Quasicrystals, bi-Lipschitz Equivalence and Bounded Movement.

Alexey Garber

Moscow State University

April 17, 2010

A. Garber (MSU)

Quasicrystals

April 17, 2010 1 / 33

This work is a joint work with Dirk Frettlöh from Bielefeld University.

Definition

A subset A of metric space M is called *separated net* if for some constants r and R following condition holds:

- for every two points $x_1, x_2 \in A$ distance $d_M(x_1, x_2) \ge r$ and
- for every point $y \in M$ $d_M(y, A) \leq R$.

Definition

Two sets $A_1 \subseteq M_1$ and $A_2 \subseteq M_2$ in two possibly different metric spaces are called *bi-Lipschitz equivalent* if there exist a bijection $f : A_1 \longrightarrow A_2$ and a constant $L \ge 1$ such that for any two points $x, y \in A_1$ the following inequality holds:

$$\frac{1}{l} \cdot \boldsymbol{d}_{A_1}(x, y) \leq \boldsymbol{d}_{A_2}(f(x), f(y)) \leq L \cdot \boldsymbol{d}_{A_1}(x, y).$$

Two bi-Lipschitz equivalent sets we will designate $A_1 \underset{
m Lip}{\sim} A_2$.

• Any two lattices are bi-Lipschitz equivalent.

- Any two lattices are bi-Lipschitz equivalent.
- Also any set is equivalent to its affine image.

Problem

Find a practical criterion on a metric space M that would insure a bi-Lipschitz equivalence between every two separated nets in M.

 It is evident that for S^d any two separated nets are equivalent if and only if they have the same cardinality.

- It is evident that for S^d any two separated nets are equivalent if and only if they have the same cardinality.
- P. Papasoglu, 1995. Any two homogeneous trees of valence at least 3 are bi-Lipschitz equivalent.

- It is evident that for S^d any two separated nets are equivalent if and only if they have the same cardinality.
- P. Papasoglu, 1995. Any two homogeneous trees of valence at least 3 are bi-Lipschitz equivalent.
- O. Bogopolskii, 1997. Any two separated nets in hyperbolic space 𝔄^d are equivalent.

 $\bullet\,$ It is evident that in \mathbb{R}^1 any two separated nets are equivalent.

- It is evident that in \mathbb{R}^1 any two separated nets are equivalent.
- D. Burago, B. Kleiner and in the same time C. McMullen, 1998. There exist a separated net in R^d, d > 1 which is not equivalent to lattice.

Assume that for two separated nets A and B there exist a bijection $f : A \longrightarrow B$ and a constant $\zeta > 0$ such that for every point $x \in A$ the inequality $d(x, f(x)) \leq \zeta$ holds. Then $A \underset{\text{Lip}}{\sim} B$.

Assume that for two separated nets A and B there exist a bijection $f : A \longrightarrow B$ and a constant $\zeta > 0$ such that for every point $x \in A$ the inequality $d(x, f(x)) \leq \zeta$ holds. Then $A \underset{\text{Lip}}{\sim} B$.

In this case we will say that A and B are at bounded distance.

Assume that for two separated nets A and B there exist a bijection $f : A \longrightarrow B$ and a constant $\zeta > 0$ such that for every point $x \in A$ the inequality $d(x, f(x)) \leq \zeta$ holds. Then $A \underset{\text{Lip}}{\sim} B$.

In this case we will say that A and B are at bounded distance.

For \mathbb{H}^d O.Bogopolskii proved not only that any two Delone sets are bi-Lipschitz equivalent but they are also at bounded distance.

Definition

Let Γ be a lattice in $\mathbb{R}^n \times \mathbb{R}^m$, $\pi_1 : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$ and $\pi_2 : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$ be projections, such that $\pi_1|_{\Gamma}$ is injective, and $\pi_2(\Gamma)$ is dense in \mathbb{R}^m . Let $W \subset \mathbb{R}^m$ be a compact set — the *window* — such that the closure of the interior of W equals W. This is summarized in the following diagram, which is called *cut-and-project scheme*.

\mathbb{R}^{n}	$\stackrel{\pi_1}{\longleftarrow} \mathbb{R}^n$	$ imes \mathbb{R}^m$	$\xrightarrow{\pi_2}$	\mathbb{R}^{m}
\cup		\cup		U
V		Г		W

Definition

Then

$$V := V(\mathbb{R}^n, \mathbb{R}^m, \Gamma, W) = \{\pi_1(x) \mid x \in \Gamma, \ \pi_2(x) \in W\}$$

is called a *canonical model set*.

The space \mathbb{R}^n is called *physical space* and \mathbb{R}^m is called *internal space* If $\mu(\partial(W)) = 0$, then V is called *regular* model set. If $\partial(W) \cap \pi_2(\Gamma) = \emptyset$, then V is called *generic* model set. Also we can can consider a case with open bounded window W.

This definition can be generalized for any locally compact Abelian groups.

