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Parallelohedra

Definition
Convex d-dimensional polytope P is called a parallelohedron if
Rd can be (face-to-face) tiled into parallel copies of P.

Two types of two-dimensional parallelohedra

2/40



Introduction Voronoi conjecture Canonical Scaling Gain function Enumeration R5

Three-dimensional parallelohedra

In 1885 Russian crystallographer Fedorov listed all types of
three-dimensional parallelohedra.

Parallelepiped and hexagonal prism with centrally symmetric
base.
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Three-dimensional parallelohedra

In 1885 Russian crystallographer Fedorov listed all types of
three-dimensional parallelohedra.

Rhombic dodecahedron, elongated dodecahedron, and
truncated octahedron
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Tiling by elongated dodecahedra (from Wikipedia)
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Minkowski-Venkov conditions

Theorem (Minkowski, 1897; Venkov, 1954; and McMullen,
1980)
P is a d-dimensional parallelohedron iff it satisfies the following
conditions:

1. P is centrally symmetric;
2. Any facet of P is centrally symmetric;
3. Projection of P along any its (d− 2)-dimensional face is

parallelogram or centrally symmetric hexagon.

Particularly, if P tiles Rd in a non-face-to-face way, then it
satisfies Minlowski-Venkov conditions, and hence tiles Rd in a
face-to-face way as well.
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Belts of parallelohedra

Definition
The set of facets parallel to a given (d− 2)-face is called belt.
These facets are projected onto sides of a parallelogram or a
hexagon.

There are 4-belts and 6-belts.
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Parallelohedra to Lattices

Let TP be the unique face-to-face tiling of Rd into parallel copies
of P. Then centers of tiles forms a lattice ΛP.
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Lattices to Paralleohedra
I Let Λ be an arbitrary d-dimensional and let O be a point of

Λ.

I Construct the polytope consisting of points that are closer
to O than to any other point of Λ (Dirichlet-Voronoi
polytope of Λ).

I Then DVΛ is a parallelohedron and points of Λ are centers
of corresponding tiles.

O
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Voronoi conjecture

Conjecture (G.Voronoi, 1909)
Every parallelohedron is affine equivalent to Dirichlet-Voronoi
polytope of some lattice Λ.

−→

9/40



Introduction Voronoi conjecture Canonical Scaling Gain function Enumeration R5

Voronoi conjecture in R2

I Each parallelogram can be transformed into rectangle and
all rectangles are Voronoi polygons.

I Each centrally-symmetric hexagon can be transformed into
one inscribed in a circle. This transformation is unique
modulo isometry and/or homothety. Similarly, all
centrally-symmetric hexagons inscribed in circles are
Voronoi polygons.

For a given parallelohedron, how one can check whether it
satisfies the Voronoi conjecture?
Answer (not the only answer): use canonical scaling.
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Canonical scaling

Definition
A (positive) real-valued function n(F) defined on set of all
facets of the parallelohedral tiling is called a canonical scaling,
if it satisfies the following conditions for facets Fi that contain
arbitrary (d− 2)-face G:

G F1

e1

F2

e2

F3

e3

G
F1

e1

F2

e2

F3

e3

F4

e4

∑
±n(Fi)ei = 0
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Constructing canonical scaling

How to construct a canonical scaling for a given tiling?

I If two facets F1 and F2 of the tiling have a common
(d− 2)-face from 6-belt, then the value of canonical scaling
on F1 uniquely defines the value on F2 and vice versa.

I If facets F1 and F2 have a common (d− 2)-face from 4-belt
then the only condition is that if these facets are opposite
then values of canonical scaling on F1 and F2 are equal.

I If facets F1 and F2 are opposite in one parallelohedron then
values of canonical scaling on F1 and F2 are equal.
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Voronoi’s generatrix

Consider we have a canonical scaling defined on the tiling with
copies of P.
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Voronoi’s generatrix

We will construct a piecewise linear generatrix function
G : Rd −→ R.
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Voronoi’s generatrix

Step 1: Put G equal to 0 on one of the tiles.
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Voronoi’s generatrix

Step 2: When we pass through one facet of the tiling the
gradient of G changes accordingly to the canonical scaling.
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Voronoi’s generatrix

Step 2: Namely, if we pass a facet F with the normal vector e,
then we add the vector n(F)e to the gradient.
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Voronoi’s generatrix

We obtain the graph of the generatrix function G.
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Voronoi’s generatrix II
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Properties of generatrix
I The graph of generatrix G looks like a “piecewise linear”

paraboloid.

