Helly-type theorems	Delone sets	Crystals	CUT-AND-PROJECT SETS	Open questions
000	00000	0000	0000	00000000

Helly numbers for crystals and cut-and-project sets

Alexey Garber

The University of Texas Rio Grande Valley

October 7, 2019 Helly and Tverberg type Theorems

Helly-type theorems	Delone sets	Crystals	Cut-and-project sets	Open questions
•00	00000	0000	0000	00000000

Helly theorem

Theorem (Helly, 1923)

Let \mathcal{F} be a finite family of convex sets in \mathbb{R}^d . If any d + 1 sets from \mathcal{F} have a non-empty intersections, then all sets from \mathcal{F} have a non-empty intersection.

Helly-type theorems	Delone sets	Crystals	Cut-and-project sets	OPEN QUESTIONS
000	00000	0000	0000	00000000

Helly-type theorem for lattices

Theorem (Doignon, 1973)

Let \mathcal{F} be a finite family of convex sets in \mathbb{R}^d . If any 2^d sets from \mathcal{F} intersect at an integer point, then all sets from \mathcal{F} intersect at an integer point.

In both theorems the numbers d + 1 and 2^d can't be decreased.

Helly-type theorems	Delone sets	Crystals	Cut-and-project sets	OPEN QUESTIONS
00●	00000	0000	0000	00000000

Helly number for a set

Definition

Fix a set *S* in \mathbb{R}^d .

Let *n* be the smallest integer number such that the following condition hold for any finite family \mathcal{F} of convex sets in \mathbb{R}^d . If any *n* sets from \mathcal{F} intersect at a point of *S*, then all sets from \mathcal{F} intersect at a point of *S*.

This number *n* is called the **Helly number of** *S*, or just *S*-**Helly number**, or h(S).

If a number *n* from the definition doesn't exist, then $h(S) = \infty$.

 Helly-type theorems
 Delone sets
 Crystals
 Cut-and-project sets
 Open questions

 000
 0000
 0000
 0000
 0000
 00000000

DISCRETE AND DELONE SETS

Definition

A set *S* in \mathbb{R}^d is called a **discrete set** if every ball in \mathbb{R}^d contains only finitely many points of *S*.

Definition

A set *S* in \mathbb{R}^d is called a **Delone set** if

 distance between two different points of *S* is bounded from below by a positive number;

► radius of a ball in ℝ^d without points of *S* is bounded above. Sometimes Delone sets are called separated nets which are **uniformly discrete** and **relatively dense**.

Helly-type theorems	Delone sets	Crystals	Cut-and-project sets	OPEN QUESTIONS
000	00000	0000	0000	00000000

Helly numbers for discrete sets

Let *S* be a discrete set in \mathbb{R}^d and n(S) be the largest number of vertices of an **empty** *S***-polytope**.

Definition

A **convex** polytope *P* is an empty *S*-polytope if

- ▶ all vertices of *P* are from *S*, and
- ▶ *P* does not contain other points from *S*.

Lemma (Hoffman, 1979)

h(S) = n(S) or $h(S) = \infty$ if n(S) does not exist.

 Helly-type theorems
 Delone sets
 Crystals
 Cut-and-project sets
 Open questions

 000
 0000
 0000
 0000
 00000
 00000

Helly numbers for Delone sets. Finite and infinite

Example

For \mathbb{Z}^d , the unit cube $[0,1]^d$ has 2^d vertices and is empty.

Any set of at least $2^d + 1$ points from \mathbb{Z}^d contains two points from one parity class and does not give an empty \mathbb{Z}^d -polytope.

Example

For every $n \ge 3$ we can find a convex *n*-gon with vertices in the lattice \mathbb{Z}^2 . Using an appropriate $GL_2(\mathbb{Z})$ transformation we can make this polygon "very thin" (and long) lattice polygon P_n .

