Measuring weighted cut-and-project sets based on a joint work with Dirk Frettlöh

Alexey Garber

The University of Texas Rio Grande Valley

April 21, 2018 AMS Sectional Meeting, Northeastern University

Bounded distance equivalence

Definition

A set $X \subset \mathbb{R}^d$ is called a **Delone set** if it is uniformly discrete and relatively dense.

Definition

Two (Delone) sets *X* and *Y* are called **bounded distance** equivalent (or b.d.e.) if there is bijection $f : X \longrightarrow Y$ such that

$$\sup_{x\in X} ||f(x)-x|| < \infty.$$

LACZKOVICH CRITERION

Theorem (Laczkovich, 1992)

A Delone set X is b.d.e. to a lattice of density α if and only if there is a positive constant C such that for every bounded, measurable set $S \subset \mathbb{R}^d$ the inequality

$$\left| \#(X \cap S) - \alpha \lambda_d(S) \right| \le C \cdot p_1(S)$$

holds.

Here λ_d is the *d*-dimensional Lebesgue measure, and $p_1(S)$ is the Lebesgue measure of the 1-neighborhood of the boundary of S.

CPS A.K.A QUASICRYSTALS

Definition

A **cut-and-project set** (or **CPS**) Λ is given by a collection of maps and spaces:

G	$\overleftarrow{\pi_1}$	$G \times H$	$\xrightarrow{\pi_2}$	H
U		\cup		U
Λ		Γ		W

where in general *G* and *H* are locally compact abelian groups. Furthermore, Γ is a lattice in $G \times H$, *W* is a relatively compact set in *H*, and π_1 and π_2 are projections to *G* and to *H* respectively, such that $\pi_1|_{\Gamma}$ is one-to-one, and $\pi_2(\Gamma)$ is dense in *W*. Then

$$\Lambda = \{\pi_1(x) \mid x \in \Gamma, \ \pi_2(x) \in W\}$$

is called a CPS.

Introduction	Cut-and-project sets	Weighted CPS
00	0000	000000

Examples

Fibonacci sequence is a CPS with $G = \mathbb{R}$ (direct space, horizontal) and $H = \mathbb{R}$ (internal space, vertical). The lattice Γ is spanned by the vectors (1, 1) and $(\tau, -\tau^{-1})$. Here $\tau = \frac{\sqrt{5}+1}{2}$. Both projections π_1 and π_2 are orthogonal projections on the corresponding spaces. The window $W = [-\tau^{-1}, 1]$. Cut-and-project sets 0000

Weighted CPS 000000

Examples

$\ensuremath{\text{CPS}}$ equivalent to a lattice

Theorem (Kesten, 1966)

A $\mathbb{R} \times \mathbb{R}$ CPS Λ with a window W = [a, b] is b.d.e. to a lattice if and only if there is a vector $\mathbf{e} \in \Gamma$ such that $\pi_2(\mathbf{e}) = b - a$.

Theorem (Duneau and Oguey, 1990)

Let Λ *be a* $\mathbb{R}^d \times \mathbb{R}^n$ *CPS. If the window of* Λ *is a* π_2 *-projection of fundamental domain of n-sublattice of* Γ *, then* Λ *is b.d.e. to a d-lattice.*

Theorem (Grepstad and Lev, 2015, as reformulated by Haynes and Koivusalo, 2015)

Let Λ be a $\mathbb{R} \times \mathbb{R}^n$ CPS with a measurable window W. Λ is b.d.e. to a lattice if and only if W is $\pi_2(\Gamma)$ -equidecomposable to a π_2 -projection of fundamental domain of n-sublattice of Γ .

Cut-and-project sets 0000

Weighted CPS 000000

Proof of "if" part

Cut-and-project sets 0000

Weighted CPS 000000

Proof of "if" part

From sets to measures

Definition

For a set $X \subset \mathbb{R}^d$ we can construct the associated **Dirac comb** measure

$$u_X = \sum_{x \in X} \delta_x.$$

Definition

Two measures μ and ν on \mathbb{R} are called b.d.e. if there is a constant *C* such that for all intervals [a, b]

$$|\mu([a,b]) - \nu([a,b])| < C.$$

WEIGHTED CPS

Definition

Weighted CPS Λ_h is the **weighted** Dirac comb

$$\sum_{x\in\Lambda}h(x^{\star})\delta_x,$$

where $x^* = \pi_2(\pi_1^{-1}(x))$ and *h* is a function on *W*.

MAIN RESULT

Let α be a positive irrational number with certain "mild" restriction on its continued fraction expansion.

Theorem

Let Λ be a CPS with lattice $\Gamma = \mathbb{Z}^2$, $G = \begin{pmatrix} 1 \\ \alpha \end{pmatrix} \mathbb{R}$ and $H = G^{\perp}$, window $W = [a, b] \subset H$, and $h \in C(H)$ with support in W. Also let π_1 and π_2 be orthogonal projections on G and H respectively.

- 1. If h is piecewise linear, or
- 2. *if h is twice differentiable on W, and h" is uniformly bounded on W,*

then the weighted CPS Λ_h is bounded distance equivalent to $m\lambda$,

where λ is the standard Lebesgue measure and $m = \int_{a}^{b} h(t)dt$.

Idea of the proof

Idea: use bounded remainder sets (BRS).

Definition

Let $\alpha > 0$ be an irrational number. A measurable set $S \subset [0, 1)^2$ is called a **BRS** for the continuous irrational rotation with slope α and starting point $\mathbf{x} = (x_1, x_2)$ if the error

$$\int_{0}^{T} \chi_{S}(\{x_{1}+t\},\{x_{2}+\alpha t\})dt - T\lambda(S)$$

is uniformly bounded for all T > 0.

Idea of the proof

Theorem (Grepstad and Larcher, 2016)

For almost all irrational α and for every $\mathbf{x} \in [0,1)^2$ every polygon in $[0,1)^2$ without edge slope α and every convex region with twice differentiable boundary of positive curvature is a BRS with slope α and starting point \mathbf{x} .

The rest:

- ► Transform BRS language into CPS language and vice versa.
- Show that piecewise linear or twice differentiable functions in weighted CPS lead to BRS.

Weighted vs non-weighted

Non-weighted CPS:

- Can be treated as weighted with weight function equal to the indicator function of the window.
- ► If W is an interval, then A is b.d.e. to a lattice only for countably many lengths of W.

Weighted CPS:

 Any interval can produce many weighted CPS b.d.e. to lattices.

Thank you!