l . 1

1
l

,
j � l
l � 1 - ,

i � l
j � 2l - ,

h2

ε
�
λ � c � - j  2l � 1

(4.1)
where λ � maxx ��� 0 � 1 � > λ � x � > !
Remark 2. There is equality in (4.1) when λ

�
x ��� λ � constant with a minus sign replacing the

absolute value sign. ?
aM grows with c, λ and 1 A ε.
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Proof. The right hand side of equations (2.19)–(2.24) can be estimated to obtain estimates for the
initial values of k’s > k1 � 1 > = h2

ε
�
c � λ �B� (4.2)

> k2 � 1 > = h4

ε2

�
c � λ � 2 � (4.3)

> k2 � 2 > =
2

h2

ε
�
c � λ �B� (4.4)

> k3 � 1 > = h6

ε3

�
c � λ � 3 � h2

ε
�
c � λ �B� (4.5)

> k3 � 2 > =
3

h4

ε2

�
c � λ � 2 � (4.6)

> k3 � 3 > =
3

h2

ε
�
c � λ �B! (4.7)

We then go from j � i backwards to obtain from (2.18)

> ki � i > = i
h2

ε
�
c � λ ��� (4.8)

> ki � i  1 > = i
�
i � 1 �
2

h4

ε2

�
c � λ � 2 ! (4.9)

Finally we obtain inequality (4.1) of Lemma 1 using the general identity (2.16) and mathematical
induction.

In order to prove that the finite dimensional coordinate transformation (2.4), (2.5), (2.14) con-
verges to an infinite dimensional one that is well–defined, we show the uniform boundedness of�
n � 1 � ki � j with respect to n �C# as i � 1 ��!�!�!�� n, j � 1 ��!�!�!�� i. Note that the binomial coefficients

of equation (4.1) are monotone increasing in i and hence it is enough to show the boundedness of
terms

�
n � 1 � @@ kn � n  j

@@ . Also, we introduce notations

E � λ � c
ε

(4.10)

and
q � j

n
� � 0 � 1 D� (4.11)

so that we can write
h2

ε
�
c � λ �E� E�

n � 1 � 2 (4.12)

and @@ kn � n  j
@@ � @@ kn � n  qn

@@= ,
n

qn � 1 -21 E�
n � 1 � 2 3 qn � 1

� � n � qn � � qn 4 2 �
∑
i . 1

1
i

,
qn � i
i � 1 - ,

n � i
qn � 2i -21 E�

n � 1 � 2 3 qn  2i � 1

(4.13)
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Lemma 2. The sequence 8 � n � 1 � kn � j 9 j . 1 �GFHFGFI� n � n J 1 remains bounded uniformly in n and j as n % ∞.

Proof. We can write, according to (4.13),�
n � 1 � @@ kn � n  qn

@@ = �
n � 1 � , n

qn � 1 -51 E�
n � 1 � 2 3 qn � 1

� � n � 1 � � n � qn � � qn 4 2 �
∑
l . 1

1
l

,
qn � l
l � 1 - ,

n � l
qn � 2l -51 E�

n � 1 � 2 3 qn  2l � 1 !(4.14)

The first term in (4.14) can be estimated as�
n � 1 � , n

qn � 1 -51 E�
n � 1 � 2 3 qn � 1 = �

n � 1 � qn � 2
,

E
n � 1 - qn E�

n � 1 � qn � 2=
E
,

E
n - qn=

EeE 4 e � (4.15)

where the last line shows that the bound is uniform in n and also in q.
In the following steps we will use the simple inequalities�

n � l � !�
n � qn � l � ! = n

n � qn � 2l
n � 1

n � qn � 2l � 1 K�K�K n � l � 1
n � qn � l � 1

�
n � l � !�

n � qn � l � ! � n!�
n � qn � 2l � !