Placing copies of P_n "very far apart" and removing lattice points inside each P_n we get a Delone set with infinite Helly number because it contains an empty *n*-gon for every $n \ge 3$.

 Helly-type theorems
 Delone sets
 Crystals
 Cut-and-project sets
 Open questions

 000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 00000

Discrete sets with finite Helly number

What are discrete or Delone sets with finite Helly number?

Theorem (De Loera, La Haye, Oliveros, Roldán-Pensado)

- If $S = \mathbb{Z}^2 \setminus L$ where L is a sublattice of \mathbb{Z}^2 , then $h(S) \leq 6$;
- If $S = \mathbb{Z}^d \setminus (L_1 \cup \ldots \cup L_k)$ where each L_i is a (shifted) sublattice of \mathbb{Z}^d , then $h(S) \leq C_k 2^d$.

Helly-type theorems	Delone sets	Crystals	Cut-and-project sets	OPEN QUESTIONS
000	00000	0000	0000	00000000

Crystals and cut-and-project set

- ► repetitive clusters;
- ▶ periodic or quasi-periodic;
- ► "good" x-ray diffraction picture.

Helly-type theorems	Delone sets	Crystals	Cut-and-project sets	OPEN QUESTIONS
000	00000	●000	0000	00000000

Crystals and crystallographic groups

Definition

Crystallographic group is a discrete subgroup of isometries with bounded fundamental domain.

Definition

Crystal is a union of finitely many orbits of a crystallographic group.

Theorem (Bieberbach, 1910)

Every crystallographic group in \mathbb{R}^d contains a subgroup of finite index isomorphic to \mathbb{Z}^d .

Definition

A *k*-crystal in \mathbb{R}^d is a union of *k* translations of the same lattice.

Helly-type theorems	Delone sets	Crystals	Cut-and-project sets	Open questions
000	00000	0000	0000	00000000

Helly number for crystals

Theorem

If *S* is a *k*-crystal in \mathbb{R}^d , then $h(S) \leq k2^d$.

Proof.

Let *P* be an empty *S*-polytope with at least $k2^d + 1$ vertices. Then one copy of the corresponding lattice contains at least $2^d + 1$ vertices of *P* and therefore is not empty.

Helly-type theorems	Delone sets	Crystals	Cut-and-project sets	Open questions
000	00000	0000	0000	00000000

Two-dimensional crystals

Theorem

If S is a k-crystal in \mathbb{R}^2 *, then* $h(S) \le k + 6$ *; tight for* $k \ge 6$ *.*

Helly-type theorems De	ELONE SETS	Crystals	Cut-and-project sets	Open questions
000 00	0000	0000	0000	00000000

Two-dimensional crystals

Theorem

If S is a k-crystal in \mathbb{R}^2 *, then* $h(S) \le k + 6$ *; tight for* $k \ge 6$ *.*

Proof.

Let *P* be an empty *S*-polygon with maximal number of vertices. If *N* is the maximal number of vertices of *P* from one copy of the lattice, then we can limit number lattice copies with more than one point in *P* depending on *N*.

General bounds of h(S) for *k*-crystals.

Helly-type theorems	Delone sets	Crystals	Cut-and-project sets	Open questions
000	00000	0000	0000	00000000

d-dimensional crystals

Theorem

For $d \ge 2$ and for $k \ge 6$ there is a d-dimensional k-crystal S with

 $h(S) \ge (k+6)2^{d-2}$

If $h_{d,k}$ is the maximal Helly number among all *d*-dimensional *k*-crystals, then

$$(k+6)2^{d-2} \le h_{d,k} \le k2^d = 4k \cdot 2^{d-2}$$

provided $d \ge 2$ and $k \ge 6$.

