

Parallelohedra and the Voronoi Conjecture

Alexey Garber

Moscow State University and Delone Laboratory of Yaroslav| State University, Russia

> FU Berlin November 28, 2013

> > イロト イポト イヨト イヨト

3

A.Garber

Parallelohedra

Definition

Convex *d*-dimensional polytope *P* is called a **parallelohedron** if \mathbb{R}^d can be (face-to-face) tiled into parallel copies of *P*.

A.Garber

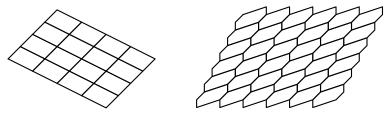
▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 めへの

MSU and Delone Lab of YSU

Parallelohedra

Definition

Convex *d*-dimensional polytope *P* is called a **parallelohedron** if \mathbb{R}^d can be (face-to-face) tiled into parallel copies of *P*.



Two types of two-dimensional parallelohedra

イロト イポト イヨト イヨト

Three-dimensional parallelohedra

In 1885 Russian crystallographer E.Fedorov listed all types of three-dimensional parallelohedra.

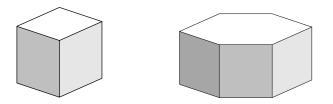
A.Garber

・ロト ・聞 ト ・目 ・ ・ ヨー ・ つへの

MSU and Delone Lab of YSU

Three-dimensional parallelohedra

In 1885 Russian crystallographer E.Fedorov listed all types of three-dimensional parallelohedra.

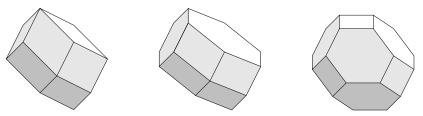


Parallelepiped and hexagonal prism with centrally symmetric base.

A.Garber

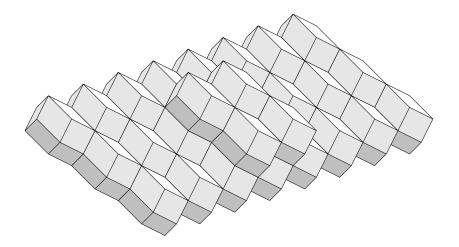
Three-dimensional parallelohedra

In 1885 Russian crystallographer E.Fedorov listed all types of three-dimensional parallelohedra.



Rhombic dodecahedron, elongated dodecahedron, and truncated octahedron

Tiling by rhombic dodecahedra



A.Garber

MSU and Delone Lab of YSU

2

・ロト ・四ト ・ヨト ・ヨト

Minkowski-Venkov conditions

Theorem (H.Minkowski, 1897, and B.Venkov, 1954)

P is a d-dimensional parallelohedron iff it satisfies the following conditions:

- **1** *P* is centrally symmetric;
- **2** Any facet of *P* is centrally symmetric;
- 3 Projection of P along any its (d 2)-dimensional face is parallelogram or centrally symmetric hexagon.

Minkowski-Venkov conditions

Theorem (H.Minkowski, 1897, and B.Venkov, 1954)

P is a *d*-dimensional parallelohedron iff it satisfies the following conditions:

- **1** *P* is centrally symmetric;
- **2** Any facet of *P* is centrally symmetric;
- 3 Projection of P along any its (d-2)-dimensional face is parallelogram or centrally symmetric hexagon.

Theorem (N.Dolbilin and A.Magazinov, 2013)

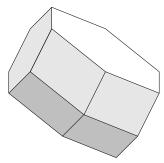
If *P* tiles *d*-dimensional space with positive homothetic copies separated from 0 then *P* satisfies Minkowski-Venkov conditions.

A.Garber

Belts of parallelohedra

Definition

The set of facets parallel to a given (d - 2)-face is called **belt**. These facets are projected onto sides of a parallelogram or a hexagon.



