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Intro Voronoi Hilbert History R5 R5 : dual cells

Parallelohedra

Definition
Convex d-dimensional polytope P is called parallelohedron if
Rd can be (face-to-face) tiled into parallel copies of P.

Two types of two-dimensional parallelohedra
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Three-dimensional parallelohedra

In 1885 Russian crystallographer Fedorov listed all types of
three-dimensional parallelohedra.

Parallelepiped and hexagonal prism with centrally symmetric
base.
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Three-dimensional parallelohedra

In 1885 Russian crystallographer Fedorov listed all types of
three-dimensional parallelohedra.

Rhombic dodecahedron, elongated dodecahedron, and
truncated octahedron
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Tiling by elongated dodecahedra (from Wikipedia)
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Minkowski-Venkov conditions
Theorem (Minkowski, 1897; Venkov, 1954; and McMullen,
1980)
P is a d-dimensional parallelohedron iff it satisfies the following
conditions:
1. P is centrally symmetric;
2. Any facet of P is centrally symmetric;
3. Projection of P along any its (d− 2)-dimensional face is

parallelogram or centrally symmetric hexagon.

▶ If P tiles Rd in any way (face-to-face or non face-to-face),
then P satisfies the Minkowski-Venkov conditions;

▶ If P satisfies these conditions, then there is a face-to-face
tiling of Rd with copies of P.
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Parallelohedra to Lattices
▶ Let P be a parallelohedron, i.e. a centrally symmetric

convex polytope that satisfies the Minkowski-Venkov
conditions;

▶ Let T (P) be the unique face-to-face tiling of Rd into parallel
copies of P. Then the centers of the tiles form a lattice, i.e.
the set of integer linear combinations of a basis.
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Lattices to Paralleohedra
▶ Let Λ be an arbitrary d-dimensional lattice and let O be a

point of Λ.

▶ We construct the polytope consisting of points that are
closer to O than to any other point of Λ (the
Dirichlet-Voronoi polytope of Λ).

▶ Then DVΛ is a parallelohedron and the points of Λ are
centers of the corresponding tiles.

O
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The Voronoi conjecture

Conjecture (Voronoi, 1909)
For every parallelohedron P there exists a lattice Λ such that P is
affinely equivalent to the Dirichlet-Voronoi polytope of Λ.

−→

8/42



Intro Voronoi Hilbert History R5 R5 : dual cells

Voronoi conjecture in R2

▶ Each parallelogram can be transformed into some
rectangle and all rectangles are Voronoi polygons.

▶ Each centrally-symmetric hexagon can be transformed into
some hexagon inscribed in a circle. This transformation is
uniquemodulo isometry and/or homothety. All
centrally-symmetric hexagons inscribed in circles are
Voronoi polygons.
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The Voronoi conjecture: small dimensions
▶ R2: folklore.
▶ R3: kind of folklore. All three-dimensional parallelohedra

are known due to Fedorov, and then one can check that
they satisfy the Voronoi conjecture.

Theorem (Delone, 1929)
The Voronoi conjecture is true in R4.

Classification: there are 52 four-dimensional parallelohedra;
Delone, 1929 and Stogrin, 1974.

Theorem (G., Magazinov, 2019+)
The Voronoi conjecture is true in R5.

Classification: there are 110244 five-dimensional (Voronoi)
parallelohedra; Dutour Sikirić, G., Schürmann, and Waldmann,
2016. 10/42
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Hilbert’s 18th problem: lattices in Rd

▶ Finiteness of the family of crystallographic groups in Rd

▶ Existence of a polytope that tiles Rd but can’t be obtained
as a fundamental region of crystallographic group

▶ Densest (sphere) packings in R3 (Kepler conjecture)
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Hilbert’s 18th problem: lattices in Rd

▶ Finiteness of the family of crystallographic groups in Rd

▶ Bieberbach, 1911-12;

▶ Existence of a polytope that tiles Rd but can’t be obtained
as a fundamental region of crystallographic group
▶ Reinhardt, 1928 in R3 and Heesch, 1935 in R2;

▶ Densest (sphere) packings in R3 (Kepler conjecture)
▶ Hales, 2005 and 2017.
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Which (convex) polytopes may tile the space?