Helly-type theorems	Delone sets	Crystals	CUT-AND-PROJECT SETS	Open questions
000	00000	0000	●000	00000000

CUT-AND-PROJECT SETS, PICTORIAL DEFINITION

Helly-type theorems	Delone sets	Crystals	CUT-AND-PROJECT SETS	Open questions
000	00000	0000	0000	00000000

CUT-AND-PROJECT SETS, FORMAL DEFINITION

Definition

- Λ is a (d + k)-dimensional lattice in $\mathbb{R}^d \times \mathbb{R}^k$;
- W is a compact set in ℝ^k such that closure of the interior of W is W, the window;
- π_1 and π_2 are projections on \mathbb{R}^d and \mathbb{R}^k . Projection $\pi_1|_{\Lambda}$ is injective and projection $\pi_2(\Lambda)$ is dense.

Then $V = V(\mathbb{R}^d, \mathbb{R}^k, \Lambda, W) = \{\pi_1(\mathbf{x}) | \mathbf{x} \in \Lambda, \pi_2(\mathbf{x}) \in W\}$ is called a **cut-and-project set**.

$$\begin{array}{cccc} \mathbb{R}^d & \xleftarrow{\pi_1} \mathbb{R}^d \times \mathbb{R}^k \xrightarrow{\pi_2} & \mathbb{R}^k \\ \cup & \cup & \cup & \cup \\ V & \Lambda & W \end{array}$$

Helly-type theorems 000

Delone sets

Crystals

Cut-and-project sets 0000 Open questions 00000000

Cut-and-project sets: examples

Ammann-Beenker tiling can be constructed using a two-dimensional window and four-dimensional lattice

Helly-type theorems 000

Delone sets

Crystals

Cut-and-project sets 0000 Open questions 00000000

Cut-and-project sets: examples

Penrose tiling can be constructed using a three-dimensional window and five-dimensional lattice

Helly-type theorems	Delone sets	Crystals	CUT-AND-PROJECT SETS	OPEN QUESTIONS
000	00000	0000	000●	00000000

Helly numbers for cut-and-project sets

Theorem

If $V = V(\mathbb{R}^d, \mathbb{R}^k, \Lambda, W)$ is a cut-and-project set with convex window W, then $h(V) \leq 2^{d+k}$.

Proof.

- Suppose *P* is an empty *V*-polytope with at least 2^{d+k} + 1 vertices;
- π_1 -preimages of the vertices of *P* are points of the lattice Λ ;
- Due to Doignon's theorem, there is an additional lattice point x in the convex hull of preimages;
- Due to convexity of *W*, point $\pi_1(\mathbf{x})$ is in *V* and in *P*.

Helly-type theorems	Delone sets	Crystals	Cut-and-project sets	OPEN QUESTIONS
000	00000	0000	0000	0000000

Further questions: Crystals

Question

What is the exact value for $h_{d,k}$?

$$(k+6)2^{d-2} \le h_{d,k} \le k2^d$$

Helly-type theorems

Delone sets 00000 Crystals 0000 Cut-and-project sets 0000 Open questions 0000000

FURTHER QUESTIONS: CUT-AND-PROJECT SETS The upper bound $h(V) \le 2^{d+k}$ for *d*-dimensional cut-and-project sets with *k*-dimensional window looks very non-optimal.

Helly-type theorems

Delone sets 00000 Crystals

Cut-and-project sets 0000 Open questions 0000000

FURTHER QUESTIONS: CUT-AND-PROJECT SETS The upper bound $h(V) \le 2^{d+k}$ for *d*-dimensional cut-and-project sets with *k*-dimensional window looks very non-optimal.

 Helly-type theorems
 Delone sets
 Crystals
 Cut-and-project sets
 Open questions

 000
 0000
 0000
 0000
 0000
 0
 0

FURTHER QUESTIONS: CUT-AND-PROJECT SETS The upper bound $h(V) \le 2^{d+k}$ for *d*-dimensional cut-and-project sets with *k*-dimensional window looks very non-optimal.

