# Voronoi conjecture for parallelohedra 

Alexey Garber

The University of Texas Rio Grande Valley
Soft Packings, Nested Clusters, and Condensed Matter October 1, 2019

## Parallelohedra

## Definition

Convex $d$-dimensional polytope $P$ is called a parallelohedron if $\mathbb{R}^{d}$ can be (face-to-face) tiled into parallel copies of $P$.


Two types of two-dimensional parallelohedra

## Three-dimensional parallelohedra

In 1885 Russian crystallographer Fedorov listed all types of three-dimensional parallelohedra.


Parallelepiped and hexagonal prism with centrally symmetric base.

## Three-dimensional parallelohedra

In 1885 Russian crystallographer Fedorov listed all types of three-dimensional parallelohedra.


Rhombic dodecahedron, elongated dodecahedron, and truncated octahedron

## Tiling by elongated dodecahedra (from Wikipedia)



## Minkowski-VENKOV conditions

## Theorem (Minkowski, 1897; Venkov, 1954; and McMullen, 1980)

$P$ is a d-dimensional parallelohedron iff it satisfies the following conditions:

1. $P$ is centrally symmetric;
2. Any facet of $P$ is centrally symmetric;
3. Projection of $P$ along any its $(d-2)$-dimensional face is parallelogram or centrally symmetric hexagon.

Particularly, if $P$ tiles $\mathbb{R}^{d}$ in a non-face-to-face way, then it satisfies Minlowski-Venkov conditions, and hence tiles $\mathbb{R}^{d}$ in a face-to-face way as well.

## Belts of parallelohedra

## Definition

The set of facets parallel to a given $(d-2)$-face is called belt. These facets are projected onto sides of a parallelogram or a hexagon.


## Belts of parallelohedra

## Definition

The set of facets parallel to a given $(d-2)$-face is called belt. These facets are projected onto sides of a parallelogram or a hexagon. There are 4-belts


## Belts of parallelohedra

## Definition

The set of facets parallel to a given $(d-2)$-face is called belt. These facets are projected onto sides of a parallelogram or a hexagon. There are 4-belts and 6-belts.


## Parallelohedra to Lattices

Let $\mathcal{T}_{P}$ be the unique face-to-face tiling of $\mathbb{R}^{d}$ into parallel copies of $P$. Then centers of tiles forms a lattice $\Lambda_{P}$.


## Lattices to Paralleohedra

- Let $\Lambda$ be an arbitrary $d$-dimensional and let $O$ be a point of $\Lambda$.


## Lattices to Paralleohedra

- Let $\Lambda$ be an arbitrary $d$-dimensional and let $O$ be a point of $\Lambda$.
- Construct the polytope consisting of points that are closer to $O$ than to any other point of $\Lambda$ (Dirichlet-Voronoi polytope of $\Lambda$ ).


## Lattices to Paralleohedra

- Let $\Lambda$ be an arbitrary $d$-dimensional and let $O$ be a point of $\Lambda$.
- Construct the polytope consisting of points that are closer to $O$ than to any other point of $\Lambda$ (Dirichlet-Voronoi polytope of $\Lambda$ ).
- Then $D V_{\Lambda}$ is a parallelohedron and points of $\Lambda$ are centers of corresponding tiles.



## Voronoi conjecture

## Conjecture (G.Voronoi, 1909)

Every parallelohedron is affine equivalent to Dirichlet-Voronoi polytope of some lattice $\Lambda$.


## Voronoi conjecture in $\mathbb{R}^{2}$

- Each parallelogram can be transformed into rectangle and all rectangles are Voronoi polygons.
- Each centrally-symmetric hexagon can be transformed into one inscribed in a circle. This transformation is unique modulo isometry and/or homothety. Similarly, all centrally-symmetric hexagons inscribed in circles are Voronoi polygons.


## Voronoi conjecture in $\mathbb{R}^{2}$

- Each parallelogram can be transformed into rectangle and all rectangles are Voronoi polygons.
- Each centrally-symmetric hexagon can be transformed into one inscribed in a circle. This transformation is unique modulo isometry and/or homothety. Similarly, all centrally-symmetric hexagons inscribed in circles are Voronoi polygons.

For a given parallelohedron, how one can check whether it satisfies the Voronoi conjecture?
Answer (not the only answer): use canonical scaling.