Belts of parallelohedra

Definition

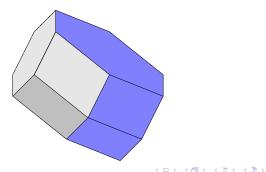
The set of facets parallel to a given (d - 2)-face is called **belt**. These facets are projected onto sides of a parallelogram or a hexagon. There are 4-belts



Belts of parallelohedra

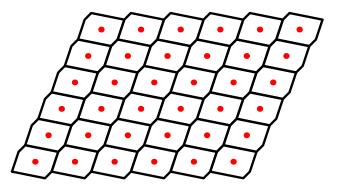
Definition

The set of facets parallel to a given (d-2)-face is called **belt**. These facets are projected onto sides of a parallelogram or a hexagon. There are 4-belts and 6-belts.



Parallelohedra and Lattices

Let \mathcal{T}_P be the unique face-to-face tiling of \mathbb{R}^d into parallel copies of P. Then centers of tiles forms a lattice Λ_P .

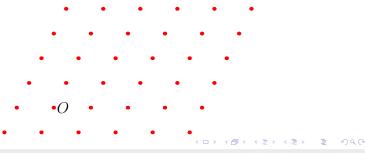


A.Garber

MSU and Delone Lab of YSU

Parallelohedra and Lattices II

 Consider we have an arbitrary *d*-dimensional lattice Λ and arbitrary point *O* of Λ.

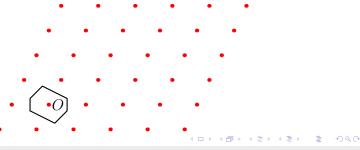


A.Garber

MSU and Delone Lab of YSU

Parallelohedra and Lattices II

- Consider we have an arbitrary *d*-dimensional lattice Λ and arbitrary point *O* of Λ.
- Consider a polytope consist of points that are closer to O than to any other lattice point (Dirichlet-Voronoi polytope of Λ).

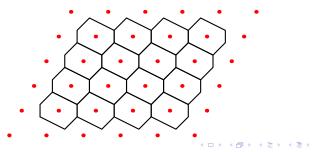


A.Garber

VISU and Delone Lab of YSU

Parallelohedra and Lattices II

- Consider we have an arbitrary *d*-dimensional lattice Λ and arbitrary point *O* of Λ.
- Consider a polytope consist of points that are closer to O than to any other lattice point (Dirichlet-Voronoi polytope of Λ).
- Then DV_Λ is a parallelohedron and points of Λ are centers of correspondent tiles.



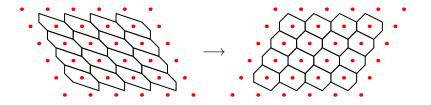
A.Garber

MSU and Delone Lab of YSU

Voronoi conjecture

Conjecture (G.Voronoi, 1909)

Every parallelohedron is affine equivalent to Dirichlet-Voronoi polytope of some lattice Λ .



A.Garber

Some known results

Definition

A *d*-dimensional parallelohedron P is called **primitive** if every vertex of the corresponding tiling belongs to exactly d + 1 copies of P.

イロト イポト イヨト イヨト

Theorem (G.Voronoi, 1909)

The Voronoi conjecture is true for primitive parallelohedra.

A.Garber

Some known results

Definition

A *d*-dimensional parallelohedron *P* is called *k*-primitive if every *k*-face of the corresponding tiling belongs to exactly d + 1 - k copies of *P*.

Theorem (O.Zhitomirskii, 1929)

The Voronoi conjecture is true for (d - 2)-primitive d-dimensional parallelohedra. Or the same, it is true for parallelohedra without belts of length 4.

イロト イポト イヨト イヨト

A.Garber

Definition

The **dual cell** of a face F of given parallelohedral tiling is the set of all centers of parallelohedra that shares F. If F is (d - k)-dimensional then the corresponding cell is called *k*-cell.

