Concrete polytopes may not tile the space joint work with Igor Pak (UCLA)

Alexey Garber

The University of Texas Rio Grande Valley

Discrete Geometry and Topological Combinatorics Seminar Freie Universität Berlin, June 24, 2022

BASIC NOTIONS

- \blacktriangleright Integer point: any point in \mathbb{R}^d with integer coordinates
- ▶ \mathbb{Z}^d : the *d*-dimensional integer lattice that consists of all integer points in R *d*

▶ Lattice polygon or polytope: any convex polygon or polytope with vertices in Z *d*

Pick's formula

Theorem (Pick, 1899)

For every lattice polygon P,

$$
\operatorname{area}(P) = I + \frac{B}{2} - 1.
$$

DISCRETE AREA

At every lattice point *x* we place a small disk.

Definition

Let $w_P(x)$ be the solid angle of *P* at *x* which is the portion of the disk at *x* in *P*.

Definition

We define the **discrete area** of *P* as

$$
\chi(P) = \sum_{x \in \mathbb{Z}^2} w_P(x).
$$

Discrete area, part 2

$$
I + \frac{B}{2} - 1 = I + \frac{\pi(B - 2)}{2\pi} = \chi(P)
$$

▶ Pick's theorem claims that the discrete area is equal to the usual area.

PROOF OF PICK'S THEOREM (FOR TRIANGLES)

Proof of Pick's theorem (for triangles)

Proof of Pick's theorem (for triangles)

Both the covered area and the total number of covered circles grow as $C \cdot R^2$ but the error accumulates only on the boundary so the difference is at most linear.

Discrete volume

Definition

For every integer polytope *P* in R *d* we define

 \blacktriangleright the **solid angle** at *x* as

$$
w_P(x) := \frac{\text{vol}(B_\varepsilon(x) \cap P)}{\text{vol}(B_\varepsilon(x))}
$$

where $B_{\varepsilon}(x)$ is the ball of small radius ε centered at *x*, and

▶ **discrete volume** of *P* as the sum of solid angles at all integer points:

$$
\chi(P):=\sum_{x\in\mathbb{Z}^d}w_P(x).
$$

CONCRETE POLYTOPES

Definition

We call polytope *P* **concrete** if

$$
\chi(P) = \text{vol}(P).
$$

- ▶ Every polygon is concrete but not every polytope is concrete
- ▶ The family of Reeve's tetrahedra

 $R_n = \text{conv} \{ (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, n) \}$

contains tetrahedra with bounded discrete volume but arbitrarily large volume.

THE CONJECTURE

▶ Does being concrete mean anything?

THE CONJECTURE

▶ Does being concrete mean anything?

Conjecture (Brandolini, Colzani, Robins, Travaglini, 2020)

If P ⊂ \mathbb{R}^d *is a concrete polytope, then P <code>multitiles</code>* \mathbb{R}^d *<i>using translations and finitely many reflections.*

▶ *P* **multitiles** \mathbb{R}^d if there is an integer $k \ge 1$ and an infnite family of congruent copies of *P* such that every generic point belongs to exactly *k* copies.

Supporting data:

- ▶ All two-dimensional lattice polygons;
- ▶ All lattice zonotopes.

MAIN RESULT

Theorem (G., Pak, 2020)

There exists a concrete polytope $P \subset \mathbb{R}^3$ which does not multitile the *space.*

▶ Moreover, for all *N* we can get such a concrete polytope *P* with more than *N* vertices/faces/edges.

Tools: volume defect

Definition

For lattice polytope *P* we define the **volume defect** as

$$
\delta(P) = \chi(P) - \text{vol}(P).
$$

▶ The volume defect is additive for disjoint pieces

Tools: Dehn invariant

Definition

For polytope *P* we define the **Dehn invariant** as

$$
\mathbb{D}(P) := \sum_{e \in E(P)} \text{length}(e) \otimes \text{angle}(e) \in \mathbb{R} \otimes_{\mathbb{Z}} (\mathbb{R}/\pi\mathbb{Z})
$$

where $E(P)$ is the set of edges of *P*.

Definition

Alternatively, for every **Kagan function** $f : \mathbb{R} \longrightarrow \mathbb{R}$ such that

$$
f(a + b) = f(a) + f(b)
$$
 and $f(\pi) = 0$

we define

$$
D_f(P) := \sum_{e \in E(P)} \text{length}(e) \cdot f(\text{angle}(e)) \in \mathbb{R}.
$$

Dehn invariant and scissor congruence

- ▶ Originally, the Dehn invariant was used to answer Hilbert's third problem on scissor congruence in \mathbb{R}^3 .
- ▶ It is also related to multitilings.

Proposition

$$
\blacktriangleright
$$
 If P multiities \mathbb{R}^3 , then $\mathbb{D}(P) = 0$;

 \blacktriangleright If P multitiles \mathbb{R}^3 by **translations***, then* $\delta(P) = 0$ *.*

Idea of the proof, orginally by Debrunner (1980) and Mürner (1975).

