On the metric spaces of lattices and periodic point sets based on a joint work with Nicolò Zava and Žiga Virk

Alexey Garber

The University of Texas Rio Grande Valley

December 12, 2023 MIF++ seminar

MOTIVATION

Question

 G *iven two point sets in* \mathbb{R}^d *, how close are they to each other?*

- ▶ Usual mathematical answer: Hausdorff distance
- ▶ This approach does not work well if we want to think of point sets as atoms of some solids.

Additional requirement: make it "relevant" to the point sets that are used to model physical matter.

Delone sets

Definition

A set *X* ⊂ R *d* is called a **Delone set** if it is uniformly discrete and relatively dense.

 \blacktriangleright There exists a **packing radius** $r > 0$ such that every open ball of radius r in \mathbb{R}^d contains at most one point of X

Delone sets

Definition

A set *X* ⊂ R *d* is called a **Delone set** if it is uniformly discrete and relatively dense.

▶ There exists a **covering radius** $R < \infty$ such that every closed ball of radius R in \mathbb{R}^d contains at least one point of X

LATTICES

Definition

Given a basis v_1, \ldots, v_d in \mathbb{R}^d , the set of all **integer** linear combinations

$$
\Lambda := \mathbb{Z}(v_1,\ldots,v_d) = \left\{ \sum_{i=1}^d a_i v_i \mid a_i \in \mathbb{Z}, i = 1,\ldots,d \right\}
$$

is called a **lattice**.

▶ **Unit cell** *U* of the lattice Λ is the parallelepiped

$$
U := \bigg\{ \sum_{i=1}^d t_i v_i \mid t_i \in [0,1), i = 1,\ldots,d \bigg\}.
$$

PERIODIC POINT SETS

Definition

For a lattice with the unit cell *U* and a finite subset $P \subset U$, called **motif**, the set $\Lambda + P$ is called a **periodic point set**.

Cut-and-project sets (simplified version)

Definition

$$
G = \mathbb{R}^d \xleftarrow{\pi_1} G \times H \xrightarrow{\pi_2} H = \mathbb{R}^m
$$

\n
$$
\begin{array}{ccc}\n\cup & \cup & \cup \\
\Lambda & \Gamma & W\n\end{array}
$$

- ▶ *G* and *H* are locally compact abelian groups;
- \blacktriangleright Γ is a lattice in $G \times H$:
- ▶ *W* is a relatively compact set in *H*; and
- \blacktriangleright π_1 and π_2 are projections to *G* and to *H* respectively.

Then

$$
\Lambda = \{\pi_1(x) \,|\, x \in \Gamma,\, \pi_2(x) \in W\}
$$

is called a **cut-and-project set** (or **CPS**).

CPS: examples

Fibonacci sequence is a CPS with

- \blacktriangleright $G = \mathbb{R}$ (direct space, horizontal) and $H = \mathbb{R}$ (internal **space**, vertical);
- **►** The lattice Γ is spanned by the vectors $(1, 1)$ and $(\tau, -\tau^{-1})$. Here $\tau =$ $\frac{1}{\sqrt{5}+1}$ $\frac{2+1}{2}$;
- \blacktriangleright Both projections π_1 and π_2 are orthogonal projections on the corresponding spaces;
- ▶ The **window** $W = [-\tau^{-1}, 1].$

[Introduction](#page-1-0) [Local properties](#page-14-0) [Global properties](#page-25-0)

CPS: examples

[Introduction](#page-1-0) [Local properties](#page-14-0) [Global properties](#page-25-0)

SUBSTITUTION TILINGS

WHY RESTRICT TO THESE SETS?

- ▶ Lattices and PPS are usual models for **periodic crystals**;
- ▶ CPS and substitution tilings are frequently used as models for **aperiodic crystals**. Particularly, they usually have nice diffractive properties.

WHICH SETS ARE CLOSE? OUALITATIVE APPROACH

Definition

Two (Delone) sets *X* and *Y* are called **bounded distance equivalent** (or **b.d.e.**) if there is bijection $f : X \rightarrow Y$ such that

$$
\sup_{x\in X}||f(x)-x||<\infty.
$$

▶ This equivalence can also be given interpretation in terms of bounded transport.

WHICH SETS ARE CLOSE? OUANTITIVE APPROACH

Definition

If *X* and *Y* are bounded distance equivalent, then we define the **bottleneck distance** d_B as

$$
d_B(X, Y) := \inf \sup_{x \in X} ||x - f(x)||
$$

where infimum is taken over all bijections $f: X \to Y$.

Definition

Similarly, we define the **Euclidean bottleneck distance** *dEB* as

$$
d_{EB}(X, Y) = \inf d_B(X, \psi(Y))
$$

where infimum is taken over all isometries ψ of \mathbb{R}^d .