I And actually there is a paraboloid y = xTQx for some
positive definite quadratic form Q tangent to generatrix in
the centers of its shells.

I Moreover, if we consider an affine transformation A of this
paraboloid into paraboloid y = xTx then the tiling by
copies of P will transform into the Voronoi tiling for some
lattice.

So to prove the Voronoi conjecture it is sufficient and, to some
extent, necessary to construct a canonical scaling on the tiling
by copies of P.
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Primitive parallelohedra

Definition
A d-dimensional parallelohedron P is called primitive, if every
vertex of the corresponding tiling belongs to exactly d + 1
copies of P.

Primitive parallelohedra appear exactly as dual to Delone
triangulations (not arbitrary Delone decompositions).

Theorem (Voronoi, 1909)
The Voronoi conjecture is true for primitive parallelohedra.
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Primitive parallelohedra II

Definition
A d-dimensional parallelohedron P is called k-primitive if
every k-face of the corresponding tiling belongs to exactly
d + 1− k copies of P.

Theorem (Zhitomirskii, 1929)
The Voronoi conjecture is true for (d− 2)-primitive d-dimensional
parallelohedra. Or the same, it is true for parallelohedra without belts
of length 4.
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Dual cells

Definition
The dual cell of a face F of given parallelohedral tiling is the set
of all centers of parallelohedra that share F.
If F is (d− k)-dimensional then the corresponding cell is called
k-cell.

The set of all dual cells of the tiling with corresponding
incidence relation determines a structure of a cell complex.

Conjecture (Dimension conjecture)
The dimension of a dual k-cell is equal to k.

The dimension conjecture is necessary for the Voronoi
conjecture.
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Dual 3-cells and 4-dimensional parallelohedra

Lemma (Delone, 1929)
There are five types of three-dimensional dual cells: tetrahedron,
octahedron, quadrangular pyramid, triangular prism and cube.

Theorem (Delone, 1929)
The Voronoi conjecture is true for four-dimensional parallelohedra.

Theorem (Ordine, 2005)
The Voronoi conjecture is true for parallelohedra without cubical or
prismatic dual 3-cells.
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Gain function instead of canonical scaling
We know how canonical scaling should change when we pass
from one facet to a neighbor facet across a primitive (d− 2)-face
of F.

Definition
We will call the multiple of canonical scaling that we achieve by
passing across F the gain function g on F.

For any generic curve γ on surface of P that do not cross
non-primitive (d− 2)-faces we can define the value g(γ).

Lemma
The Voronoi conjecture is true for P iff for any generic cycle g(γ) = 1.
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Properties of the gain function
Definition
Consider a manifold Pδ that is a surface of parallelohedron P
with deleted closed non-primitive (d− 2)-faces. We will call
this manifold the δ-surface of P.

The gain function is well defined on any cycle on Pδ.

Lemma (G., Gavrilyuk, Magazinov)
The gain function gives us a homomorphism

g : π1(Pδ) −→ R+

and the Voronoi conjecture is true for P iff this homomorphism is
trivial.
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Improvements of the main lemma
I Values of a canonical scaling should be equal on opposite

facets of P. So we can consider a π-surface Pπ of P obtained
from Pδ by gluing its opposite points.

I Any half-belt cycle which starts at the center of a facet and
end at the center of the opposite facet crossing only three
parallel primitive (d− 2)-faces will be mapped to 1 by g.

I The group R+ is commutative, so we can factorize the
fundamental group π1(Pπ) by the commutator and get the
group of one-dimensional homologies over Z instead of
the fundamental group.

I We can eliminate the torsion part of the group H1(Pπ,Z)
since there is no torsion in the group R+.

