On spheres with k points inside joint work with

Herbert Edelsbrunner and Morteza Saghafian (IST Austria)

Alexey Garber

The University of Texas Rio Grande Valley

Combinatorics and Geometry in Ioannina September 5, 2024

Point sets

The sets in \mathbb{R}^d that we are going to consider are **generic**

- ► finite point sets, or
- ► thin Delone sets.

Definition

A set $A \subseteq \mathbb{R}^d$ is called a **thin Delone set** if

- ightharpoonup every ball contains finitely many points of A, and
- ightharpoonup every halfspace contains at least one point of A.

Generic:

- ightharpoonup no d+1 points lie on the same hyperplane, and
- ▶ no d + 2 points lie on the same sphere.

Delaunay triangulations

Definition

For a set A, the **Delaunay triangulation** of A is the collection of simplices Δ with vertices in A such that the circumsphere of Δ has no points of A inside.

► This is a triangulation of conv *A* or the whole \mathbb{R}^d .

Definition

Introduction

00000

For a set A, the **Delaunay triangulation** of A is the collection of simplices Δ with vertices in A such that the circumsphere of Δ has no points of A inside.

► This is a triangulation of conv *A* or the whole \mathbb{R}^d .

Definition

Introduction

For a set A, the **Delaunay triangulation** of A is the collection of simplices Δ with vertices in A such that the circumsphere of Δ has no points of A inside.

▶ This is a triangulation of conv *A* or the whole \mathbb{R}^d .

LIFTING CONSTRUCTION

Introduction

00000

Constructing Delaunay triangulation

- ▶ Lift every point of $A \subset \mathbb{R}^d$ to paraboloid $y = x_1^2 + \ldots + x_d^2$ by $a \mapsto (a, ||a||^2) \in \mathbb{R}^{d+1}$;
- ► Take convex hull of the lifted point set and project the (lower) boundary back to \mathbb{R}^d .

LIFTING CONSTRUCTION

Introduction 00000

Constructing Delaunay triangulation

- ▶ Lift every point of $A \subset \mathbb{R}^d$ to paraboloid $y = x_1^2 + \ldots + x_d^2$ by $a \mapsto (a, ||a||^2) \in \mathbb{R}^{d+1}$;
- ► Take convex hull of the lifted point set and project the (lower) boundary back to \mathbb{R}^d .

MOTIVATION FOR THIS WORK

Definition

Introduction

Let A be a finite or a thin Delone set in \mathbb{R}^d . A simplex Δ with vertices in A is called a k-heavy simplex of A if the circumsphere of A contains exactly k points of A inside.

Question

What can we say about k-heavy simplices of A?

Question

Introduction

00000

LET'S PLAY A GAME

Question

00000

LET'S PLAY A GAME

Question

Introduction

00000

×

LET'S PLAY A GAME

Question

Question

Introduction

00000

Question

Introduction

00000

Question

Introduction

00000

Question

Introduction

00000

THE MAIN THEOREM

Introduction

Theorem (Edelsbrunner, G., Saghafian, 2024+)

Let A be a thin Delone set in \mathbb{R}^d and let x be generic point in \mathbb{R}^d . Then x belongs to exactly $\binom{d+k}{d}$ k-heavy simplices of A. Introduction

Theorem (Edelsbrunner, G., Saghafian, 2024+)

Let A be a thin Delone set in \mathbb{R}^d and let x be generic point in \mathbb{R}^d .

Then x belongs to **exactly** $\binom{d+k}{d}$ k-heavy simplices of A.

Proof.

- ► For every *A*, there is a "covering" constant.
- ightharpoonup The constant does not depend on A.
- ► There is a set where the constant is obvious.

Lemma

Introduction

For a given thin Delone set A and x, there is a constant c(A) such that the number of k-simplices of A that contain x is c(A).

Let Δ be a simplex spanned by d points of A. We show that there are equal numbers of k-heavy simplices sharing Δ on both sides.