A.Garber

・ロト・日本・モト・モー うんの

MSU and Delone Lab of YSU

Definition

The **dual cell** of a face F of given parallelohedral tiling is the set of all centers of parallelohedra that shares F. If F is (d - k)-dimensional then the corresponding cell is called *k*-cell.

The set of all dual cells of the tiling with corresponding incidence relation determines a structure of a cell complex.

イロト イポト イヨト イヨト

э

A.Garber

Definition

The **dual cell** of a face F of given parallelohedral tiling is the set of all centers of parallelohedra that shares F. If F is (d - k)-dimensional then the corresponding cell is called *k*-cell.

The set of all dual cells of the tiling with corresponding incidence relation determines a structure of a cell complex.

Conjecture (Dimension conjecture)

The dimension of dual k-cell is equal to k.

The dimension conjecture is necessary for the Voronoi conjecture.

イロト イポト イヨト イヨト

э

Definition

The **dual cell** of a face F of given parallelohedral tiling is the set of all centers of parallelohedra that shares F. If F is (d - k)-dimensional then the corresponding cell is called k-cell.

The set of all dual cells of the tiling with corresponding incidence relation determines a structure of a cell complex.

Conjecture (Dimension conjecture)

The dimension of dual k-cell is equal to k.

The dimension conjecture is necessary for the Voronoi conjecture.

Theorem (A.Magazinov, 2013)

Dual k-cell has at most 2^k vertices.

э

Dual 3-cells and 4-dimensional parallelohedra

Lemma (B.Delone, 1929)

There are five types of three-dimensional dual cells: tetrahedron, octahedron, quadrangular pyramid, triangular prism and cube.

Theorem (B.Delone, 1929)

The Voronoi conjecture is true for four-dimensional parallelohedra.

Delone used this result to find full classification of four-dimensional parallelohedra. He found 51 of them and the last 52nd was added by M.Shtogrin in 1973.

Dual 3-cells and 4-dimensional parallelohedra

Lemma (B.Delone, 1929)

There are five types of three-dimensional dual cells: tetrahedron, octahedron, quadrangular pyramid, triangular prism and cube.

Theorem (B.Delone, 1929)

The Voronoi conjecture is true for four-dimensional parallelohedra.

Delone used this result to find full classification of four-dimensional parallelohedra. He found 51 of them and the last 52nd was added by M.Shtogrin in 1973.

Theorem (A.Ordine, 2005)

The Voronoi conjecture is true for parallelohedra without cubical or prismatic dual 3-cells.

A.Garber

ISU and Delone Lab of YSU

Problem (Dual conjecture)

For every parallelohedral tiling \mathcal{T}_P with lattice Λ there exist a positive definite quadratic form $Q(\mathbf{x}) = \mathbf{x}^T Q \mathbf{x}$ such that P is Dirichlet-Voronoi polytope of Λ with respect to metric defined by Q.

A.Garber

MSU and Delone Lab of YSU

Problem (Dual conjecture)

For every parallelohedral tiling \mathcal{T}_P with lattice Λ there exist a positive definite quadratic form $Q(\mathbf{x}) = \mathbf{x}^T Q \mathbf{x}$ such that P is Dirichlet-Voronoi polytope of Λ with respect to metric defined by Q.

Consider the dual tiling \mathcal{T}_P^* .

A.Garber

Problem (Dual conjecture)

For every parallelohedral tiling \mathcal{T}_P with lattice Λ there exist a positive definite quadratic form $Q(\mathbf{x}) = \mathbf{x}^T Q \mathbf{x}$ such that P is Dirichlet-Voronoi polytope of Λ with respect to metric defined by Q.

Consider the dual tiling \mathcal{T}_{P}^{*} . This tiling after appropriate affine transformation must be the Delone tiling of image of lattice Λ .