Finally we get the group H1(Pπ,Q) instead of the initial
fundamental group π1(Pδ).
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Global combinatorics for the Voronoi conjecture

Theorem (G., Gavrilyuk, Magazinov, 2015)
If the group of one-dimensional homologies H1(Pπ,Q) of the
π-surface of a parallelohedron P is generated by the half-belt cycles
then the Voronoi conjecture is true for P.
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How one can apply this theorem?

We start from a parallelohedron P.
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How one can apply this theorem?

Then put a vertex of the graph G for every pair of opposite
facets of P.
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How one can apply this theorem?

Draw edges of G between pairs of facets with a common
primitive (d− 2)-face.
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How one can apply this theorem?

List all “basic” cycles γ that has gain function 1 for sure. These
are half-belt cycles.
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How one can apply this theorem?

List all “basic” cycles γ that has gain function 1 for sure. These
are half-belt cycles. And trivially contractible cycles around
(d− 3)-faces.
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How one can apply this theorem?

Check that the basic cycles generate all cycles of the graph G.
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How many parallelohedra satisfy GGM condition?

I All 5 parallelohedra in R3. The full list was obtained by
Fedorov (1885).

I All 52 parallelohedra in R4. The full list was obtained by
Delone (1929) with a correction by Stogrin (1974).

I All 110244 Voronoi parallelohedra in R5 (Preprint of
Dutour-Sikirić, G., and Magazinov).
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Delone tiling

Delone tiling is the tiling with “empty spheres”.

A polytope P is in the Delone tiling Del(Λ) iff it is inscribed in
an empty sphere.

The Delone tiling is dual to the Voronoi tiling.
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From lattices to PQF

An affine transformation can take a lattice to Zd, but it changes
metrics from xtx to xtQx for some positive definite quadratic
form Q.

Task
Find all combinatorially different Delone tilings of Zd.

Definition
The Delone tiling Del(Zd,Q) of the lattice Zd with respect to
PQF Q is the tiling of Zd with empty ellipsoids determined by Q
(spheres in the metric xtQx).
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Secondary cones

Let Sd ⊂ R
d(d+1)

2 denotes the cone of all PQF.

Definition
The secondary cone of a Delone tiling D is the set of all PQFs Q
with Delone tiling equal to D.

SC(D) =
{

Q ∈ Sd|D = Del(Zd,Q)
}

Theorem (Voronoi, 1909)
SC(D) is a convex polyhedron in Sd.
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Secondary cones II
Theorem (Voronoi, 1909)
The set of closures all secondary cones gives a face-to-face tiling of the
closure of Sd (that is the cone of positive semidefinite quadratic
forms).

I Full-dimensional secondary cones correspond to Delone
triangulations

I One-dimensional secondary cones are called extreme rays

Lemma
Two Delone tilings D and D′ are affinely equivalent iff there is a
matrix A ∈ GLd(Z) such that

A(SC(D)) = SC(D′).
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Secondary cones in dimension 2

Any PQF Q =

(
a b
b c

)
can be represented

by a point in a cone over open disc.
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Secondary cones in dimension 2

We will find the secondary cone of Delone tri-
angulation on the right.
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Secondary cones in dimension 2

Each pair of adjacent triangles defines one
linear inequality for secondary cone. For
blue pair the inequality is b < 0.
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Secondary cones in dimension 2

The green pair of triangles gives us inequal-
ity b + c > 0.
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Secondary cones in dimension 2

The red pair gives us inequality a + b > 0.
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Secondary cones in dimension 2
The secondary cone is a cone over trian-

gle with vertices
(

1 0
0 0

)
,
(

0 0
0 1

)
, and(

1 −1
−1 1

)
.
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Secondary cones in dimension 2

Similarly we can construct secondary cones
for other triangulations.
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Secondary cones in dimension 2

Triangulations corresponding to adjacent
secondary cones differ by a (bi-stellar) flip.
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Secondary cones in dimension 2

Cones of smaller dimensions are secondary
cones of non-generic Delone decompositions.
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Algorithm

I We start from one known Delone triangulation.
I Using all possible bistellar flips, we find secondary cones

for all non-equivalent Delone triangulations. These are the
cones of codimension 0.