WHAT ARE WE LOOKING FOR?

▶ Given two Delone sets *X* and *Y*, under what conditions are they bounded distance equivalent?

▶ For the whole family of Delone sets, what are the properties of the metric spaces defined by d_B and d_{EB} ?

▶ Can we embed it into a "nice" and "familiar" metric space even if we need to "moderately" distort the distances?

B.d.e. to a lattice

Question

For a given X, does there exist a lattice Λ *such that X is b.d.e. to* Λ*?*

▶ Motivation: lattices are "well-distributed" so let's try to analyze the "simplest" case first.

Laczkovich criterion

Theorem (Laczkovich, 1992)

A Delone set X is b.d.e. to the scaled integer lattice $\alpha\mathbb{Z}^d$ if and only if *there is a positive constant C such that for every bounded, measurable* set $S \subset \mathbb{R}^d$ the inequality

$$
\left| \#(X \cap S) - \frac{1}{\alpha^d} \lambda_d(S) \right| \leq C \cdot \lambda_d(p_1(S))
$$

holds.

- $\blacktriangleright \lambda_d$ is the *d*-dimensional Lebesgue measure, and
- \blacktriangleright $p_1(S)$ is the 1-neighborhood of the boundary of *S*.

Density

Definition

For given discrete set $X \subset \mathbb{R}^d$, its $\textbf{density}$ is the limit

$$
\text{den}(X) = \# \text{ of points per unit volume } = \lim_{n \to \infty} \frac{\#(S_n \cap X)}{\lambda_d(S_n)}
$$

where S_n is a **van Hove sequence**, provided the limit exists and does not depend on the choice of *Sn*.

▶ Van Hove (or Følner) sequence is any sequence of measurable sets S_n such that for every $\varepsilon > 0$,

$$
\lim_{n\to\infty}\frac{\lambda_d(p_{\varepsilon}(S_n))}{\lambda_d(S_n)}=0.
$$

Density for lattices and PPS

▶ For lattice Λ with unit cell *U*,

$$
\text{den}(\Lambda) = \frac{1}{\text{vol}_d U}.
$$

▶ For PPS *X* with an underlying lattice Λ and motif *P*,

$$
\operatorname{den}(X) = \frac{\#(P)}{\operatorname{vol}_d U}.
$$

▶ Similarly, densities can be computed for large classes of cut-and-project sets and sets originating from substitution tilings.

B.d.e. for lattices and PPS

Theorem (Duneau, Oguey, 1991)

Two lattices Λ_1 and Λ_2 in \mathbb{R}^d are b.d.e. if and only if

 $den(\Lambda_1) = den(\Lambda_2).$

Corollary

Two periodic point sets X_1 and X_2 in \mathbb{R}^d are b.d.e. if and only if

 $den(X_1) = den(X_2).$

WHEN IS CPS B.D.E. TO A LATTICE?

Theorem (Kesten, 1966)

 $A \mathbb{R} \times \mathbb{R}$ *CPS* Λ *with a window* $W = [a, b]$ *is b.d.e. to a lattice if and only if there is a vector* $\mathbf{e} \in \Gamma$ *such that* $\pi_2(\mathbf{e}) = b - a$.

Theorem (Duneau, Oguey, 1990)

 L et Λ be a $\mathbb{R}^d \times \mathbb{R}^n$ CPS. If the window of Λ is a π_2 -projection of a *fundamental domain of n-sublattice of* Γ*, then* Λ *is b.d.e. to a d-lattice.*

Theorem (Grepstad, Lev, 2015)

Complete classifitcation of measurable windows of $\mathbb{R} \times \mathbb{R}^n$ that are *b.d.e. to lattices. Includes some fractal windows too.*

Proof of "If" part

PROOF OF "IF" PART

[Introduction](#page-1-0) [Local properties](#page-14-0) [Global properties](#page-25-0)

Penrose tiling is b.d.e. to a lattice

For Penrose tilings, the window is a rhombic triacontahedron, a union of several projections of unit cells, so every Penrose tiling is b.d.e. to a lattice.

WHEN IS SUBSTITUTION TILING B.D.E. TO A LATTICE?

- ▶ For substitution tilings, the **substitution matrix** *M* encodes how many original tiles are needed to subdivide the inflated tiles.
- ▶ The leading eigenvalue of *M*, the Perron-Frobenius eigenvalue λ_1 , helps to find the density.
- \blacktriangleright The eigenvalue λ_2 with the second largest absolute value shows when the tiling is b.d.e. to a lattice.