Conjecture

h(vertices of a Penrose tiling) = 6

Conjecture (weaker version)

 $h(vertices of a Penrose tiling) \le 10$

Helly-type theorems	Delone sets	Crystals	Cut-and-project sets	OPEN QUESTIONS
000	00000	0000	0000	0000000

FURTHER QUESTIONS

Question

What about Helly numbers for discrete sets with weaker or different structure?

► Cut-and-project sets with non-convex windows;

Helly-type theorems	Delone sets	Crystals	CUT-AND-PROJECT SETS	OPEN QUESTIONS
000	00000	0000	0000	0000000

Further questions

Question

What about Helly numbers for discrete sets with weaker or different structure?

- ► Cut-and-project sets with non-convex windows;
- ► FLC sets.

Definition

For $\mathbf{x} \in X$, the set of points of *X* at distance at most *r* from \mathbf{x} is called the *r*-cluster of \mathbf{x} .

Definition

X is called a set with **finite local complexity** if for every *r* it has only finitely many, say N(r) **non-equivalent** *r*-clusters. N(r) is called the **cluster counting function**.

 Helly-type theorems
 Delone sets
 Crystals
 Cut-and-project sets
 Open questions

 000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000

Further questions: Meyer sets

Definition

A Delone set *X* is called a **Meyer set** if the set of differences X - X is a Delone set as well.

Theorem (Lagarias, 1999)

A Delone set is a Meyer set if and only if it is a subset of cut-and-project set.

Theorem

Every cut-and-project set contains a Delone set X *with* $h(X) = \infty$ *.*

 Helly-type theorems
 Delone sets
 Crystals
 Cut-and-project sets
 Open questions

 000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000

Further questions: Repetitive sets

Definition

An Delone set *X* is called a **repetitive** there is a function $f : \mathbb{R}^+ \longrightarrow \mathbb{R}^+$ such that every ball of radius f(r) contains every *r*-cluster of *X*.

Definition

An Delone set X is called a **linearly repetitive** if f can be chosen to be linear, so there exists C such that every ball of radius Cr contains every r-cluster of X.

Theorem (Lagarias, Pleasants)

Linearly repetitive Delone sets have well-defined frequencies for every local cluster.

 Helly-type theorems
 Delone sets
 Crystals
 Cut-and-project sets
 Open questions

 000
 0000
 0000
 0000
 0000
 0000

Further questions: Repetitive sets

Question

Does every repetitive Delone set have a finite Helly number?

Question

Does every linearly repetitive Delone set have a finite Helly number?

 Helly-type theorems
 Delone sets
 Crystals
 Cut-and-project sets
 Open questions

 000
 0000
 0000
 0000
 0000
 0000

Further questions: Repetitive sets

Question

Does every repetitive Delone set have a finite Helly number?

Question

What about **densely repetitive** Delone sets? For these sets $f(r) = O(N(r))^{1/d}$.

Question

Does every linearly repetitive Delone set have a finite Helly number?

Helly-type theorems	Delone sets	Crystals	Cut-and-project sets	Open questions
000	00000	0000	0000	00000000

Further questions: Hyperbolic plane

Question

Does every crystallographic set in \mathbb{H}^2 has a finite Helly number?

Helly-type theorems	Delone sets	Crystals	Cut-and-project sets	OPEN QUESTIONS
000	00000	0000	0000	00000000

Further questions: Hyperbolic plane

Question

Does every crystallographic set in \mathbb{H}^2 has a finite Helly number?

Question

Which **regular** *sets in* \mathbb{H}^2 *have finite Helly number?*

Helly-type theorems	Delone sets	Crystals	Cut-and-project sets	OPEN QUESTIONS
000	00000	0000	0000	0000000

Further questions: Hyperbolic plane

Question

Is there a Delone set in \mathbb{H}^2 *with finite Helly number?*

Helly-type theorems	Delone sets	Crystals	CUT-AND-PROJECT SETS	OPEN QUESTIONS
000	00000	0000	0000	0000000

Thank you!