33

Example of model set

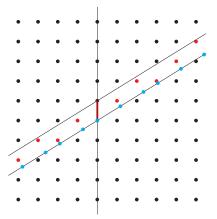


Figure: Fibonacci quasilattice $V(\mathbb{R}^1, \mathbb{R}^1, \mathbb{Z}^2, [0, 1))$ with physical space $\mathbb{R}^1 : y = \frac{\sqrt{5}+1}{2}x$.

April 17, 2010 18 / 33

Example of model set II

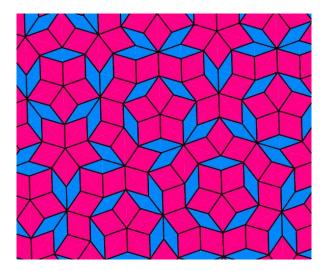


Figure: Penrose tiling.

3

3 N K 3 N

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Theorem (M.Duneau, C.Oguey, 1990.)

If window W is a translation copy of a fundamental domain of π_2 -projection of some m-sublattice of Γ then the correspondent regular model set $V(\mathbb{R}^n, \mathbb{R}^m, \Gamma, W)$ is at bounded distance from \mathbb{Z}^n .

If Λ_1 and Λ_2 are two lattices in \mathbb{R}^d of the same density then they are at the bounded distance.

If Λ_1 and Λ_2 are two lattices in \mathbb{R}^d of the same density then they are at the bounded distance.

Lemma

If Λ_1 and Λ_2 are two non-intersecting lattices in \mathbb{R}^d of densities ρ_1 and ρ_2 respectively then $\Lambda_1 \cup \Lambda_2$ is at bounded distance from any lattice with density $\rho_1 + \rho_2$.

This theorem can be used to obtain quasicrystals with more complicated windows which are at bounded distance from a lattice.

This theorem can be used to obtain quasicrystals with more complicated windows which are at bounded distance from a lattice.

Consider a quasicrystal $V(\mathbb{R}^2, \mathbb{R}^2, \mathbb{Z}^4, W)$ where W is a regular octagon and basic vectors of \mathbb{Z}^4 projected on halves of diagonals of the octagon.

Octagon as a union of fundamental domains

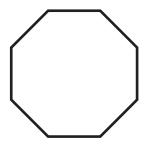


Figure: Octagon can not be a fundamental domain of any 2-lattice.

Octagon as a union of fundamental domains

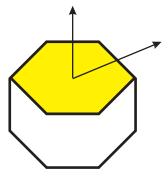


Figure: Hexagon is a fundamental domain of a sublattice.

Octagon as a union of fundamental domains

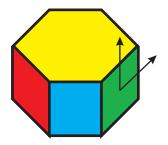


Figure: Each of three parallelograms is a fundamental domain.

A. Garber (MSU)

Problem

What types of windows will give us quasicrystals which are at bounded distance from lattices?

Problem

What types of windows will give us quasicrystals which are at bounded distance from lattices?

Theorem (H.Kesten, 1966)

The only quasicrystals $V(\mathbb{R}^1, \mathbb{R}^1, \Gamma, W)$ that satisfy the condition of Duneau and Oguey (possibly with operations of union and subtraction of windows as a sets) are at bounded distance from some one-dimensional lattice.

Quasicrystals and bi-Lipschitz equivalence

• Consider a real space \mathbb{R}^3 and a model set $V = V(\mathbb{R}^2, \mathbb{R}^1, \mathbb{Z}^3, W)$ where the physical space \mathbb{R}^2 is a plane $\pi : z = \alpha x + \beta y$.

Quasicrystals and bi-Lipschitz equivalence

• Consider a real space \mathbb{R}^3 and a model set $V = V(\mathbb{R}^2, \mathbb{R}^1, \mathbb{Z}^3, W)$ where the physical space \mathbb{R}^2 is a plane $\pi : z = \alpha x + \beta y$.

Theorem (D. Burago, B. Kleiner, 2002.)

If α satisfies a condition $\left| \alpha - \frac{p}{q} \right| > \frac{C}{q^d}$ for some constants C > 0 and d > 2 and every natural p, q then the set V is bi-Lipschitz equivalent to the lattice \mathbb{Z}^2 .

Quasicrystals and bi-Lipschitz equivalence

• Consider a real space \mathbb{R}^3 and a model set $V = V(\mathbb{R}^2, \mathbb{R}^1, \mathbb{Z}^3, W)$ where the physical space \mathbb{R}^2 is a plane $\pi : z = \alpha x + \beta y$.

Theorem (D. Burago, B. Kleiner, 2002.)

If α satisfies a condition $\left| \alpha - \frac{p}{q} \right| > \frac{C}{q^d}$ for some constants C > 0 and d > 2 and every natural p, q then the set V is bi-Lipschitz equivalent to the lattice \mathbb{Z}^2 .

Theorem (Y.Solomon, 2007.)

Delone set created from the centers of Penrose tiling is bi-Lipschitz equivalent to a lattice.

Theorem (D.Frettlöh, A.Garber, 2009.)

Any two-dimensional regular generic model set is bi-Lipschitz equivalent to a lattice.