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Point sets
The sets in Rd that we are going to consider are generic
▶ finite point sets, or
▶ thin Delone sets.

Definition
A set A ⊆ Rd is called a thin Delone set if
▶ every ball contains finitely many points of A, and
▶ every halfspace contains at least one point of A.

Generic:
▶ no d+ 1 points lie on the same hyperplane, and
▶ no d+ 2 points lie on the same sphere.
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Delaunay triangulations
Definition
For a set A, the Delaunay triangulation of A is the collection of
simplices ∆ with vertices in A such that the circumsphere of∆
has no points of A inside.

▶ This is a triangulation of convA or the whole Rd.
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Lifting construction
Constructing Delaunay triangulation
▶ Lift every point of A ⊂ Rd to paraboloid y = x21 + . . .+ x2d

by a 7→ (a, ||a||2) ∈ Rd+1;
▶ Take convex hull of the lifted point set and project the

(lower) boundary back to Rd.
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Motivation for this work

Definition
Let A be a finite or a thin Delone set in Rd. A simplex∆ with
vertices in A is called a k-heavy simplex of A if the
circumsphere of A contains exactly k points of A inside.

Question
What can we say about k-heavy simplices of A?
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Let’s play a game
Question
For d = 2 and k = 1, how many 1-heavy triangles of A contain a
given generic point x inside?
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The main theorem

Theorem (Edelsbrunner, G., Saghafian, 2024+)
Let A be a thin Delone set in Rd and let x be generic point in Rd.

Then x belongs to exactly
(
d+ k
d

)
k-heavy simplices of A.

Proof.
▶ For every A, there is a “covering” constant.
▶ The constant does not depend on A.
▶ There is a set where the constant is obvious.
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Step 1: there is a constant
Lemma
For a given thin Delone set A and x, there is a constant c(A) such that
the number of k-simplices of A that contain x is c(A).

Let ∆ be a simplex spanned by d points of A. We show that
there are equal numbers of k-heavy simplices sharing∆ on
both sides.

kk + 1 k k + 1

∆
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Step 2: the constant is the same for all sets
Lemma
For two thin Delone sets A and A′ in Rd, c(A) = c(A′).

A
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Step 3: there is a set where the constant is obvious
Lemma
For the radial thin Delone set A, c(A) =

(
d+ k
d

)
.

(
d+ k
d

)
is number of ways to put k points into d+ 1 boxes.
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Finite sets

Theorem (Edelsbrunner, G., Saghafian, 2024+)
For a finite set A in Rd, generic point set x ∈ Rd belongs to at most(
d+ k
d

)
k-heavy simplices of A.

Theorem (Edelsbrunner, G., Saghafian, 2024+)
If every hyperplane through x has at least k + 1 points of A on both

sides, then x belongs to exactly
(
d+ k
d

)
k-heavy simplices of A.
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Local version

Theorem (Edelsbrunner, G., Saghafian, 2024+)
Let A be a thin Delone set in Rd and let a be any point of A. Then the
k-heavy simplices of A incident to a cover a small neighborhood of A

exactly
(
d+ k − 1
d− 1

)
times.
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Hypersimplices and Eulerian numbers
▶ The order-k d-dimensional hypersimplex ∆

(k)
d is defined

as

∆
(k)
d := conv

(∑
i∈I

ei | I ⊂ {1, . . . , d+ 1}, |I| = k

)
⊂ Rd+1.

Let v(d, k) := d! · vol∆(k)
d .

▶ Eulerian number A(d, k) is the number of permutations of
{1, . . . , d} with k descents.

Theorem (de Laplace, 1886)

v(d, k) = A(d, k − 1).

▶ The covering constant allows us to give a new proof.
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Lifting construction again

▶ Let A be a thin Delone set perturbation of Zd. We lift every
point a ∈ A to the paraboloid a 7→ (a, ||a||2) ∈ Rd+1 to get a
lifted set A′.

▶ Let n be a positive integer. For every subset of n points of
A′, take the average point.

▶ For the set of averages, take the convex hull and project the
boundary back onto Rd.

▶ The resulted tiling (which is called the order-n Delaunay
triangulation of A) uses hypersimplices of orders 1, 2, . . ., d
originating from (n− 1)-, (n− 2)-, . . ., (n− d)-heavy
simplices of A, respectively.
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Worpitzky identity

From a “volume argument” for all tiles in a large ball,

d∑
p=1

v(d, p)
(
d+ n− p

d

)
= nd.

Which is a rewritten Worpitzky identity for Eulerian numbers

d−1∑
k=0

A(d, k)
(
x + k
d

)
= xd.
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k-facets and spheres
Definition
Let A be a finite generic point set in Rd. A subset B ⊂ A of size d
is called a k-facet of A if the hyperplane through B separate k
points of A from the rest.

Observation. After an inversion with respect to sphere with
center O, k-facet turns into a k-heavy simplex of the set A ∪ {O}
provided O is on the right side of the hyperplane.

O
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An application to the planar k-facets

Theorem (Alon, Györi, 1986)
For every generic point set A in R2 with n points, the total number of
0-, 1-, . . ., k-facets is at most (k + 1)n.

New proof for k ≤ n
3 .

▶ Pick a point O that is on a right side of all i-facets for i ≤ k.
▶ Perform inversion with respect to a circle centered at O.
▶ Count how many i-heavy simplices for i = 0, 1, . . . , k could

be so they cover a neighborhood of A at most (k+1)(k+2)
2

times.
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Lovász lemma
Theorem (Bárány, Füredi, Lovász, 1990)
Let A ⊂ Rd be a generic set with 2n+ d points. Let ℓ be a line generic
with respect to A. Then ℓ intersects interiors of at most O(nd−1)
halving facets of A.

Theorem (“Exact Lovász lemma” by Welzl, 2001)
In a similar setting, the number of directed k-facets intersected by a

line is at most
(
d+ k − 1
d− 1

)
.

New proof.
Pick a point O far on ℓ. After inversion, k-facets intersected by ℓ
turn into k-heavy simplices incident to O and intersected by ℓ,
and the local covering gives us the bound.
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Hd and Sd
▶ For Hd, both global and local versions hold with the same

constants as for Rd.

Definition
A set A ⊂ Sd is called k-balanced if every open hemisphere
contains at least k + 1 points of A.

Theorem (Edelsbrunner, G., Saghafian, 2024+)
Let A be a k-balanced finite generic point set in Sd. Then

1. Every generic point of Sd is covered by
(
d+ k
d

)
k-heavy

simplices of A;
2. For every a ∈ A, a small neighborhood of a is covered by k-heavy

simplices of A incident to a in
(
d+ k − 1
d− 1

)
layers.
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Weighted point sets

▶ We assign weights to points of a thin Delone set A;
▶ One can think of weighted points as spheres with radii

defined by weights;
▶ Circumspheres are spheres orthogonal to weighted points.

Theorem (Edelsbrunner, G., Saghafian, 2024+)
Let (A,w) be a weighted generic thin Delone set in Rd with a bounded
weight function w. Then every generic point of Rd is covered by(
d+ k
d

)
k-heavy simplices of (A,w).
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THANK YOU!
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