A.Garber

Problem (Dual conjecture)

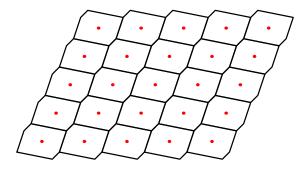
For every parallelohedral tiling \mathcal{T}_P with lattice Λ there exist a positive definite quadratic form $Q(\mathbf{x}) = \mathbf{x}^T Q \mathbf{x}$ such that P is Dirichlet-Voronoi polytope of Λ with respect to metric defined by Q.

Consider the dual tiling \mathcal{T}_{P}^{*} . This tiling after appropriate affine transformation must be the Delone tiling of image of lattice Λ .

Problem

Prove that for dual tiling \mathcal{T}_{P}^{*} there exist a positive definite quadratic form $Q(\mathbf{x}) = \mathbf{x}^{T} Q \mathbf{x}$ (or an ellipsoid E that represents a unit sphere with respect to Q) such that \mathcal{T}_{P}^{*} is a Delone tiling with respect to Q and centers of corresponding empty ellipsoids are in vertices of tiling \mathcal{T}_{P}

A.Garber

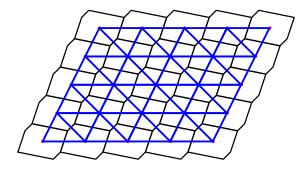


A.Garber

MSII and Delone Lab of YSU

э

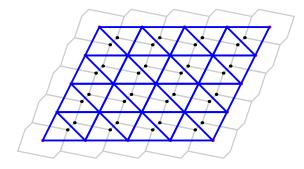
イロン イロン イヨン イヨン



A.Garber

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ● ●

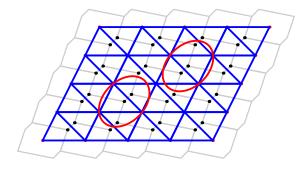
MSU and Delone Lab of YSU



A.Garber

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

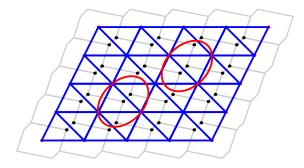
MSU and Delone Lab of YSU



A.Garber

・ロト・(型ト・(ヨト・(ヨト・)) つへの

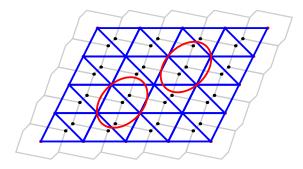
MSU and Delone Lab of YSU



This approach was used by R.Erdahl in 1999 to prove the Voronoi conjecture for zonotopes.

<ロ> <回> <回> <回> <回> < 回>

A.Garber



This approach was used by R.Erdahl in 1999 to prove the Voronoi conjecture for zonotopes.

Several more equivalent reformulations can be found in work of M.Deza and V.Grishukhin "Properties of parallelotopes equivalent to Voronoi's conjecture", 2004.

A.Garber

Canonical scaling

Definition

A (positive) real-valued function n(F) defined on set of all facets of tiling is called **canonical scaling** if it satisfies the following conditions for facets F_i that contains arbitrary (d-2)-face G:

A.Garber

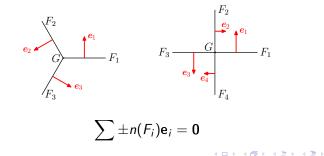
◆□▶ ◆□▶ ◆言▶ ◆言▶ 言 のへの

MSU and Delone Lab of YSU

Canonical scaling

Definition

A (positive) real-valued function n(F) defined on set of all facets of tiling is called **canonical scaling** if it satisfies the following conditions for facets F_i that contains arbitrary (d-2)-face G:



How to construct a canonical scaling for a given tiling \mathcal{T}_P ?

A.Garber

・ロト ・ 「日 ト ・ 日 ト ・ 日 ・ つ へ ()

MSU and Delone Lab of YSU

How to construct a canonical scaling for a given tiling \mathcal{T}_P ?