## CANONICAL SCALING

## Definition

A (positive) real-valued function $n(F)$ defined on set of all facets of the parallelohedral tiling is called a canonical scaling, if it satisfies the following conditions for facets $F_{i}$ that contain arbitrary $(d-2)$-face $G$ :


$$
\sum \pm n\left(F_{i}\right) \mathbf{e}_{i}=\mathbf{0}
$$

## CONSTRUCTING CANONICAL SCALING

How to construct a canonical scaling for a given tiling?

- If two facets $F_{1}$ and $F_{2}$ of the tiling have a common ( $d-2$ )-face from 6-belt, then the value of canonical scaling on $F_{1}$ uniquely defines the value on $F_{2}$ and vice versa.
- If facets $F_{1}$ and $F_{2}$ have a common $(d-2)$-face from 4-belt then the only condition is that if these facets are opposite then values of canonical scaling on $F_{1}$ and $F_{2}$ are equal.
- If facets $F_{1}$ and $F_{2}$ are opposite in one parallelohedron then values of canonical scaling on $F_{1}$ and $F_{2}$ are equal.


## Voronoi's generatrix



Consider we have a canonical scaling defined on the tiling with copies of $P$.

## Voronoi's GENERATRIX



We will construct a piecewise linear generatrix function $\mathcal{G}: \mathbb{R}^{d} \longrightarrow \mathbb{R}$.

## Voronoi's GENERATRIX



Step 1: Put $\mathcal{G}$ equal to 0 on one of the tiles.

## Voronoi's generatrix



Step 2: When we pass through one facet of the tiling the gradient of $\mathcal{G}$ changes accordingly to the canonical scaling.

## Voronoi's generatrix



Step 2: Namely, if we pass a facet $F$ with the normal vector $\mathbf{e}$, then we add the vector $n(F) \mathbf{e}$ to the gradient.

## Voronoi's generatrix



We obtain the graph of the generatrix function $\mathcal{G}$.

## Voronoi's generatrix II



## Properties of generatrix

- The graph of generatrix $\mathcal{G}$ looks like a "piecewise linear" paraboloid.
- And actually there is a paraboloid $y=\mathbf{x}^{T} Q \mathbf{x}$ for some positive definite quadratic form $Q$ tangent to generatrix in the centers of its shells.
- Moreover, if we consider an affine transformation $\mathcal{A}$ of this paraboloid into paraboloid $y=\mathbf{x}^{T} \mathbf{x}$ then the tiling by copies of $P$ will transform into the Voronoi tiling for some lattice.

So to prove the Voronoi conjecture it is sufficient and, to some extent, necessary to construct a canonical scaling on the tiling by copies of $P$.

## PRIMITIVE PARALLELOHEDRA


#### Abstract

Definition A $d$-dimensional parallelohedron $P$ is called primitive, if every vertex of the corresponding tiling belongs to exactly $d+1$ copies of $P$.


Primitive parallelohedra appear exactly as dual to Delone triangulations (not arbitrary Delone decompositions).

## Theorem (Voronoi, 1909)

The Voronoi conjecture is true for primitive parallelohedra.

## Primitive parallelohedra II

## Definition

A $d$-dimensional parallelohedron $P$ is called $k$-primitive if every $k$-face of the corresponding tiling belongs to exactly $d+1-k$ copies of $P$.

## Theorem (Zhitomirskii, 1929)

The Voronoi conjecture is true for $(d-2)$-primitive $d$-dimensional parallelohedra. Or the same, it is true for parallelohedra without belts of length 4.

## DUAL CELLS

## Definition

The dual cell of a face $F$ of given parallelohedral tiling is the set of all centers of parallelohedra that share $F$. If $F$ is $(d-k)$-dimensional then the corresponding cell is called $k$-cell.

The set of all dual cells of the tiling with corresponding incidence relation determines a structure of a cell complex.

## Conjecture (Dimension conjecture)

The dimension of a dual $k$-cell is equal to $k$.
The dimension conjecture is necessary for the Voronoi conjecture.

## DUAL 3-CELLS AND 4-DIMENSIONAL PARALLELOHEDRA

## Lemma (Delone, 1929)

There are five types of three-dimensional dual cells: tetrahedron, octahedron, quadrangular pyramid, triangular prism and cube.