If $\mathbb{D}(P) \neq 0$, then in a large ball of radius *R*, the total value of the Dehn invariant is $\Theta(R^3) \widetilde{D}(P)$. On the other hand, only the thin part next to the boundary contributes, so it must be $O(R^2)$. П

Idea of the counterexample

Task

Construct a lattice polytope P such that

$$
\delta(P) = 0 \qquad \text{and} \qquad \mathbb{D}(P) \neq 0.
$$

VALUATIONS

Definition

Function φ defined on some family of convex bodies is called a **valuation** if for all relevant *P*, *Q*,

$$
\varphi(P) + \varphi(Q) = \varphi(P \cup Q) + \varphi(P \cap Q)
$$

provided $\varphi(\emptyset) = 0$.

- ▶ Volume
- ▶ Discrete volume
- ▶ The number of integer points
- ▶ Dehn invariant
- \blacktriangleright *D_f* for every Kagan function *f*

McMullen's theory of lattice valuations

Definition

Minkowski sum of two polytopes *P* and *Q* is

$$
P + Q := \{a + b \mid a \in P, b \in Q\}.
$$

Theorem (McMullen, 1974)

Let φ *be a valuation on lattice polytopes such that* $\varphi(P+t) = \varphi(P)$ *for* e very $t \in \mathbb{Z}^d$. Then for all polytopes P_i and non-negative integers t_i ,

$$
\varphi(t_1P_1+\ldots+t_kP_k)
$$

is a polynomial of degree at most d in tⁱ 's.

▶ Mixed volumes, Ehrhart theory, etc.

Dehn invariant in \mathbb{R}^3 as valuation

Lemma

For every Kagan function f ,

$$
D_f(t_1P_1 + \ldots + t_kP_k) = t_1D_f(P_1) + \ldots + t_kD_f(P_k).
$$

Proof outline.

$$
\blacktriangleright D_f(tP) = tD_f(P);
$$

 \blacktriangleright Since $D_f(\cdot)$ is a valuation,

$$
D_f(t_1P_1+\ldots+t_kP_k)
$$

is a polynomial of degree at most 3;

▶ The restriction of that polynomial on every ray from the origin is linear, so the polynomial must be linear as well.

Volume defect in \mathbb{R}^3 as valuation

Lemma

$$
\delta(t_1P_1+\ldots+t_kP_k)=t_1\delta(P_1)+\ldots+t_k\delta(P_k).
$$

Proof outline.

- \blacktriangleright Both vol(·) and $\chi(\cdot)$ are lattice valuations so both vol(*tP*) and $\chi(t)$ are cubic polynomials;
- \blacktriangleright Moreover, vol(*tP*) and χ (*tP*) are **odd** cubic polynomials (Macdonald, 1971) with the same leading coefficient;

\blacktriangleright Thus,

$$
\delta(tP) = \chi(tP) - \text{vol}(tP)
$$

is linear and the claim follows.

I

Three tetrahedra: regular

 $T_1 = \text{conv} \{ (0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1) \}$

 $\delta(T_1) = \frac{3\alpha}{\pi} - \frac{4}{3}$ $\frac{4}{3}$ and $D_f(T_1) = 6\sqrt{2}f(\alpha)$ where $\alpha = \arccos \frac{1}{3}$.

Three tetrahedra: standard

 $T_2 = \text{conv} \{ (0, 0, 0), (2, 2, -1), (2, -1, 2), (1, -2, -2) \}$

 $\delta(T_2) = -\frac{5\alpha}{4\pi} - \frac{1}{2}$ $\frac{1}{2}$ and $D_f(T_2) = -\frac{9}{\sqrt{2}}$ $\frac{1}{2}f(\alpha)$ where $\alpha = \arccos \frac{1}{3}$.

Three tetrahedra: orthoscheme

$$
T_3=conv\{\quad(0,0,0),\quad(2,2,-1),\quad(3,0,-3),\quad(5,-1,-1)\quad\}
$$

$$
\delta(T_3) = \frac{2}{3}
$$
 and $D_f(T_3) = 0$.

PROOF OF THE THEOREM

Theorem (G., Pak, 2020)

There exists a concrete polytope $P \subset \mathbb{R}^3$ which does not multitile the *space.*

▶ Moreover, for all *N* we can get such a concrete polytope *P* with more than *N* vertices/faces/edges.

Proof.

\blacktriangleright Let

$$
P := 5T_1 + 12T_2 + 19T_3.
$$

Then $\delta(P) = 0$ and $D_f(P) \neq 0$ as long as $f(\alpha) \neq 0$.

▶ Let *Q* be a lattice zonotope with many vertices/edges/faces, then $P + Q$ works.

Higher dimensions and Hadwiger invariants

- ▶ **Hadwiger invariants** are generalizations of the Dehn invariant for higher dimensions;
- \blacktriangleright The orthogonal prism $P \times [0, 1]$ has non-zero codimension 2 Hadwiger invariant and this can be generalized further;

Theorem (Sydler, Jessen)

For d = 3, 4*, if all Hadwiger invariants of P are zeros, then P is scissor congruent with a d-cube.*

A similar conjecture is still open in \mathbb{R}^d for $d \geq 5$.

SUPER CONJECTURE

Definition

We call lattice polytope *P* ⊂ R *d* **super concrete** if it is

- \blacktriangleright concrete, and
- ▶ scissor congruent with a *d*-cube.

Conjecture

For every $d\geq 3$, there exists a super concrete polytope $P\subset \mathbb{R}^d$ that *cannot multitile the space.*

THANK YOU!