■ If two facets F₁ and F₂ of tiling has a common (d - 2)-face from 6-belt then value of canonical scaling on F₁ uniquely defines value on F₂ and vice versa.

A.Garber

How to construct a canonical scaling for a given tiling T_P ?

- If two facets F₁ and F₂ of tiling has a common (d 2)-face from 6-belt then value of canonical scaling on F₁ uniquely defines value on F₂ and vice versa.
- If facets F_1 and F_2 has a common (d-2)-face from 4-belt then the only condition is that if these facets are opposite then values of canonical scaling on F_1 and F_2 are equal.

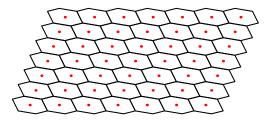
・ロト ・ 同ト ・ ヨト ・ ヨト …

э

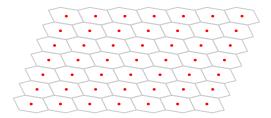
How to construct a canonical scaling for a given tiling T_P ?

- If two facets F₁ and F₂ of tiling has a common (d 2)-face from 6-belt then value of canonical scaling on F₁ uniquely defines value on F₂ and vice versa.
- If facets F_1 and F_2 has a common (d-2)-face from 4-belt then the only condition is that if these facets are opposite then values of canonical scaling on F_1 and F_2 are equal.
- If facets *F*₁ and *F*₂ are opposite in one parallelohedron then values of canonical scaling on *F*₁ and *F*₂ are equal.

イロト 不得 とくほと くほとう ほ



Consider we have a canonical scaling defined on tiling \mathcal{T}_P .

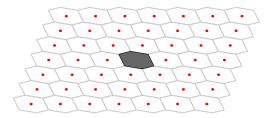


イロト イポト イヨト イヨト

э

We will construct a piecewise linear generatrissa function $\mathcal{G}: \mathbb{R}^d \longrightarrow \mathbb{R}.$

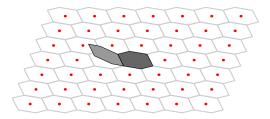
A.Garber



Step 1: Put \mathcal{G} equal to 0 on one of tiles.

VISU and Delone Lab of YSU

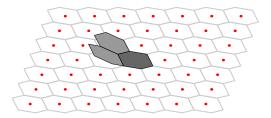
A.Garber



Step 2: When we pass through one facet of tiling the gradient of \mathcal{G} changes accordingly to canonical scaling.

< ロ > < 同 > < 回 > < 回 >

A.Garber

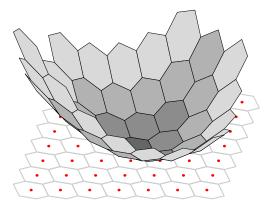


Step 2: Namely, if we pass a facet F with normal vector e then we add vector n(F)e to gradient.

< ロ > < 同 > < 回 > < 回 >

э

A.Garber



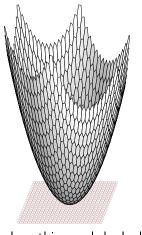
We obtain a graph of generatrissa function \mathcal{G} .

A.Garber

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Voronoi's Generatrissa II



What does this graph looks like?

A.Garber

 The graph of generatrissa G looks like "piecewise linear" paraboloid.

A.Garber

・ロト ・聞 ト ・目 ・ ・ 目 ・ うへの

MSU and Delone Lab of YSU

- The graph of generatrissa G looks like "piecewise linear" paraboloid.
- And actually there is a paraboloid y = x^TQx for some positive definite quadratic form Q tangent to generatrissa in centers of its shells.

A.Garber

- The graph of generatrissa G looks like "piecewise linear" paraboloid.
- And actually there is a paraboloid y = x^TQx for some positive definite quadratic form Q tangent to generatrissa in centers of its shells.
- Moreover, if we consider an affine transformation \mathcal{A} of this paraboloid into paraboloid $y = \mathbf{x}^T \mathbf{x}$ then tiling \mathcal{T}_P will transform into Voronoi tiling for some lattice.