(4.16)
and �

qn � l � !
l!
�
qn � 2l � 1 � ! , 1

n � 1 - qn  2l =
q (4.17)

with this we obtain�
n � 1 � � n � nq � � qn 4 2 �

∑
l . 1

1
l

,
qn � l
l � 1 - ,

n � l
qn � 2l -51 E�

n � 1 � 2 3 qn  2l � 1

=
E
�
n � 1 � n�
n � 1 � 2 � qn 4 2 �

∑
l . 1

�
qn � l � !

l!
�
qn � 2l � 1 � ! , 1

n � 1 - qn  2l n!�
qn � 2l � ! � n � qn � 2l � ! , E

n � 1 - qn  2l

=
Eq

nq

∑
s . 1

,
n
s - ,

E
n - s

1n  s=
Eq

,
1 � E

n - nq=
EeE !

Here in the last step we used the fact that the convergence
*
1 � E

n
+ n n L ∞�M�D�N% eE is monotone increasing

and q � � 0 � 1  . This proves the lemma.
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As a result of the above boundedness, we obtain a sequence of piecewise constant functions

kn
�
x � y �E� �

n � 1 � n

∑
i . 1

i

∑
j . 1

ki � jχIi O j � x � y ��� �
x � y ��� � 0 � 1 �P � 0 � 1 Q� n R 1 � (4.18)

where

Ii � j ��S i
n � 1

� i � 1
n � 1 T PUS j

n � 1
� j � 1
n � 1 T � j � 1 ��!�!�!�� i � i � 1 ��!�!�!�� n � n R 1 ! (4.19)

The sequence (4.18) is bounded in L∞
���

0 � 1 &P � 0 � 1 V� . The space L∞
���

0 � 1 &P � 0 � 1 W� is the dual
space of L1

���
0 � 1 &P � 0 � 1 V� hence, it has a corresponding weak*–topology. Since the space

L1
���

0 � 1 &P � 0 � 1 W� is separable, it follows now by Alaoglu’s theorem, see, e.g. [21, pg. 140]
or [28, Theorem 6.62], that (4.18) converges in the weak*–topology to a function k̃

�
x � y �X�

L∞
���

0 � 1 �P � 0 � 1 W� . The uniform in p �Y# weak convergence in each Lp
���

0 � 1 &P � 0 � 1 W�[Z
L∞

���
0 � 1 �P � 0 � 1 W� , immediately follows.

Remark 3. Alternatively, using the Eberlein–Shmulyan theorem see, e.g., [32, pg. 141], one finds
that (4.18) has a weekly convergent subsequence in each Lp

���
0 � 1 &P � 0 � 1 V� space for 1 \ p \ ∞ with

Lp–norms bounded uniformly in p. Using diagonal process we choose a subsequence m
�
n ���]#

such that 8 km ^ n _ � x � y � 9 n J 1 converges weakly to the same function k̃
�
x � y � in each of the spaces

Lp
���

0 � 1 &P � 0 � 1 W� , p �C# . The function k̃
�
x � y � along with 8 km ^ n _ � x � y � 9 n J 1 is uniformly bounded

in all these Lp–spaces with the same bound for all p �`# . ?
Remark 4. In the case of constant λ we have equality in (4.1). The right hand side is strictly
monotone increasing in i, which results in k̃ � C

���
0 � 1  ;L∞

�
0 � 1 ��� . ?

Lemma 3. The map k̃ :
�
0 � 1 �% L∞

�
0 � 1 � is weakly continuous.

Proof. From the uniform boundedness in i of (4.1) we obtain that� nx �
∑
j . 1

k � nx �a� ju j � � nx �
∑
j . 1

* �
n � 1 � k � nx �b� j + u j

1
n � 1

n L ∞�M�D�N% 6 x

0
k̃
�
x � ξ � u � ξ � dξ c u � L1

�
0 � 1 �/� c x � � 0 � 1 Q!

(4.20)
Here

�
nx  denotes the largest integer not larger than nx and the convergence is uniform in x, meaning

that for all ε 	 0 there exists N
�
ε ���[# such that@@@@@ 6 x

0
k̃
�
x � ξ � u � ξ � dξ � � nx �

∑
j . 1

k � nx �a� ju j

@@@@@ \ ε c x � � 0 � 1 Q� c n 	 N !
For an arbitrary x � � 0 � 1  we now fix an n 	 N

�
ε d 2 � and choose a δ 	 0 such that

�
nx e� �

n
�
x � δ �" .