Theorem (Solomon, 2014)

\n- If
$$
|\lambda_2| < \lambda_1^{\frac{d-1}{d}}
$$
, then the tiling is b.d.e. to a lattice;
\n- If $|\lambda_2| > \lambda_1^{\frac{d-1}{d}}$, then the tiling is not b.d.e. to a lattice.
\n

WHY "B.D.E. TO A LATTICE"?

▶ A Delone set *X* has **finite local complexity** (or **FLC**) if for every radius $R > 0$, there are only finitely many patches of radius *R* in *X*.

Theorem (Frettlöh, G., Sadun, 2022)

 $Suppose\ X\subset \mathbb{R}^d$ is a Delone set with FLC. Then

- ▶ *either X is b.d.e. to a lattice, and then all sets that "look like" X are b.d.e. to the same lattice;*
- ▶ *or X is not b.d.e. to a lattice, and then there are* **uncountably** *many sets that "look like" X which represent uncountably many different b.d.e. classes.*

The metric spaces

- \blacktriangleright PPS(\mathbb{R}^d) is the space of PPS in \mathbb{R}^d ;
- ▶ PPS_{*r*}(\mathbb{R}^d) is the space of PPS with **packing radius greater than r**;
- ▶ PPS^R(\mathbb{R}^d) is the space of PPS with **covering radius less than R**;
- ▶ PPS(R *d* , κ) is the space of PPS with **density** κ. By default, we use $\kappa = 1$ everywhere.

Or combined notations like

 $\text{PPS}_r^R(\mathbb{R}^d)$, $\text{PPS}_r(\mathbb{R}^d, \kappa)$, $\text{PPS}^R(\mathbb{R}^d, \kappa)$, $\text{PPS}_r^R(\mathbb{R}^d, \kappa)$.

And similar notations for the spaces of lattices based on $\mathrm{Latt}(\mathbb{R}^d)$ for the space of all lattices in $\mathbb{R}^d.$

WHAT ARE WE LOOKING FOR?

For every metric space *X* from the previous slide equipped with d_B or d_{EB} , we are looking for a function $f : X \longrightarrow Y$ where *Y* is a **Hilbert space with countable basis** and *f* is either bi-Lipschitz or coarse.

▶ **bi-Lipschitz**: there exists a constant *L* such that

$$
\frac{1}{L} \cdot d(x_1, x_2) \leq d(f(x_1), f(x_2)) \leq L \cdot d(x_1, x_2).
$$

► coarse: there exist two positive values functions ρ_-, ρ_+ such that $\lim \rho_{-}(t) = \infty$ and

$$
\rho_{-}(d(x_1,x_2)) \leq d(f(x_1),f(x_2)) \leq \rho_{+}(d(x_1,x_2)).
$$

Motivation: bi-Lipschitz or coarse embeddings into a Hilbert space allow us to approximate the bottleneck distances.

BI-LIPSCHITZ EMBEDDINGS

Theorem (G., Virk, Zava, 2023+)

For sufficiently small r and for sufficiently large R, none of the PPS *or* Latt *spaces can be bi-Lipschitz embedded into a Hilbert space with countable basis.*

This also pertains to the PPS with bounded diameter of unit cells or with bounded cardinality of motifs.

Idea: the family of lattices Λ_{α} with bases (1,0) and (α ,1) for $\alpha \in [0, \frac{1}{2}$ $\frac{1}{2}$] have pairwise distances bounded away from 0 for both d_{B} and d_{FB} .

Coarse embeddings: positive results

Theorem $(G., Virk, Zava, 2023+)$

For every fixed density, the spaces Latt*^r ,* Latt*^R ,* Latt*^R r can be coarsely embedded into Hilbert space.*

This also pertains to the spaces of lattices and PPS with bounded diameters of unit cells, and the space of PPS with bounded cardinality of motifs.

Idea: the family $\mathrm{Latt}_r(\mathbb{R}^d,1)$ is bounded which can be tracked from the proof of Duneau and Oguey of b.d.e. for lattices of equal densities.

 $e₁$

v

 e_2

Coarse embeddings: negative results

Theorem (G., Virk, Zava, 2023+)

For every fixed density, the spaces PPS*^r ,* PPS*^R ,* PPS *cannot be coarsely embedded into Hilbert space.*

Idea: There is a known construction for coarse nonembeddability into Hilbert spaces using coarse embeddings of a sequence of Hamming cubes.

PPS_r cannot be coarsely embedded

OPEN OUESTION

 \blacktriangleright What about coarse embeddability of $\text{Latt}(\mathbb{R}^d)$ and $\mathrm{PPS}_r^R(\mathbb{R}^d)$?

\blacktriangleright What about coarse embeddability of $\text{Latt}(\mathbb{R}^d)$ and $\mathrm{PPS}_r^R(\mathbb{R}^d)$?

THANK YOU!