- The graph of generatrissa G looks like "piecewise linear" paraboloid.
- And actually there is a paraboloid y = x^TQx for some positive definite quadratic form Q tangent to generatrissa in centers of its shells.
- Moreover, if we consider an affine transformation \mathcal{A} of this paraboloid into paraboloid $y = \mathbf{x}^T \mathbf{x}$ then tiling \mathcal{T}_P will transform into Voronoi tiling for some lattice.

So to prove the Voronoi conjecture it is sufficient to construct a canonical scaling on the tiling \mathcal{T}_P . Works of Voronoi, Zhitomirskii and Ordine based on this approach.

A.Garber

Necessity of Generatrissa

Lemma

Tangents to parabola in points A and B intersects in the "midpoint" of AB.

A.Garber

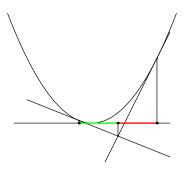
・ロト ・聞 ト ・目 ・ ・ 目 ・ うへの

MSU and Delone Lab of YSU

Necessity of Generatrissa

Lemma

Tangents to parabola in points A and B intersects in the "midpoint" of AB.



A.Garber

Necessity of Generatrissa

Lemma

Tangents to parabola in points A and B intersects in the "midpoint" of AB.

This lemma leads to the "usual" way of constructing the Voronoi diagram for a given point set.

- We lift points onto paraboloid $y = x^T x$ in \mathbb{R}^{d+1} .
- Construct tangent hyperplanes.
- Take the intersection of upper-halfspaces.
- And project this polyhedron back on the initial space.

イロト イポト イヨト イヨト

Gain function instead of canonical scaling

We know how canonical scaling should change when we pass from one facet to neighbor facet across primitive (d - 2)-face of F.

A.Garber

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ― 圖 … 釣ぬ()

MSU and Delone Lab <u>of YSU</u>

Gain function instead of canonical scaling

We know how canonical scaling should change when we pass from one facet to neighbor facet across primitive (d - 2)-face of F.

Definition

We will call the multiple of canonical scaling that we achieve by passing across F the gain function g on F.

For any generic curve γ on surface of P that do not cross non-primitive (d-2)-faces we can define the value $g(\gamma)$.

A.Garber

э

Gain function instead of canonical scaling

We know how canonical scaling should change when we pass from one facet to neighbor facet across primitive (d - 2)-face of F.

Definition

We will call the multiple of canonical scaling that we achieve by passing across F the gain function g on F.

For any generic curve γ on surface of P that do not cross non-primitive (d-2)-faces we can define the value $g(\gamma)$.

Lemma

The Voronoi conjecture is true for P iff for any generic cycle $g(\gamma) = 1$.

A.Garber

Properties of gain function

Definition

Consider a manifold P_{δ} that is a surface of parallelohedron P with deleted closed non-primitive (d-2)-faces. We will call this manifold the δ -surface of P.

イロト イポト イヨト イヨト

The gain function is well defined on any cycle on P_{δ} .

A.Garber

Properties of gain function

Definition

Consider a manifold P_{δ} that is a surface of parallelohedron P with deleted closed non-primitive (d-2)-faces. We will call this manifold the δ -surface of P.

The gain function is well defined on any cycle on P_{δ} .

Lemma (A.Gavrilyuk, A.G., A.Magazinov)

The gain function gives us a homomorphism

$$g:\pi_1(P_\delta)\longrightarrow \mathbb{R}_+$$

and the Voronoi conjecture is true for P iff this homomorphism is trivial.

A.Garber

 It is easy to see that values of canonical scaling should be equal on opposite facets of P. So we can consider a π-surface of P that obtained from P_δ by gluing its opposite points.