STEP 2: THE CONSTANT IS THE SAME FOR ALL SETS

Lemma

Introduction

For two thin Delone sets A and A' in \mathbb{R}^d , c(A) = c(A').

Step 2: the constant is the same for all sets

Lemma

Introduction

For two thin Delone sets A and A' in \mathbb{R}^d , c(A) = c(A').

Step 2: the constant is the same for all sets

Lemma

Introduction

For two thin Delone sets A and A' in \mathbb{R}^d , c(A) = c(A').

Introduction

Step 3: There is a set where the constant is obvious

_emma

For the **radial** thin Delone set A, $c(A) = \begin{pmatrix} d+k \\ d \end{pmatrix}$.

 $\binom{d+k}{d}$ is number of ways to put k points into d+1 boxes.

FINITE SETS

Introduction

Theorem (Edelsbrunner, G., Saghafian, 2024+)

For a finite set A in \mathbb{R}^d , generic point set $x \in \mathbb{R}^d$ belongs to at most $\binom{d+k}{d}$ k-heavy simplices of A.

Theorem (Edelsbrunner, G., Saghafian, 2024+)

If every hyperplane through x has at least k + 1 *points of A on both* sides, then x belongs to exactly $\binom{d+k}{d}$ k-heavy simplices of A.

LOCAL VERSION

Introduction

Theorem (Edelsbrunner, G., Saghafian, 2024+)

Let A be a thin Delone set in \mathbb{R}^d and let a be any point of A. Then the k-heavy simplices of A incident to a cover a small neighborhood of A exactly $\binom{d+k-1}{d-1}$ times.

INTRODUCTION

Hypersimplices and Eulerian numbers

► The **order**-k d-**dimensional hypersimplex** $\Delta_d^{(k)}$ is defined as

$$\Delta_d^{(k)} := \operatorname{conv}\left(\sum_{i \in I} e_i \mid I \subset \{1, \dots, d+1\}, |I| = k\right) \subset \mathbb{R}^{d+1}.$$

Let $v(d, k) := d! \cdot \operatorname{vol} \Delta_d^{(k)}$.

 \blacktriangleright Eulerian number A(d,k) is the number of permutations of $\{1,\ldots,d\}$ with k descents.

Theorem (de Laplace, 1886)

$$v(d,k) = A(d,k-1).$$

► The covering constant allows us to give a new proof.

Introduction

▶ Let *A* be a thin Delone set perturbation of \mathbb{Z}^d . We lift every point $a \in A$ to the paraboloid $a \mapsto (a, ||a||^2) \in \mathbb{R}^{d+1}$ to get a lifted set A'.

- ▶ Let *A* be a thin Delone set perturbation of \mathbb{Z}^d . We lift every point $a \in A$ to the paraboloid $a \mapsto (a, ||a||^2) \in \mathbb{R}^{d+1}$ to get a lifted set A'.
- ► Let *n* be a positive integer. For every subset of *n* points of *A'*, take the average point.

- ▶ Let *A* be a thin Delone set perturbation of \mathbb{Z}^d . We lift every point $a \in A$ to the paraboloid $a \mapsto (a, ||a||^2) \in \mathbb{R}^{d+1}$ to get a lifted set A'.
- ► Let *n* be a positive integer. For every subset of *n* points of *A'*, take the average point.
- ► For the set of averages, take the convex hull and project the boundary back onto \mathbb{R}^d .

- ▶ Let *A* be a thin Delone set perturbation of \mathbb{Z}^d . We lift every point $a \in A$ to the paraboloid $a \mapsto (a, ||a||^2) \in \mathbb{R}^{d+1}$ to get a lifted set A'.
- Let *n* be a positive integer. For every subset of *n* points of A', take the average point.
- ► For the set of averages, take the convex hull and project the boundary back onto \mathbb{R}^d .
- ► The resulted tiling (which is called the order-*n* Delaunay triangulation of A) uses hypersimplices of orders 1, 2, ..., doriginating from (n-1)-, (n-2)-, ..., (n-d)-heavy simplices of A, respectively.