We obtain @@@@ 6 1

0
k̃
�
x � ξ � u � ξ � dξ �f6 1

0
k̃
�
x � δ � ξ � u � ξ � dξ

@@@@= @@@@@ 6 x

0
k̃
�
x � ξ � u � ξ � dξ � � nx �

∑
j . 1

k � nx �a� ju j

@@@@@ � @@@@@ � nx �
∑
j . 1

k � nx �b� ju j � � n ^ x � δ _b�
∑
j . 1

k � n ^ x � δ _g�a� ju j

@@@@@� @@@@@ � n ^ x � δ _g�
∑
j . 1

k � n ^ x � δ _g�a� ju j � 6 x � δ

0
k̃
�
x � δ � ξ � u � ξ � dξ

@@@@@\ ε d 2 � 0 � ε d 2 � ε (4.21)
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which proves the weak continuity, i.e.

k̃ � Cw
���

0 � 1  ;L∞
�
0 � 1 ���&! (4.22)

The following lemma shows how norms change under the above transformation.

Lemma 4. Suppose that two functions w
�
x �E� L∞

�
0 � 1 � and u

�
x �h� L∞

�
0 � 1 � satisfy the relationship

w
�
x �h� u

�
x �i�C6 x

0
k̃
�
x � ξ � u � ξ � dξ c x � � 0 � 1 j� (4.23)

where
k̃ � Cw

���
0 � 1  ;L∞

�
0 � 1 ����! (4.24)

Then there exist positive constants m and M, whose sizes depend only on k̃, such that

m
<
w
<

∞

=0<
u
<

∞

=
M
<
w
<

∞

and
m
<
w
<k=Y<

u
<�=

M
<
w
< !

Proof. Clearly <
w
<

∞

= *
1 �mll k̃ ll ∞

+ < u < ∞ ! (4.25)

Let us choose a positive constant

δ � min 8 1 � 1 d * 2 ll k̃ ll ∞
+ 9 (4.26)

so that δ ll k̃ ll ∞ \ 1 d 2, and let us denote<
u
<

∞ � iδ � ess sup
x ���I^ i  1 _ δ � iδ � > u � x � > i � 1 ��!�!�!�� S 1

δ T (4.27)

and for Nδ � �
1 d δ �� 1 <

u
<

∞ � Nδδ � ess sup
x ���I^ Nδ  1 _ δ � 1 � > u � x � > (4.28)

which is zero in the special case when 1 d δ is an integer. We have that<
u
<

∞

= Nδ

∑
i . 1

<
u
<

∞ � iδ = Nδ

<
u
<

∞ ! (4.29)

We have, from (4.23) <
u
<

∞ � 1δ

= <
w
<

∞ � 1δ � δ
<
u
<

∞ � 1δ ll k̃ ll ∞ (4.30)

and then <
u
<

∞ � 1δ

= 1
1 � δ ll k̃ ll ∞

<
w
<

∞ � 1δ ! (4.31)

11



Similarly <
u
<

∞ � 2δ

= <
w
<

∞ � 2δ � 6 2δ

0

@@ k̃ � x � ξ � u � ξ � t � @@ dξ= <
w
<

∞ � 2δ � δ ll k̃ ll ∞

<
u
<

∞ � 1δ � δ ll k̃ ll ∞

<
u
<

∞ � 2δ (4.32)

and from here <
u
<

∞ � 2δ

= 1
1 � δ ll k̃ ll ∞

1 < w < ∞ � 2δ � δ ll k̃ ll ∞
1 � δ ll k̃ ll ∞

<
w
<

∞ � 1δ 3� 1
1 � δ ll k̃ ll ∞

<
w
<

∞ � 2δ � δ ll k̃ ll ∞*
1 � δ ll k̃ ll ∞

+ 2

<
w
<

∞ � 1δ ! (4.33)