## Theorem (Delone, 1929)

The Voronoi conjecture is true for four-dimensional parallelohedra.

## Theorem (Ordine, 2005)

The Voronoi conjecture is true for parallelohedra without cubical or prismatic dual 3-cells.

## GAIN FUNCTION INSTEAD OF CANONICAL SCALING

We know how canonical scaling should change when we pass from one facet to a neighbor facet across a primitive $(d-2)$-face of $F$.

## Definition

We will call the multiple of canonical scaling that we achieve by passing across $F$ the gain function $g$ on $F$.

For any generic curve $\gamma$ on surface of $P$ that do not cross non-primitive ( $d-2$ )-faces we can define the value $g(\gamma)$.

## Lemma

The Voronoi conjecture is true for $P$ iff for any generic cycle $g(\gamma)=1$.

## Properties of the gain function

## Definition

Consider a manifold $P_{\delta}$ that is a surface of parallelohedron $P$ with deleted closed non-primitive $(d-2)$-faces. We will call this manifold the $\delta$-surface of $P$.

The gain function is well defined on any cycle on $P_{\delta}$.

## Lemma (G., Gavrilyuk, Magazinov)

The gain function gives us a homomorphism

$$
g: \pi_{1}\left(P_{\delta}\right) \longrightarrow \mathbb{R}^{+}
$$

and the Voronoi conjecture is true for $P$ iff this homomorphism is trivial.

## IMPROVEMENTS OF THE MAIN LEMMA

- Values of a canonical scaling should be equal on opposite facets of $P$. So we can consider a $\pi$-surface $P_{\pi}$ of $P$ obtained from $P_{\delta}$ by gluing its opposite points.
- Any half-belt cycle which starts at the center of a facet and end at the center of the opposite facet crossing only three parallel primitive $(d-2)$-faces will be mapped to 1 by $g$.
- The group $\mathbb{R}^{+}$is commutative, so we can factorize the fundamental group $\pi_{1}\left(P_{\pi}\right)$ by the commutator and get the group of one-dimensional homologies over $\mathbb{Z}$ instead of the fundamental group.
- We can eliminate the torsion part of the group $H_{1}\left(P_{\pi}, \mathbb{Z}\right)$ since there is no torsion in the group $\mathbb{R}^{+}$.
Finally we get the group $H_{1}\left(P_{\pi}, \mathbb{Q}\right)$ instead of the initial fundamental group $\pi_{1}\left(P_{\delta}\right)$.


## Global combinatorics for the Voronoi conjecture

## Theorem (G., Gavrilyuk, Magazinov, 2015)

If the group of one-dimensional homologies $H_{1}\left(P_{\pi}, \mathbb{Q}\right)$ of the $\pi$-surface of a parallelohedron $P$ is generated by the half-belt cycles then the Voronoi conjecture is true for $P$.

## How one can apply this theorem?



We start from a parallelohedron $P$.

## How one can apply this theorem?



Then put a vertex of the graph $G$ for every pair of opposite facets of $P$.

## How one can apply this theorem?



Draw edges of $G$ between pairs of facets with a common primitive ( $d-2$ )-face.

## How one can apply this theorem?



List all "basic" cycles $\gamma$ that has gain function 1 for sure. These are half-belt cycles.

## How one can apply this theorem?



List all "basic" cycles $\gamma$ that has gain function 1 for sure. These are half-belt cycles. And trivially contractible cycles around (d -3 )-faces.

## How one can apply this theorem?



Check that the basic cycles generate all cycles of the graph $G$.

## How many parallelohedra satisfy GGM condition?

- All 5 parallelohedra in $\mathbb{R}^{3}$. The full list was obtained by Fedorov (1885).
- All 52 parallelohedra in $\mathbb{R}^{4}$. The full list was obtained by Delone (1929) with a correction by Stogrin (1974).
- All 110244 Voronoi parallelohedra in $\mathbb{R}^{5}$ (Preprint of Dutour-Sikirić, G., and Magazinov).


## Delone tiling

Delone tiling is the tiling with "empty spheres".
A polytope $P$ is in the $\operatorname{Delone}$ tiling $\operatorname{Del}(\Lambda)$ iff it is inscribed in an empty sphere.