What if we do not restrict to translations only and allow all
isometric copies?

▶ R2: If n ≥ 7, then no convex n-gon can tile the plane;

Rao (2017+): full classification of pentagons (15 types).

▶ R3: the maximal number of facets for stereohedron is
unknown.

Engel (1981): There exists a stereohedron with 38 facets;

Santos et. al. (2001-2011): Dirichlet stereohedron (i.e. the
Voronoi polytope of an orbit of crystallographic group)
cannot have more than 92 facets.
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Parallelohedra and lattice covering problem

Problem: for a given d, find the lattice that gives an optimal
covering of Rd with balls of equal radii.

▶ R2: Kershner, 1939 and A∗
2;

▶ R3: Bambah, 1954 and A∗
3 (the BCC lattice);

▶ R4: Delone and Ryshkov, 1963 and A∗
4;

▶ R5: Ryshkov and Baranovskii, 1976 and A∗
5;

▶ Rd, d = 6, 7, 8: Schürmann and Vallentin, 2006 and lattices
different from A∗

d. Best known lattices, no proof that they
are actually the solutions.

The results in dimensions 4 through 8 rely on reduction theory
for lattices, or (partial) classification of Voronoi parallelohedra.
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SVP and CVP: using parallelohedra for lattice
algorithms

▶ SVP (Shortest Vector Problem): find a shortest non-zero
vector of a given lattice Λ;

▶ CVP (Closest Vector Problem): for a given target vector t
and a lattice Λ, find the vector x ∈ Λ that minimizes ||t− x||.

▶ LLL-algorithm for lattice reduction and polynomial
fatorization over Q;

▶ Solvability in radicals;
▶ Cryptography;
▶ Integer optimization.
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The Voronoi conjecture

Conjecture (Voronoi, 1909)
For every parallelohedron P there exists a lattice Λ such that P is
affinely equivalent to the Dirichlet-Voronoi polytope of Λ.

15/42



Intro Voronoi Hilbert History R5 R5 : dual cells

Voronoi’s generatrix

Voronoi’s generatrix is one of the tools that can help checking
the Voronoi conjecture for given P.
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Voronoi’s generatrix

It is a continuous piecewise linear function G : Rd −→ R with
constant gradient on each tile.
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Voronoi’s generatrix

We put G equal to 0 on one of the tiles.
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Voronoi’s generatrix

When we pass across one facet of the tiling, the gradient of G
changes.
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Voronoi’s generatrix

After that we are trying to “glue” adjacent shells. This can
always be done “locally” assuming our polytope is not a direct
product of two parallelohedra.
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Voronoi’s generatrix

If it can be done “globally”, we obtain the graph of G.
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Voronoi’s generatrix II
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Properties of generatrix

▶ The graph of generatrix G looks like a “piecewise linear”
paraboloid.

▶ And actually there is a paraboloid y = xtQx for some
positive definite quadratic form Q tangent to the generatrix
at the centers of its shells.

▶ Moreover, if we consider an affine transformation A of this
paraboloid into paraboloid y = xtx then the tiling by copies
of P will transform into the Voronoi tiling for some lattice.

So to prove the Voronoi conjecture for P it is sufficient (and
necessary) to show existence of a generatrix.
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Constructing the Voronoi and Delone tilings

▶ Lifting construction for a point set X.
▶ Lift the points of X to paraboloid

y = xtx in Rd+1.
▶ Construct the tangent hyperplanes and

take the intersection of the upper
half-spaces; project this infinite
polyhedron back to Rd to get the
Voronoi tiling of X.

▶ Take the convex hull of points on
y = xtx and project this (infinite)
polyhedron back to Rd to get the
Delone tiling of X.
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Primitive parallelohedra

Definition
Let P be a d-dimensional parallelohedron. P is called primitive,
if every vertex of the corresponding tiling belongs to exactly
d+ 1 copies of P.