Similarly<
u
<
∞ � 3δ

= <
w
<

∞ � 3δ �n6 3δ

0

@@ k̃ � x � ξ � u � ξ � t � @@ dξ� <
w
<

∞ � 3δ � 6 δ

0

@@ k̃ � x � ξ � u � ξ � t � @@ dξ � 6 2δ

δ

@@ k̃ � x � ξ � u � ξ � t � @@ dξ � 6 3δ

2δ

@@ k̃ � x � ξ � u � ξ � t � @@ dξ= <
w
<

∞ � 3δ � δ ll k̃ ll ∞

<
u
<

∞ � 1δ � δ ll k̃ ll ∞

<
u
<

∞ � 2δ � δ ll k̃ ll ∞

<
u
<

∞ � 3δ (4.34)

resulting in<
u
<
∞ � 3δ

= 1*
1 � δ ll k̃ ll ∞

+po < w < ∞ � 3δ � δ ll k̃ ll ∞

<
u
<
∞ � 1δ � δ ll k̃ ll ∞

<
u
<

∞ � 2δ q= 1
1 � δ ll k̃ ll ∞

<
w
<

∞ � 3δ � δ ll k̃ ll ∞*
1 � δ ll k̃ ll ∞

+ 2

<
w
<

∞ � 1δ

� δ ll k̃ ll ∞*
1 � δ ll k̃ ll ∞

+ 2

<
w
<

∞ � 2δ � *
δ ll k̃ ll ∞

+ 2*
1 � δ ll k̃ ll ∞

+ 3

<
w
<

∞ � 1δ �
� 1

1 � δ ll k̃ ll ∞

<
w
<

∞ � 3δ � δ ll k̃ ll ∞*
1 � δ ll k̃ ll ∞

+ 3

<
w
<

∞ � 1δ � δ ll k̃ ll ∞*
1 � δ ll k̃ ll ∞

+ 2

<
w
<

∞ � 2δ (4.35)

and by induction<
u
<

∞ � iδ = 1
1 � δ ll k̃ ll ∞

<
w
<

∞ � iδ � δ ll k̃ ll ∞

i  1

∑
j . 0

<
w
<

∞ � jδ 1*
1 � δ ll k̃ ll ∞

+ i  j � 1 (4.36)

for i � 1 ��!�!�!"� Nδ with the convention that
<
w
<

∞ � 0δ � 0. Using the definition of δ we obtain from
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inequality (4.36) that<
u
<

∞

= Nδ

∑
i . 1

<
u
<
∞ � iδ= 1

1 � δ ll k̃ ll ∞

Nδ

∑
i . 1

<
w
<

∞ � iδ � δ ll k̃ ll ∞

Nδ

∑
i . 1

i  1

∑
j . 0

<
w
<

∞ � jδ 1*
1 � δ ll k̃ ll ∞

+ i  j � 1=
2Nδ

<
w
<

∞ � Nδ  1

∑
j . 1

<
w
<

∞ � jδ Nδ

∑
i . j � 1

2i  j

� 2Nδ

<
w
<

∞ � Nδ  1

∑
j . 1

<
w
<

∞ � jδ * 2Nδ  j � 1 � 2 +=
2NδNδ

<
w
<

∞ (4.37)

Inequality (4.25) together with (4.37) results in the relationship

1
1 �7ll k̃ ll ∞

<
w
<

∞

=0<
u
<

∞

=
2NδNδ

<
w
<

∞ ! (4.38)

For the L2–norms the inequality

1
1 �7ll k̃ ll < w <r=0<

u
<r=

2Nδ s Nδ

<
w
<

(4.39)

can be proven in a similar way. Taking

m � 1
1 �7ll k̃ ll ∞

(4.40)

and
M � 2NδNδ (4.41)

we obtain the statement of the lemma.