## Delone tiling

Delone tiling is the tiling with "empty spheres".
A polytope $P$ is in the $\operatorname{Delone}$ tiling $\operatorname{Del}(\Lambda)$ iff it is inscribed in an empty sphere.


The Delone tiling is dual to the Voronoi tiling.

## From lattices to PQF

An affine transformation can take a lattice to $\mathbb{Z}^{d}$, but it changes metrics from $\mathbf{x}^{t} \mathbf{x}$ to $\mathbf{x}^{t} Q \mathbf{x}$ for some positive definite quadratic form $Q$.

## Task

Find all combinatorially different Delone tilings of $\mathbb{Z}^{d}$.

## Definition

The Delone tiling $\operatorname{Del}\left(\mathbb{Z}^{d}, Q\right)$ of the lattice $\mathbb{Z}^{d}$ with respect to PQF $Q$ is the tiling of $\mathbb{Z}^{d}$ with empty ellipsoids determined by $Q$ (spheres in the metric $\mathbf{x}^{t} \mathbf{Q x}$ ).

## Secondary cones

Let $\mathcal{S}^{d} \subset \mathbb{R}^{\frac{d(d+1)}{2}}$ denotes the cone of all PQF .

## Definition

The secondary cone of a Delone tiling $\mathcal{D}$ is the set of all PQFs $Q$ with Delone tiling equal to $\mathcal{D}$.

$$
\mathrm{SC}(\mathcal{D})=\left\{Q \in \mathcal{S}^{d} \mid \mathcal{D}=\operatorname{Del}\left(\mathbb{Z}^{d}, Q\right)\right\}
$$

## Theorem (Voronoi, 1909)

$\mathrm{SC}(\mathcal{D})$ is a convex polyhedron in $\mathcal{S}^{d}$.

## Secondary cones II

## Theorem (Voronoi, 1909)

The set of closures all secondary cones gives a face-to-face tiling of the closure of $\mathcal{S}^{d}$ (that is the cone of positive semidefinite quadratic forms).

- Full-dimensional secondary cones correspond to Delone triangulations
- One-dimensional secondary cones are called extreme rays


## Lemma

Two Delone tilings $\mathcal{D}$ and $\mathcal{D}^{\prime}$ are affinely equivalent iff there is a matrix $\mathcal{A} \in G L_{d}(\mathbb{Z})$ such that

$$
\mathcal{A}(\mathrm{SC}(\mathcal{D}))=\mathrm{SC}\left(\mathcal{D}^{\prime}\right)
$$

## Secondary cones in dimension 2

Any PQF $Q=\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)$ can be represented
by a point in a cone over open disc.


## Secondary cones in dimension 2

We will find the secondary cone of Delone triangulation on the right.


## Secondary cones in dimension 2

Each pair of adjacent triangles defines one linear inequality for secondary cone. For blue pair the inequality is $b<0$.


## Secondary cones in dimension 2

The green pair of triangles gives us inequality $b+c>0$.


## Secondary cones in dimension 2

The red pair gives us inequality $a+b>0$.


## Secondary cones in dimension 2

The secondary cone is a cone over triangle with vertices $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$, and $\left(\begin{array}{rr}1 & -1 \\ -1 & 1\end{array}\right)$.


## Secondary cones in dimension 2

Similarly we can construct secondary cones for other triangulations.


## Secondary cones in dimension 2

Triangulations corresponding to adjacent secondary cones differ by a (bi-stellar) flip.


## Secondary cones in dimension 2

Triangulations corresponding to adjacent secondary cones differ by a (bi-stellar) flip.


## Secondary cones in dimension 2

Cones of smaller dimensions are secondary cones of non-generic Delone decompositions.


## Algorithm

- We start from one known Delone triangulation.
- Using all possible bistellar flips, we find secondary cones for all non-equivalent Delone triangulations. These are the cones of codimension 0 .
- Compute all facets of each cone and pick those which are non-equivalent. These are the cones of codimension 1.
- Repeat until we get all non-equivalent extreme rays.

To check $G L_{d}(\mathbb{Z})$-equivalence of secondary cones we use isom by Bernd Souvignier for "central" rays.

## Computations in $\mathbb{R}^{5}$

## Theorem (Dutour-Sikirić, G., Schürmann, Waldmann, 2016)

There are 110244 affine types of lattice Delone subdivisions in dimension 5.