I Compute all facets of each cone and pick those which are
non-equivalent. These are the cones of codimension 1.

I Repeat until we get all non-equivalent extreme rays.

To check GLd(Z)-equivalence of secondary cones we use isom
by Bernd Souvignier for “central” rays.
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Computations in R5

Theorem (Dutour-Sikirić, G., Schürmann, Waldmann,
2016)
There are 110244 affine types of lattice Delone subdivisions in
dimension 5.

Three independent implementations: Haskell code,
polyhedral package of GAP, and C++ code scc v.2.0
(secondary cone cruiser).

Additionally, all these classes generate combinatorially different
Dirichlet-Voronoi parallelohedra.
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Voronoi conjecture in small dimensions
I R3 is generally treated as a folklore.

I R4 was proved by Delone (1929).

I Some sources refer to Engel (1998) as a proof in R5.
I Engel searched for new parallelohedra using possible

extension and contraction.
I Then the closure of corresponding secondary cones is

searched for new types parallelohedra, and back to
extension/contraction.

I In the end, Engel concluded that since all parallelohedra he
found satisfy the Voronoi conjecture, then it is true in R5.

Unfortunately, there is no justification that all
parallelohedra (not only Voronoi) can be reached by this
process.
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Voronoi conjecture in R5

Theorem (G., Magazinov, 2019+)
The Voronoi conjecture is true in R5.

The proof uses
I classification of Voronoi parallelohedra in R5;
I dual 3-cells classification;
I extensions of parallelohedra;
I a lot of local combinatorics of parallelohedra tilings;
I and more
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Proof. Free direction

Definition
Let I be a segment. If P + I and P are both parallelohedra, then I
is called a free direction for P.

Theorem (G., Magazinov)
Let P be a d-dimensional parallohedron. If I is a free direction for P
and the projection of P along I satisfies the Voronoi conjecture, then
P + I has combinatorics of a Voronoi parallelohedron.

Corollary
If a 5-dimensional parallelohedron P has a free direction, then P
satisfies the Voronoi conjecture.
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Proof. Dual 3-cells
What are possible dual 3-cells of a five-dimensional
parallelohedron P?

I If all dual 3-cells are either tetrahedra, octahedra, or
pyramids, then P satisfies the Voronoi conjecture (Ordine’s
theorem).

I If P has a cubical dual 3-cell, then it has a free direction,
and hence satisfies the Voronoi conjecture (proof on the
next slide).

I If two-dimensional face F of P has prismatic dual cell, then
either an edge of F gives a free direction of P, or F is a
triangle.

The main tool used is careful inspection of 32 parity classes of
lattice points and all half-lattice points. Central symmetry in
each half-lattice point preserves the tiling T (P), and lattice
equivalent points must carry the same local combinatorics.
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Proof. Cubic dual 3-cell
Lemma (Grishukhin, Magazinov)
A direction I is free for P if and only if every 6-belt of P has at least
one facet parallel to I.

I The space of half-lattice points is isomorphic to
five-dimensional space over F2.

I Let F have a cubical dual cell. An edge e of F has an
additional point in its dual. Set of all midpoints between
these nine points give a 4-dimensional subspace of the
half-lattice space.

I The centers of facets of a 6-belt B give a two-dimensional
subspace of the half-lattice space.

I 4- and 2-dimensional subspaces of 5-dimensional space
intersect non-trivially, so there is a facet in B parallel to e.
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Proof. Dual 4-cells

For a triangular face F of P with prismatic dual 3-cells, the
edges may have only two types of dual 4-cells (or there is a free
direction for P).
I Pyramid over triangular prism.
I Prism over tetrahedron.

In all four possible choices for dual cells of edges of F we were
able to prove that either P has a free direction, or it admits a
canonical scaling.

Again, using a lot of local combinatorics and in most cases
exhaustively analyzing all 32 parity classes of lattice points.
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What about R6?

Challenges in six-dimensional case.
I There is a significant jump in the number of parallelohedra.

Baburin and Engel (2013) reported about more than half a
billion of different Delone triangulations in R6.

I The classification of dual 4-cells in not known and dual
3-cells might be not enough.
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THANK YOU!
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