- It is easy to see that values of canonical scaling should be equal on opposite facets of P. So we can consider a π -surface of P that obtained from P_{δ} by gluing its opposite points.
- We already know some cycles (half-belt cycles) on P_π that g maps into 1. For example, any cycle formed by three facets F₁, F₂, F₃ that are parallel to primitive (d 2)-dimensional face G (like three consecutive sides of a hexagon).

・ロト ・四ト ・ヨト ・ヨト

- It is easy to see that values of canonical scaling should be equal on opposite facets of P. So we can consider a π -surface of P that obtained from P_{δ} by gluing its opposite points.
- We already know some cycles (half-belt cycles) on P_π that g maps into 1. For example, any cycle formed by three facets F₁, F₂, F₃ that are parallel to primitive (d 2)-dimensional face G (like three consecutive sides of a hexagon).
- The group \mathbb{R}_+ is commutative so image of commutator subgroup $[\pi_1(P_\pi)]$ is trivial. Therefore, we factorize by commutator and get the group of one-dimensional homologies over \mathbb{Z} instead of fundamental group.

- It is easy to see that values of canonical scaling should be equal on opposite facets of P. So we can consider a π -surface of P that obtained from P_{δ} by gluing its opposite points.
- We already know some cycles (half-belt cycles) on P_π that g maps into 1. For example, any cycle formed by three facets F₁, F₂, F₃ that are parallel to primitive (d 2)-dimensional face G (like three consecutive sides of a hexagon).
- The group \mathbb{R}_+ is commutative so image of commutator subgroup $[\pi_1(P_\pi)]$ is trivial. Therefore, we factorize by commutator and get the group of one-dimensional homologies over \mathbb{Z} instead of fundamental group.

э

• Moreover we can exclude the torsion part of the group $H_1(P_{\pi}, \mathbb{Z})$ since there is no torsion in the group \mathbb{R}_+ .

- It is easy to see that values of canonical scaling should be equal on opposite facets of P. So we can consider a π -surface of P that obtained from P_{δ} by gluing its opposite points.
- We already know some cycles (half-belt cycles) on P_π that g maps into 1. For example, any cycle formed by three facets F₁, F₂, F₃ that are parallel to primitive (d 2)-dimensional face G (like three consecutive sides of a hexagon).
- The group \mathbb{R}_+ is commutative so image of commutator subgroup $[\pi_1(P_\pi)]$ is trivial. Therefore, we factorize by commutator and get the group of one-dimensional homologies over \mathbb{Z} instead of fundamental group.

・ロット 全部 マート・ キョン

э

• Moreover we can exclude the torsion part of the group $H_1(P_{\pi}, \mathbb{Z})$ since there is no torsion in the group \mathbb{R}_+ .

Finally we get the group $H_1(P_{\pi}, \mathbb{Q})$.

The new result on Voronoi conjecture

Theorem (A.Gavrilyuk, A.G., A.Magazinov)

The Voronoi conjecture is true for parallelohedra with trivial group $\pi_1(P_{\delta})$, i.e. for polytopes with simply connected δ -surface.

In \mathbb{R}^3 : cube, rhombic dodecahedron and truncated octahedron.

A.Garber

The new result on Voronoi conjecture

Theorem (A.Gavrilyuk, A.G., A.Magazinov)

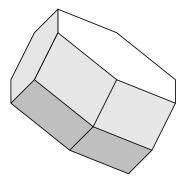
The Voronoi conjecture is true for parallelohedra with trivial group $\pi_1(P_{\delta})$, i.e. for polytopes with simply connected δ -surface.

In \mathbb{R}^3 : cube, rhombic dodecahedron and truncated octahedron.

After applying all improvements we get:

Theorem (A.Gavrilyuk, A.G., A.Magazinov)

If group of one-dimensional homologies $H_1(P_{\pi}, \mathbb{Q})$ of the π -surface of parallelohedron P is generated by half-belt cycles then the Voronoi conjecture is true for P.