Three independent implementations: Haskell code, polyhedral package of GAP, and C++ code scc v.2.0 (secondary cone cruiser).

Additionally, all these classes generate combinatorially different Dirichlet-Voronoi parallelohedra.

## Voronoi conjecture in small dimensions

- $\mathbb{R}^{3}$ is generally treated as a folklore.
- $\mathbb{R}^{4}$ was proved by Delone (1929).
- Some sources refer to Engel (1998) as a proof in $\mathbb{R}^{5}$.
- Engel searched for new parallelohedra using possible extension and contraction.
- Then the closure of corresponding secondary cones is searched for new types parallelohedra, and back to extension/contraction.
- In the end, Engel concluded that since all parallelohedra he found satisfy the Voronoi conjecture, then it is true in $\mathbb{R}^{5}$.
Unfortunately, there is no justification that all parallelohedra (not only Voronoi) can be reached by this process.


## Voronoi conjecture in $\mathbb{R}^{5}$

## Theorem (G., Magazinov, 2019+)

The Voronoi conjecture is true in $\mathbb{R}^{5}$.

The proof uses

- classification of Voronoi parallelohedra in $\mathbb{R}^{5}$;
- dual 3-cells classification;
- extensions of parallelohedra;
- a lot of local combinatorics of parallelohedra tilings;
- and more


## Proof. Free direction

## Definition

Let $I$ be a segment. If $P+I$ and $P$ are both parallelohedra, then $I$ is called a free direction for $P$.

## Theorem (G., Magazinov)

Let $P$ be a d-dimensional parallohedron. If I is a free direction for $P$ and the projection of P along I satisfies the Voronoi conjecture, then $P+I$ has combinatorics of a Voronoi parallelohedron.

## Corollary

If a 5-dimensional parallelohedron $P$ has a free direction, then $P$ satisfies the Voronoi conjecture.

## Proof. Dual 3-cells

What are possible dual 3-cells of a five-dimensional parallelohedron $P$ ?

## Proof. Dual 3-cells

What are possible dual 3-cells of a five-dimensional parallelohedron $P$ ?

- If all dual 3-cells are either tetrahedra, octahedra, or pyramids, then $P$ satisfies the Voronoi conjecture (Ordine's theorem).
- If $P$ has a cubical dual 3-cell, then it has a free direction, and hence satisfies the Voronoi conjecture (proof on the next slide).
- If two-dimensional face $F$ of $P$ has prismatic dual cell, then either an edge of $F$ gives a free direction of $P$, or $F$ is a triangle.
The main tool used is careful inspection of 32 parity classes of lattice points and all half-lattice points. Central symmetry in each half-lattice point preserves the tiling $\mathcal{T}(P)$, and lattice equivalent points must carry the same local combinatorics.


## Proof. Cubic dual 3-cell

## Lemma (Grishukhin, Magazinov)

A direction I is free for $P$ if and only if every 6 -belt of $P$ has at least one facet parallel to I.

- The space of half-lattice points is isomorphic to five-dimensional space over $\mathbb{F}_{2}$.
- Let $F$ have a cubical dual cell. An edge $e$ of $F$ has an additional point in its dual. Set of all midpoints between these nine points give a 4-dimensional subspace of the half-lattice space.
- The centers of facets of a 6-belt $B$ give a two-dimensional subspace of the half-lattice space.
- 4- and 2-dimensional subspaces of 5-dimensional space intersect non-trivially, so there is a facet in $B$ parallel to $e$.


## Proof. Dual 4-cells

For a triangular face $F$ of $P$ with prismatic dual 3-cells, the edges may have only two types of dual 4-cells (or there is a free direction for $P$ ).

- Pyramid over triangular prism.
- Prism over tetrahedron.

In all four possible choices for dual cells of edges of $F$ we were able to prove that either $P$ has a free direction, or it admits a canonical scaling.

Again, using a lot of local combinatorics and in most cases exhaustively analyzing all 32 parity classes of lattice points.

## What about $\mathbb{R}^{6}$ ?

Challenges in six-dimensional case.

- There is a significant jump in the number of parallelohedra. Baburin and Engel (2013) reported about more than half a billion of different Delone triangulations in $\mathbb{R}^{6}$.
- The classification of dual 4-cells in not known and dual 3-cells might be not enough.


## THANK YOU!