Primitive parallelohedra appear exactly as dual to Delone
triangulations (not arbitrary Delone tilings).

Theorem (Voronoi, 1909)
The Voronoi conjecture is true for primitive parallelohedra.
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Primitive parallelohedra II

Definition
Let P be a d-dimensional parallelohedron. P is called
k-primitive if every k-face of the corresponding tiling belongs
to exactly d+ 1− k copies of P.

Theorem (Zhitomirskii, 1929)
The Voronoi conjecture is true for (d− 2)-primitive d-dimensional
parallelohedra. Or the same, it is true for parallelohedra with all
projections along (d− 2)-faces being hexagons.
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Dual cells

Definition
The dual cell D(F) of a face F of given parallelohedral tiling is
the set of all centers of parallelohedra that share F.
If F is (d− k)-dimensional then the corresponding cell is called
k-cell.

22/42



Intro Voronoi Hilbert History R5 R5 : dual cells

Dual 3-cells and 4-dimensional parallelohedra
Lemma (Delone, 1929)
There are five types of three-dimensional dual cells.
▶ tetrahedron,
▶ octahedron,
▶ quadrangular pyramid,
▶ triangular prism, and
▶ parallelepiped.

Theorem (Ordine, 2005)
The Voronoi conjecture is true for parallelohedra without cubical or
prismatic dual 3-cells.
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Topological help

Question
Are there any topological reasons that will prevent us to “glue” the
graph of a generatrix locally?

Definition
Let Pπ, the π-surface of P, be the manifold obtained from the
surface of P by removing non-primitive (d− 2)-faces and
identifying opposite points.

▶ We can track the gradient of G along every curve on Pπ and
the generatrix exists if and only if the values are consistent
along every closed curve on Pπ.
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Half-belt cycles
▶ Any half-belt cyclewhich starts at the center of a facet and

ends at the center of the opposite facet crossing only three
parallel primitive (d− 2)-faces gives consistent gradient
values.
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GGM condition
Theorem (G., Gavrilyuk, Magazinov, 2015)
If the group of one-dimensional homologies H1(Pπ,Q) of the
π-surface of parallelohedron P is generated by half-belt cycles then the
Voronoi conjecture is true for P.

Which parallelohedra satisfy this condition?

▶ All 5 parallelohedra in R3.

▶ All 52 parallelohedra in R4.

▶ All 110244 Voronoi parallelohedra in R5 (Dutour-Sikirić,
G., and Magazinov, 2020).

▶ All Voronoi parallelohedra for “small perturbations” of
the dual root lattices D∗

n, E∗
6, E∗

7, and E∗
8 (G., 2021+).
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Zonotopes and free directions
Theorem (Erdahl, 1999)
The Voronoi conjecture is true for space-filling zonotopes.

▶ The space-filling zonotopes and corresponding lattices
give rise to regular oriented matroids and vice versa.

▶ For d ≤ 3, all parallelohedra are zonotopes, but for d ≥ 4
the non-zonotopes outnumber the zonotopes.

Definition
Let I be a segment. If P+ I and P are both parallelohedra, then I
is called a free direction for P.

▶ If I is a free direction for P, then the Voronoi conjecture
holds (or doesn’t hold) for P and for P+ I simultaneously
(Grishukhin, 2004; Végh, 2015; Magazinov, 2015).
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Proof of the Voronoi conjecture in R5

Theorem (G., Magazinov, 2019+)
The Voronoi conjecture is true in R5.

Let P be a five-dimensional parallelohedron.
▶ If P can be extended, then its extension has combinatorics

of one of the 110244 Voronoi parallelohedra in R5;

▶ In the five-dimensional case, the global combinatorics of a
Voronoi parallelohedron guarantees the geometric part of
the Voronoi conjecture.

