Centra			Zonotopes	
	Belt dian	neter of some c	lass of space	filling
				0
		zonotop	bes	

Alexey Garber

Moscow State University and Delone Laboratory of Yaroslav| State University, Russia

> Alexandroff Readings, Moscow State University May 22, 2012

A.Garber

イロト イポト イヨト イヨト

3

Polytopes with centrally symmetric facets

Consider a family \mathcal{P}_C of all *d*-dimensional polytopes with centrally symmetric facets.

Theorem (A.D. Alexandrov anf G.C. Shephard)

Every polytope from \mathcal{P}_{C} is centrally symmetric itself.

Let P be any polytope from \mathcal{P}_C .

A.Garber

Polytopes with centrally symmetric facets

Consider a family \mathcal{P}_C of all *d*-dimensional polytopes with centrally symmetric facets.

Theorem (A.D. Alexandrov anf G.C. Shephard)

Every polytope from \mathcal{P}_{C} is centrally symmetric itself.

Let P be any polytope from \mathcal{P}_C .

Definition

For any (d-2)-dimensional face F of P we can define a *belt* $\mathcal{B}_P(F)$ as a set of all facets of P parallel to F.

A.Garber

Belt diameter of zonotopes

イロト イポト イヨト イヨト

イロト イポト イヨト イヨト

Polytopes with centrally symmetric facets

Consider a family \mathcal{P}_C of all *d*-dimensional polytopes with centrally symmetric facets.

Theorem (A.D. Alexandrov anf G.C. Shephard)

Every polytope from \mathcal{P}_{C} is centrally symmetric itself.

Let P be any polytope from \mathcal{P}_C .

Definition

For any (d-2)-dimensional face F of P we can define a *belt* $\mathcal{B}_P(F)$ as a set of all facets of P parallel to F. We can construct it by moving from one facet to another across (d-2)-faces parallel to F.

A.Garber

VISU and Delone Lab of YSU

A.Garber

A.Garber

A.Garber

VISU and Delone Lab of YSU

A.Garber

/ISU and Delone Lab of YSU

A.Garber

VISU and Delone Lab of YSU

A.Garber

Belt distance and belt diameter

Definition

Belt distance between two facets of P is the minimal number of belts that we need to travel from one facets to another.

MSU and Delone Lab of YSU

A.Garber

Belt distance and belt diameter

Definition

Belt distance between two facets of P is the minimal number of belts that we need to travel from one facets to another.

MSU and Delone Lab of YSU

A.Garber

Belt distance and belt diameter

Definition

Belt distance between two facets of P is the minimal number of belts that we need to travel from one facets to another.

Definition

Belt diameter of P is the maximal belt distance between its facets.

A.Garber

イロト 不得下 イヨト イヨト

Why this is interesting?

Conjecture (G.Voronoi, 1909)

Every convex polytope that tiles space with translation copies is affinely equivalent to Dirichlet-Voronoi polytope of some lattice.

A.Garber

Why this is interesting?

Conjecture (G.Voronoi, 1909)

Every convex polytope that tiles space with translation copies is affinely equivalent to Dirichlet-Voronoi polytope of some lattice.

One of the most popular (and one the most successful for now) approaches to prove the Voronoi conjecture in parallelohedra theory uses a canonical scaling function.

And values of canonical scaling can be uniquely defined on facets in one belt of length equal to 6.

Centrally symmetric facets	Belt diameter	Zonotopes	

Questions

Problem

What is the maximal belt diameter of *d*-dimensional polytope?

A.Garber

Belt diameter of zonotopes

MSU and Delone Lab of YSU

Centrally symmetric facets	Belt diameter	Zonotopes	

Questions

Problem

What is the maximal belt diameter of *d*-dimensional polytope?

<ロ> (四) (四) (三) (三) (三)

It is easy to see that answer for d = 3 is 2.

A.Garber

Centrally symmetric facets	Belt diameter	Zonotopes	

Questions

Problem

What is the maximal belt diameter of *d*-dimensional polytope?

It is easy to see that answer for d = 3 is 2.

We can add some restriction for maximal length of any belt or we can restrict ourselves only to certain subfamily of polytopes with centrally symmetric facets. Or both.

э

Centrally symmetric facets	Belt diameter	Zonotopes	
Small belt lengths			

There is only one *d*-dimensional polytope with all belts consist of 4 facets. It is the *d*-dimensional cube and its belt diameter is equal to 1.

▲□ ► ▲ □ ► ▲

Small belt lengths

- There is only one *d*-dimensional polytope with all belts consist of 4 facets. It is the *d*-dimensional cube and its belt diameter is equal to 1.
- The situation is much more interesting for those polytopes who has belts of length 4 or 6. It was proved that conditions to have centrally symmetric facets and belts of length at most 6 are necessary (H.Minkowski, 1897) and sufficient (B.Venkov, 1954) for convex polytope to be a parallelohedron, i.e. to tile R^d with parallel copies.

Small belt lengths

- There is only one *d*-dimensional polytope with all belts consist of 4 facets. It is the *d*-dimensional cube and its belt diameter is equal to 1.
- The situation is much more interesting for those polytopes who has belts of length 4 or 6. It was proved that conditions to have centrally symmetric facets and belts of length at most 6 are necessary (H.Minkowski, 1897) and sufficient (B.Venkov, 1954) for convex polytope to be a parallelohedron, i.e. to tile R^d with parallel copies.