WORPITZKY IDENTITY

Introduction

From a "volume argument" for all tiles in a large ball,

$$\sum_{p=1}^{d} v(d,p) \binom{d+n-p}{d} = n^{d}.$$

WORPITZKY IDENTITY

Introduction

From a "volume argument" for all tiles in a large ball,

$$\sum_{p=1}^{d} v(d,p) \binom{d+n-p}{d} = n^{d}.$$

Eulerian numbers

Which is a rewritten Worpitzky identity for Eulerian numbers

$$\sum_{k=0}^{d-1} A(d,k) \binom{x+k}{d} = x^d.$$

k-facets and spheres

Definition

Introduction

Let *A* be a finite generic point set in \mathbb{R}^d . A subset $B \subset A$ of size *d* is called a *k*-facet of *A* if the hyperplane through *B* separate *k* points of A from the rest.

Observation. After an inversion with respect to sphere with center O, k-facet turns into a k-heavy simplex of the set $A \cup \{O\}$ provided *O* is on the right side of the hyperplane.

An application to the planar k-facets

Theorem (Alon, Györi, 1986)

For every generic point set A in \mathbb{R}^2 with n points, the total number of 0-, 1-, . . . , k-facets is at most (k + 1)n.

New proof for $k \leq \frac{n}{3}$.

- ▶ Pick a point *O* that is on a right side of all *i*-facets for $i \le k$.
- ▶ Perform inversion with respect to a circle centered at *O*.
- ► Count how many *i*-heavy simplices for i = 0, 1, ..., k could be so they cover a neighborhood of A at most $\frac{(k+1)(k+2)}{2}$ times.

INTRODUCTION

Theorem (Bárány, Füredi, Lovász, 1990)

Let $A \subset \mathbb{R}^d$ be a generic set with 2n + d points. Let ℓ be a line generic with respect to A. Then ℓ intersects interiors of at most $O(n^{d-1})$ **halving** facets of A.

Theorem ("Exact Lovász lemma" by Welzl, 2001)

In a similar setting, the number of **directed** k-facets intersected by a line is at most $\begin{pmatrix} d+k-1 \\ d-1 \end{pmatrix}$.

New proof.

Pick a point O far on ℓ . After inversion, k-facets intersected by ℓ turn into k-heavy simplices incident to O and intersected by ℓ , and the local covering gives us the bound.

\mathbb{H}^d and \mathbb{S}^d

Introduction

lacktriangle For \mathbb{H}^d , both global and local versions hold with the same constants as for \mathbb{R}^d .

\mathbb{H}^d and \mathbb{S}^d

Introduction

ightharpoonup For \mathbb{H}^d , both global and local versions hold with the same constants as for \mathbb{R}^d .

Definition

A set $A \subset \mathbb{S}^d$ is called *k*-balanced if every open hemisphere contains at least k + 1 points of A.

Theorem (Edelsbrunner, G., Saghafian, 2024+)

Let A be a k-balanced finite generic point set in \mathbb{S}^d . Then

- 1. Every generic point of \mathbb{S}^d is covered by $\binom{d+k}{d}$ k-heavy simplices of A;
- 2. For every $a \in A$, a small neighborhood of a is covered by k-heavy simplices of A incident to a in $\binom{d+k-1}{d-1}$ layers.

WEIGHTED POINT SETS

Introduction

- ► We assign weights to points of a thin Delone set *A*;
- ▶ One can think of weighted points as spheres with radii defined by weights;
- ► Circumspheres are spheres orthogonal to weighted points.

Theorem (Edelsbrunner, G., Saghafian, 2024+)

Let (A, w) be a weighted generic thin Delone set in \mathbb{R}^d with a bounded weight function w. Then every generic point of \mathbb{R}^d is covered by $\binom{d+k}{d}$ k-heavy simplices of (A, w).

Introduction

THANK YOU!