▶ Local combinatorics can be used to show that P can be
extended.
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Combinatorics of extended parallelohedra
Theorem (G., Magazinov)
Let P be a d-dimensional parallohedron. If I is a free direction for P
and the projection of P along I satisfies the Voronoi conjecture, then
P+ I has the combinatorics of a Voronoi parallelohedron.

A parallelohedron and its extension
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Combinatorics of extended parallelohedra
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Combinatorics of extended parallelohedra

P+ I can be extended along blue direction and form layers
along red sublattice
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Combinatorics of extended parallelohedra

We can transform blue direction into orthogonal to the red
sublattice and transform the section into the Voronoi polytope
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Combinatorics of extended parallelohedra

If the blue edge is long enough, then the combinatorial
equivalence is “natural”
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Proof of the Voronoi conjecture in R5

Let P be a five-dimensional parallelohedron.
▶ If P can be extended, then its extension has combinatorics

of one of 110244 Voronoi parallelohedra in R5;

Done!

▶ In the five-dimensional case, global combinatorics of a
Voronoi parallelohedron guarantees the geometric part of
the Voronoi conjecture.

Done!

▶ Local combinatorics can be used to show that P can be
extended.

Careful analysis of dual 3- and 4-cells.
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Dual cell approach: R5 and dual 3-cells

Let P be a 5-dimensional paralleohedron.

Dual 3-cells of P can be:
▶ tetrahedra, octahedra, pyramids;
▶ triangular prisms;
▶ parallelepipeds.

What information do they carry?
▶ If all dual 3-cells are tetrahedra, octahedra, or pyramids,

then P satisfies the Voronoi conjecture (Ordine’s case).
▶ If there is a two-dimensional face F of P such that D(F) is a

parallelepiped, then every edge of F is a free direction for P.
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Cubic dual cells and free directions
Def: 6-belt of P is a set of 6 facets parallel to one face of
codimension 2.
Lemma (Grishukhin, Magazinov)
A direction I is free for P if and only if every 6-belt of P has at least
one facet parallel to I.

Lemma
If F is a face with cubical dual cell, then every edge of F is a free
direction.

Tool: the space of half-lattice points Λ1/2 = (12Λ)/Λ.

▶ The half-lattice points serve as symmetry points for the
tiling into copies of P and for the dual cell complex;

▶ They split into 32 classes and can be identified with F5
2.
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Half-lattice points for 6-belts

For every 6-belt, the centers of facets parallel to this belt give a
two-dimensional subspace of F5

2 (except the origin).

33/42



Intro Voronoi Hilbert History R5 R5 : dual cells

Half-lattice points for edges of F

The dual cell of F is a combinatorial cube.
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Half-lattice points for edges of F

If e is an edge of F, then the dual cell of e contains an additional
point.
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Half-lattice points for edges of F

The dual cell D(e) defines 7 non-trivial half-integer classes
within the cube.
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Half-lattice points for edges of F

And 8 more classes with the additional vertex. In total there are
15 classes that give a four-dimensional subspace of F5

2.
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2+ 4 > 5

▶ The two- and four-dimensional subspaces of F5
2 intersect

non-trivially;

▶ The intersection class is such that the symmetry in its
representative
▶ preserves one of the facets from the belt, and
▶ swaps two copies of P that contain e.

▶ This is possible only if e is parallel to the facet which is
preserved.
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Dual cell approach: R5 and dual 3-cells

Let P be a 5-dimensional paralleohedron.

Dual 3-cells of P can be:
▶ tetrahedra, octahedra, pyramids;
▶ triangular prisms;
▶ parallelepipeds.

Suppose F is a face of P with prismatic dual cell.

Lemma
Either F is a triangle or some edge of F is a free direction for P.
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What if F is not a triangle?
We consider the space of parity classes Λp = Λ/2Λ. This space
is also isomorphic to F5

2 and has 32 representatives. It serves as
the source of possible additional points in all dual cells.

▶ F is a two-dimensional face of P;

▶ The dual cell of F spans a three-dimensional affine
subspace πF of Λp;

▶ Each edge of F has an additional point in its dual cell, and
since F is an n-gon for n > 3, at least two edges give points
in one translation of πF;

▶ After that we can “fix” the vertices of D(F) among the
parity classes and consider all cases for additional vertices
exhaustively.
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Dual 4-cells for the edges of F
The same exhaustive search gives possible 4-cells of the edges
of F. There are two possible types that don’t give a free
direction right away.

Prism over tetrahedron or pyramid over triangular prism

It remains to consider four cases for different combinations of
these dual cells among the edges of F.
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Cases for dual 4-cells

▶ Prism-Prism-Prism

▶ P is a direct product of two parallelohedra.

▶ Prism-Prism-Pyramid

▶ We can look on the parity classes more carefully.

▶ Prism-Pyramid-Pyramid

▶ Again, we can look on the parity classes more carefully.

▶ Pyramid-Pyramid-Pyramid

▶ A modification of Ordine’s approach to the Voronoi
generatrix construction works.
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Prism-Pyramid-Pyramid case
x

z

y

X
′

B

A,A′

C

F
X

Z

Z
′

Y
′

Y

G

We start from the face F = xyzwith the prismatic dual cell
XYZX′Y′Z′.
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Prism-Pyramid-Pyramid case
x

z

y

X′
X′

B

A,A′

C

F
X X

Z

Z′

Y ′

A′

Y ′

Y
Y A

G

The dual cell of xy is the prism AXYZA′X′Y′Z′ and AXYA′X′Y′

is another prismatic dual 3-cell.
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Prism-Pyramid-Pyramid case
x

z

t

y

X′
X′

B

A,A′

C

F Hxy

X X

Z

Z′

Y ′

A′

Y ′

Y
Y A

G

The corresponding two-dimensional face of P must be a
triangle or there is a free direction.
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Prism-Pyramid-Pyramid case
x

z

t

y

X′
X′

BB

A,A′

C C

F Hxy

X X

Z

Z′

Y ′

A′

Y ′

Y
Y A

G

Exhaustively checking all parity classes we can identify the
dual cells of the edges xt and yt.
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Prism-Pyramid-Pyramid case
x

z

t

y

X′
X′

BB

A,A′

C C

F Hxy

X X

Z

Z′

Y ′

A′

Y ′

Y
Y A

G

Now we look on the 3-dimensional face Gwith dual cell
XYY′X′. Triangles xyz and xyt are two faces of G.
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Prism-Pyramid-Pyramid case
x

z

t

y

X′
X′

BB

A,A′

C C

F Hxy

X X

Z

Z′

Y ′

A′

Y ′

Y
Y A

G

The two-dimensional face of Gwith pyramidal dual cell
BXYY′X′ contains edges xz and xt.
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Prism-Pyramid-Pyramid case
x

z

t

y

X′
X′

BB

A,A′

C C

F Hxy

X X

Z

Z′

Y ′

A′

Y ′

Y
Y A

G

Similarly, the two-dimensional face of G with pyramidal dual
cell CXYY′X′ contains edges yz and yt.
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Prism-Pyramid-Pyramid case
x

z

t

y

X′
X′

BB

A,A′

C C

F Hxy

X X

Z

Z′

Y ′

A′

Y ′

Y
Y A

G

These two faces both contain z and t and this is possible only if
G is the tetrahedron xyzt.
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Prism-Pyramid-Pyramid case
x

z

t

y

X′
X′

BB

A,A′

C C

F Hxy

X X

Z

Z′

Y ′

A′

Y ′

Y
Y A

G

The face G is not centrally symmetric, but it has to be because
its dual cell is XYY′X′.
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What about R6?

Challenges in six-dimensional case.

▶ There is a significant jump in the number of
parallelohedra. Baburin and Engel (2013) reported about
half a billion different Delone triangulations (primitive
parallelohedra) in R6.

▶ The classification of dual 4-cells is not known and dual
3-cells might be not enough.
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THANK YOU!
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