There are 5 three-dimensional parallelohedra, 52 four-dimensional and dozens of thousands of five-dimensional. And maximal belt diameter is unknown for all cases except \mathbb{R}^3 .

< 日 > < 同 > < 三 > < 三 > < 三 > <

イロト イポト イヨト イヨト

э

Zonotopes

Definition

A polytope is called a *zonotope* if it is a porjection of cube. Or equivalently it is a Minkowski sum of finite number of segments. In that case we will denote this polytope as Z(U) where U is the correspondent vector set.

A.Garber

イロト イポト イヨト イヨト

Zonotopes

Definition

A polytope is called a *zonotope* if it is a porjection of cube. Or equivalently it is a Minkowski sum of finite number of segments. In that case we will denote this polytope as Z(U) where U is the correspondent vector set.

The equivalent property is the following.

Theorem (P. McMullen, 1980)

For d > 3 a d-dimensional polytope is a zonotope if and only if all (d-2)-faces of P are centrally symmetric.

A.Garber

Questions about belt diameter of zonotopes

Problem

What is the maximal belt diameter of d-dimensional space-filling zonotopes, i.e. for zonotopes with belt length at most 6?

A.Garber

Questions about belt diameter of zonotopes

Problem

What is the maximal belt diameter of d-dimensional space-filling zonotopes, i.e. for zonotopes with belt length at most 6?

Problem

What is the maximal belt diameter of *d*-dimensional zonotopes with belt length at most 2k, k > 3?

A.Garber

Belt diameter of zonotopes

MSU and Delone Lab of YSU

(日) (同) (三) (三)

(日) (同) (三) (三)

Questions about belt diameter of zonotopes

Problem

What is the maximal belt diameter of d-dimensional space-filling zonotopes, i.e. for zonotopes with belt length at most 6?

Problem

What is the maximal belt diameter of *d*-dimensional zonotopes with belt length at most 2k, k > 3?

Claim

If $k \ge d$ or if we do not restrict he maximal value of belt length then the answer is d - 1 and it is sharp.

An idea how to get an upper bound

Definition

Two sets E and F of d-1 vectors in \mathbb{R}^d each are called *conjugated* if

$$\dim(E \cup \mathbf{f}_i) = \dim(F \cup \mathbf{e}_i = d.$$

Correspondent zonotope $Z(E \cup F)$ is called *symmetric*.

Theorem (A.G.)

The maximal belt diameter for zonotope is also achieved on some symmetric zonotope of smaller or equal dimension.

A.Garber

Belt diameter of zonotopes

・ロト・西ト・モン・モー しょうくの

◆□ > ◆□ > ◆豆 > ◆豆 >

A new basis for symmetric zonotopes

Lemma

For space-filling zonotopes we can find an upper bound only for zonotopes with set of zone vectors

$$\mathscr{V} = \left(\begin{array}{c|c} E_{d-1} & A \\ \hline 0 \dots 0 & 1 \dots 1 \end{array} \right),$$

where A is a 0/1-matrix with at least half of zeros in each row.

A.Garber

<ロ> (四) (四) (三) (三) (三)

э

Results on belt diameter of zonotopes

Theorem (A.G.)

Belt diameter of d-dimensional space-filling zonotope is not greater than

$$\log_2\left(\frac{4}{5}d\right)$$
.

A.Garber

э

Results on belt diameter of zonotopes

Theorem (A.G.)

Belt diameter of d-dimensional space-filling zonotope is not greater than

$$\log_2\left(\frac{4}{5}d\right)$$

Using similar technique for arbitrary belt length we can prove

Claim

Belt diameter of d-dimensional zonotope with belt length at most k does not exceed

$$\log_{1+rac{1}{k-2}} d$$

A.Garber

Π -zonotopes and their diameters

Definition

If U is a subset of the vector set $E(d) = \{\mathbf{e}_i - \mathbf{e}_j\}_{i,j=1}^{d+1}$ where \mathbf{e}_i is the standard basis in \mathbb{R}^{d+1} then zonotope Z(U) is called a Π -zonotope.

A.Garber

Belt diameter of zonotopes

MSU and Delone Lab of YSU

э

Π -zonotopes and their diameters

Definition

If U is a subset of the vector set $E(d) = \{\mathbf{e}_i - \mathbf{e}_j\}_{i,j=1}^{d+1}$ where \mathbf{e}_i is the standard basis in \mathbb{R}^{d+1} then zonotope Z(U) is called a Π -zonotope.

Theorem (A.G.)

Belt diameter of d-dimensional Π -zonotope is not greater than 2 if $d \le 6$ and 3 if d > 6. These bounds are sharp in any dimension.

A.Garber

Belt diameter of zonotopes

MSIL and Delone Lab. of VSIL

Centrally symmetric facets	Belt diameter	Zonotopes	Symmetric zonotopes

THANK YOU!

A.Garber

Belt diameter of zonotopes

MSU and Delone Lab of YSU

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで