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Basic notions

▶ Integer point: any point in Rd with integer coordinates

▶ Zd: the d-dimensional integer lattice that consists of all
integer points in Rd

▶ Lattice polygon or polytope: any convex polygon or
polytope with vertices in Zd
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Pick’s formula
Theorem (Pick, 1899)
For every lattice polygon P,

area(P) = I + B
2
− 1.

I = 10 B = 7 area = 12.5 3/25
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Discrete area
At every lattice point x we place a small disk.

Definition
Let wP(x) be the solid angle of P at x which is the portion of the
disk at x in P.

Definition
We define the discrete area of P as

χ(P) =
∑
x∈Z2

wP(x).
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Discrete area, part 2

I + B
2
− 1 = I + π(B− 2)

2π
= χ(P)

▶ Pick’s theorem claims that the discrete area is equal to the
usual area.
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Proof of Pick’s theorem (for triangles)
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Proof of Pick’s theorem (for triangles)
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Proof of Pick’s theorem (for triangles)

Both the covered area and the total number of covered circles
grow as C · R2 but the error accumulates only on the boundary
so the difference is at most linear.
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Discrete volume

Definition
For every integer polytope P in Rd we define
▶ the solid angle at x as

wP(x) :=
vol(Bε(x) ∩ P)
vol(Bε(x))

where Bε(x) is the ball of small radius ε centered at x, and

▶ discrete volume of P as the sum of solid angles at all
integer points:

χ(P) :=
∑
x∈Zd

wP(x).
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Concrete polytopes

Definition
We call polytope P concrete if

χ(P) = vol(P).

▶ Every polygon is concrete but not every polytope is
concrete

▶ The family of Reeve’s tetrahedra

Rn = conv{ (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0,n) }

contains tetrahedra with bounded discrete volume but
arbitrarily large volume.
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The conjecture
▶ Does being concrete mean anything?

Conjecture (Brandolini, Colzani, Robins, Travaglini, 2020)
If P ⊂ Rd is a concrete polytope, then P multitiles Rd using
translations and finitely many reflections.

▶ P multitiles Rd if there is an integer k ≥ 1 and an infnite
family of congruent copies of P such that every generic
point belongs to exactly k copies.

Supporting data:
▶ All two-dimensional lattice polygons;
▶ All lattice zonotopes.
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Main result

Theorem (G., Pak, 2020)
There exists a concrete polytope P ⊂ R3 which does not multitile the
space.

▶ Moreover, for all N we can get such a concrete polytope P
with more than N vertices/faces/edges.
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Tools: volume defect

Definition
For lattice polytope P we define the volume defect as

δ(P) = χ(P)− vol(P).

▶ The volume defect is additive for disjoint pieces
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Tools: Dehn invariant
Definition
For polytope P we define the Dehn invariant as

D(P) :=
∑

e∈E(P)

length(e)⊗ angle(e) ∈ R⊗Z (R/πZ)

where E(P) is the set of edges of P.

Definition
Alternatively, for every Kagan function f : R −→ R such that

f (a+ b) = f (a) + f (b) and f (π) = 0

we define

Df (P) :=
∑

e∈E(P)

length(e) · f (angle(e)) ∈ R.
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Dehn invariant and scissor congruence
▶ Originally, the Dehn invariant was used to answer Hilbert’s

third problem on scissor congruence in R3.
▶ It is also related to multitilings.

Proposition

▶ If P multitiles R3, then D(P) = 0;
▶ If P multitiles R3 by translations, then δ(P) = 0.

Idea of the proof, orginally by Debrunner (1980) and
Mürner (1975).
If D(P) ̸= 0, then in a large ball of radius R, the total value of the
Dehn invariant is Θ(R3)D(P). On the other hand, only the thin
part next to the boundary contributes, so it must be O(R2).
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Idea of the counterexample

Task
Construct a lattice polytope P such that

δ(P) = 0 and D(P) ̸= 0.
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Valuations

Definition
Function φ defined on some family of convex bodies is called a
valuation if for all relevant P,Q,

φ(P) + φ(Q) = φ(P ∪Q) + φ(P ∩Q)

provided φ(∅) = 0.

