Home

Education

Teaching

Curriculum Vitae

Publications

ISAAC 2019, Aveiro, Portugal, 2019

Recent Publications

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

1.

The self-interacting scalar field propagating in FLRW model of the contracting universe. Analysis, Probability, Applications, and Computation , Trends in Mathematics, pp. 315-323, 2019. (co-author K.Yagdjian)

 

2.

Semilinear Shifted Wave Equation in the de Sitter Spacetime with Hyperbolic Spatial Part. Springer Proceedings in Mathematics and Statistics, Theory, Numerics and Applications of Hyperbolic Problems (vol. 236, pp. 577-587). Springer International Publishing. (2018)

3.

Semilinear Wave Equation in the de Sitter Spacetime with Hyperbolic Spatial Part”, Birkhauser series Trends in Mathematics/Research Prospectives, Springer International Publishing (2017) doi: 10.1007/978-3-319-48812-7-62.

4

“Global in time existence of self-interacting scalar field in de Sitter spacetimes”, Nonlinear Analysis: Real World Applications 34, (2017), pp. 110-139 (co-author K. Yagdjian, UTRGV).

 

5.

“Global solutions for semilinear Klein-Gordon equation in FLRW spacetimes”, Nonlinear Analysis. Theory, Methods & Applications 113, 2015, 339-356 (co-author K. Yagdjian, UTPA).

6.

Representation of Solutions for 2nd Order One-dimensional Model Hyperbolic Equations, Journal d'Analyse Mathematique 130, pp. 355-374. (co-author T. Kinoshita, Japan)

7.

Microlocal analysis for hyperbolic equations in Einstein-de~Sitter Spacetime, Birkhauser series Trends in Mathematics/Research Prospectives, 2015, pp. 225-232

8.

Microlocal Analysis for Waves Propagating in Einstein & de Sitter Spacetime, Mathematical Physics, Analysis and Geometry, 17 ( 2014), 223-246 (co-author K. Yagdjian, UTPA)

9.

Exponential function of pseudo-differential operators in Gevrey spaces, Journal of Integral Equations and Operator Theory, 70 (2011), 281-300.

10.

Lp - Lq decay estimates for the Klein-Gordon equation in Anti-de Sitter Spacetime, Rendiconti Istit. Matematico dell’ Universita’ e del Trieste, 42 (2010), 27-50.

11.

A Note on Wave Equation in Einstein & de Sitter Spacetime , Journal of Mathematical Physics, 51 (2010), 052501 -0525018. (co-authors T. Kinoshita, K. Yagdjian)

12.

The wave equation in the Einstein and de Sitter spacetime, , PROGRESS IN ANALYSIS AND ITS APPLICATIONS, edited by Michael Ruzhansky (Imperial College London, UK) & Jens Wirth (Imperial College London, UK) , Word Scientific, 2010 (co-authors T. Kinoshita, K. Yagdjian)

13.

Fundamental Solutions for Wave Equation in Robertson-Walker Model of Universe and Lp-Lq -decay Estimates, Discrete and Continuous Dynamical Systems-S, 2(2009), pp. 483 – 502, (co-author K.Yagdjian)

14.

The Klein-Gordon Equation in the Anti-de Sitter Spacetime, Rendiconti del Seminario Matematico dell’ Universita’ e del Politecnico di Torino, 67(2009), pp. 271-292 , (co-author K. Yagdjian).

15.

Fundamental Solutions for the Klein-Gordon Equation in de Sitter Spacetime, Communications in Mathematical Physics, 285(2009), 293-344,. (co-author K. Yagdjian).

16.

Global existence for the one-dimensional second order semilinear hyperbolic equations, Journal of Mathematical Analysis and Applications, 344 (2008), pp. 76–98.

17.

Fundamental solutions of the wave equation in Robertson–Walker spaces, Journal of Mathematical Analysis and Applications, 346 (2008), 501-520. (co-author K. Yagdjian).

18.

About the existence of the global solution for one dimensional semilinear Gellerstedt-type  equation, Journal Dynamics of Continuous, Discrete and Impulsive Systems A, Vol. 14

19.

Fundamental solutions for the wave equation in de Sitter model of universe, Univeristy Potsdam, Potsdam, Germany, ISSN 1437-739X, 2007,pp.1-36. (co-author K. Yagdjian).

20.

Global Existence for the semilinear Tricomi-type equations, Proceedings of the MSRI, Berkeley, 2006

21.

On the oscillations of the solution curve for a class semilinear equations, Journal of Mathematical Analysis and Applications, v. 321, (2006), pp. 576-588.

 (co-authors  P. Korman, Y. Li).