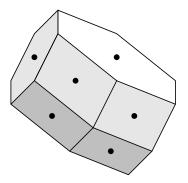


イロン イロン イヨン イヨン

э

We start from a parallelohedron P.

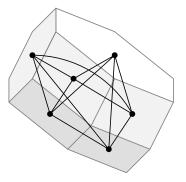
A.Garber



Then put a vertex of graph G for every pair of opposite facets.

1SU and Delone Lab of YSU

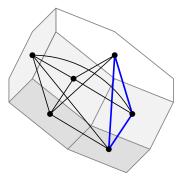
A.Garber



Draw edges of G between pairs of facets with common primitive (d-2)-face.

<ロ> (四) (四) (三) (三) (三)

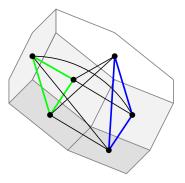
A.Garber



List all "basic" cycles γ that has gain function 1 for sure. These are half-belt cycles.

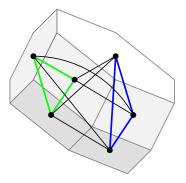
イロト イポト イヨト イヨト

A.Garber



List all "basic" cycles γ that has gain function 1 for sure. These are half-belt cycles. And trivially contractible cycles around (d-3)-face.

A.Garber



イロン イロン イヨン イヨン

Check that basic cycles generates all cycles of graph G.

A.Garber

Three- and four-dimensional parallelohedra

Using described algorithm we can check that every parallelohedron in \mathbb{R}^3 and \mathbb{R}^4 has homology group $H_1(P_{\pi}, \mathbb{Q})$ generated by half-belts cycles and therefore it satisfies our condition.

Uniqueness theorem

Assume that Voronoi conjecture is true for parallelohedron P. How many there are Voronoi polytopes that are affinely equivalent to P?

A.Garber

・ロト ・ 「日 ト ・ 日 ト ・ 日 ・ つ へ ()

MSU and Delone Lab of YSU

Uniqueness theorem

Assume that Voronoi conjecture is true for parallelohedron P. How many there are Voronoi polytopes that are affinely equivalent to P?

Theorem (L.Michel, S.Ryshkov, M.Senechal, 1995)

If *P* is primitive then there is unique Voronoi polytope equivalent to *P*.

A.Garber

MSU and Delone Lab of YSU

Uniqueness theorem

Assume that Voronoi conjecture is true for parallelohedron P. How many there are Voronoi polytopes that are affinely equivalent to P?

Theorem (L.Michel, S.Ryshkov, M.Senechal, 1995)

If *P* is primitive then there is unique Voronoi polytope equivalent to *P*.

Theorem (N.Dolbilin, J.-i.Itoh, C.Nara, 2011)

If graph G of P is connected then there is at most one Voronoi polytope equivalent to P.

Theorem (A.Gavrilyuk, to appear)

If G has k components then the set of Voronoi polytopes equivalent to P is either empty or a k-orbifold.

A.Garber

ISU and Delone Lab of YSU

Extension of Parallelohedra

Definition

A vector v is called **free** with respect to parallelohedron P if the Minkowski sum $P + \frac{1}{2}[-v, v]$ is a parallelohedron.

A.Garber

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - めんの

MSU and Delone Lab of YSU

Extension of Parallelohedra

Definition

A vector v is called **free** with respect to parallelohedron P if the Minkowski sum $P + \frac{1}{2}[-v, v]$ is a parallelohedron.

Theorem (V.Grishukhin, 2006, corrected proof in 2013 by A.Magazinov)

A vector v is free with respect to P iff v is parallel to at least one facet from every 6-belt.

Theorem (A.Magazinov, preprint)

If vector v is free with respect to Voronoi polytope P then the Voronoi conjecture is true for $P + \frac{1}{2}[-v, v]$.

A.Garber

イロト イヨト イヨト

Dual approach		

THANK YOU!

A.Garber

MSIL and Delone Lab of VSIL