▶ Volume
▶ Discrete volume
▶ The number of integer points
▶ Dehn invariant
▶ Df for every Kagan function f
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McMullen’s theory of lattice valuations
Definition
Minkowski sum of two polytopes P and Q is

P+Q := {a+ b | a ∈ P, b ∈ Q}.

Theorem (McMullen, 1974)
Let φ be a valuation on lattice polytopes such that φ(P+ t) = φ(P) for
every t ∈ Zd. Then for all polytopes Pi and non-negative integers ti,

φ(t1P1 + . . .+ tkPk)

is a polynomial of degree at most d in ti’s.

▶ Mixed volumes, Ehrhart theory, etc.
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Dehn invariant in R3 as valuation
Lemma
For every Kagan function f ,

Df (t1P1 + . . .+ tkPk) = t1Df (P1) + . . .+ tkDf (Pk).

Proof outline.
▶ Df (tP) = tDf (P);
▶ Since Df (·) is a valuation,

Df (t1P1 + . . .+ tkPk)

is a polynomial of degree at most 3;
▶ The restriction of that polynomial on every ray from the

origin is linear, so the polynomial must be linear as well.
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Volume defect in R3 as valuation
Lemma

δ(t1P1 + . . .+ tkPk) = t1δ(P1) + . . .+ tkδ(Pk).

Proof outline.
▶ Both vol(·) and χ(·) are lattice valuations so both vol(tP)

and χ(tP) are cubic polynomials;
▶ Moreover, vol(tP) and χ(tP) are odd cubic polynomials

(Macdonald, 1971) with the same leading coefficient;
▶ Thus,

δ(tP) = χ(tP)− vol(tP)

is linear and the claim follows.

18/25



Pick’s formula Concrete polytopes Valuations Counterexample

Three tetrahedra: regular

T1 = conv{ (0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1) }

δ(T1) =
3α
π − 4

3 and Df (T1) = 6
√
2f (α) where α = arccos 1

3 .
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Three tetrahedra: standard

T2 = conv{ (0, 0, 0), (2, 2,−1), (2,−1, 2), (1,−2,−2) }

δ(T2) = −5α
4π − 1

2 and Df (T2) = − 9√
2
f (α)where α = arccos 1

3 .
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Three tetrahedra: orthoscheme

T3 = conv{ (0, 0, 0), (2, 2,−1), (3, 0,−3), (5,−1,−1) }

δ(T3) =
2
3 and Df (T3) = 0.
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Proof of the theorem
Theorem (G., Pak, 2020)
There exists a concrete polytope P ⊂ R3 which does not multitile the
space.

▶ Moreover, for all N we can get such a concrete polytope P
with more than N vertices/faces/edges.

Proof.
▶ Let

P := 5T1 + 12T2 + 19T3.

Then δ(P) = 0 and Df (P) ̸= 0 as long as f (α) ̸= 0.
▶ Let Q be a lattice zonotope with many

vertices/edges/faces, then P+Q works.
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Higher dimensions and Hadwiger invariants

▶ Hadwiger invariants are generalizations of the Dehn
invariant for higher dimensions;

▶ The orthogonal prism P× [0, 1] has non-zero codimension
2 Hadwiger invariant and this can be generalized further;

Theorem (Sydler, Jessen)
For d = 3, 4, if all Hadwiger invariants of P are zeros, then P is
scissor congruent with a d-cube.

▶ A similar conjecture is still open in Rd for d ≥ 5.
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Super conjecture

Definition
We call lattice polytope P ⊂ Rd super concrete if it is
▶ concrete, and
▶ scissor congruent with a d-cube.

Conjecture
For every d ≥ 3, there exists a super concrete polytope P ⊂ Rd that
cannot multitile the space.
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THANK YOU!
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