Proof of Theorem 1. We now complete the proof of Theorem 1 by combining the results of Lem-
mas 1–4. In Lemma 1 we derived a coordinate transformation that transforms the finite dimensional
system (2.1)–(2.3) into the finite dimensional system (2.7)–(2.9). As a result of the uniform bound-
edness of the transformation (shown in Lemma 2) we obtained the coordinate transformation (4.23)
that transforms the unstable heat equation (1.1) with zero Dirichlet boundary conditions into the
stable heat equation (2.10)–(2.12). Due to the weak continuity proven in Lemma 3 the infinite
dimensional coordinate transformation results in the specific boundary condition

u
�
1 � t ��� α

�
u ���m6 1

0
k
�
ξ � u � ξ � t � dξ � (4.42)

where
k
�
ξ �E� k̃

�
1 � ξ ��� ξ � � 0 � 1  (4.43)
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with k � L∞
�
0 � 1 � .

It is important to note that the function k
�
x � is not necessarily smooth, not even continuous.

This non–smoothness can be seen numerically in Figure 5 and analytically when we consider k
�
x �

as the limit of its finite difference approximation 8 � n � 1 � kn � j 9 j . 1 �GFHFGFG� n � n J 1. For example for the
case λ

�
x �h� λ 	 0 we have from (2.18)

lim
n L ∞

�
n � 1 � kn � n � � � λ � c �

ε
� (4.44)

which is a negative constant, while (2.17) provides us with

lim
n L ∞

�
n � 1 � kn � n  1 � 0 ! (4.45)

The convergence in Sobolev spaces W 2 � 1
2 (see, e.g. [1]) of the finite difference approximations

obtained from (2.1)–(2.3) and (2.7)–(2.9) to the solutions of (1.1)–(1.3) and (2.10)–(2.12) respec-
tively is obtained using interpolation techniques (see, e.g. [5].) Using Green’s function and fixed
point method as it was done in [24], we see that solutions to (1.1)–(1.3), (4.42) are, in fact, classical
solutions. The well known (see, e.g. [10]) stability properties of solution w to the heat equation
(2.10)–(2.12) along with Lemma 4 proves the stability statements of Theorem 1.

5 Numerical Demonstration
In accordance with the derivation of our control we use a second order finite difference scheme in
our numerical simulations. In space the discretization is exactly the one used in the previous section.
The time discretization is based on a low–storage, three time step, third–order Runge–Kutta/Crank–
Nicolson scheme (see [29]). Consider system (1.1)–(1.3) with λ

�
x �
� λ � 17, ε � 0 ! 1 and with

initial condition u0
�
x ���t� 0 ! 01e6 F 7x sin8πx. In this case the number of unstable eigenvalues is

4 and the growth bound of the open loop system is ω0 u 16 (see Figure 3). Using the method
developed in Lemma 1 we obtain for c � 1, n � 400 a kernel function k

�
x � u kn

�
x � displayed in

Figure 4. For a smaller value of ε Figures 1 and 2 of Section 2 already showed the oscillation of
the function kn

�
x � . This tells us that the limiting kernel function k

�
x � is not continuous. Due to the

high growth bound (ω0 u 16) of the open loop system in the present case the gain values are quite
high and hence similar oscillation can be seen only after enlarging some part of function kn

�
x � in

Figure 5. As Figures 6 and 7 show, the obtained control effectively stabilizes system (1.1)–(1.3).
Next, we keep the high resolution (n � 400) in the discretization of (1.1) but reduce the number
of points nk used in the feedback control (1.3) with still uniformly distributed observation points

xk � k
nk � 1

, k � 1 ��!�!�!�� nk. As Figure 8 shows, the case nk � 100 virtually agrees with the “full”

observation case nk � 400. By increasing the resolution in the finite difference approximation of
the system to n � 1000 and dt � 10  5 we were able to decrease the number of observation points
down to nk � 5 before losing the stabilizing effect.

Remark 5. 1. By increasing n further above 1000 it should be possible to reduce nk to 4.

2. Another possible way to reduce the number of measurements even below the very low nk � 5
is to use a low–dimensional observer based on Galerkin’s method as in [12].
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Figure 3: Uncontrolled

3. We use equispaced observation points in the derivation of the kernel function k
�
x � . Even

though numerically this is not necessarily the most optimal choice, it is a choice that allows
to establish regularity of the kernel and of the closed–loop PDE system. ?
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