
New integrable hierarchy, its parametric solutions,
cuspons, one-peak solitons, and M/W-shape peak solitons

Zhijun Qiaoa�

Department of Mathematics, The University of Texas Pan-American, 1201 West University
Drive, Edinburg, Texas 78541

�Received 5 April 2007; accepted 22 June 2007; published online 3 August 2007�

In this paper, we propose a new completely integrable hierarchy. Particularly in the
hierarchy we draw two new soliton equations: �1� mt=

1
2 �1/m2�xxx− 1

2 �1/m2�x; �2�
mt+mx�u2−ux

2�+2m2ux=0, m=u−uxx. The first one is the second positive member
in the hierarchy while the second one is the second negative member in the hier-
archy. Both equations can be derived from the two-dimensional Euler equation by
using the approximation procedure. All equations in the hierarchy are proven to
have bi-Hamiltonian operators and Lax pairs through solving a crucial matrix equa-
tion. Moreover, we develop parametric solutions of the entire hierarchy through
constructing two kinds of constraints; one is for all negative members of the hier-
archy on a symplectic submanifold, and the other is for all positive members in the
standard symplectic space. The most interesting things are both equations possess
new type of peaked solitons—continuous and piecewise smooth “W-/M-shape
peak” soliton solutions. In addition, we find new cusp solitons—cuspons for the
second equation and one-single-peak solitons for the first—which are also continu-
ous and piecewise smooth but not in the regular type ce−�x−ct� �c is a constant�. ©
2007 American Institute of Physics. �DOI: 10.1063/1.2759830�

I. INTRODUCTION

Solitons and integrable systems play an increasingly important role in nonlinear waves, dy-
namical systems, and analytical mechanics. It has been significant in soliton theory for us to find
more new integrable systems. There are well-known constructions of integrable systems. The
cruciality of integrable systems theory is the idea of compatibility, which is usually called Lax
pair.20 One is already at the very definition of the complete integrability of a Hamiltonian flow in
the Liouville-Arnold sense, which means that the flow is able to be included into a complete
family of commuting Hamiltonian flows.3 A condition of existence of a number of commuting
systems may be taken as the basis of the bi-Hamiltonian structure and Lax pair
approach.1,4,12,15,16,23 However, a key procedure is to figure out bi-Hamiltonian operators.

A general method for constructing a hereditary symmetry and bi-Hamiltonian systems was
presented in Ref. 13. If one starts from an eigenvalue problem, then the computation of the
gradient of the eigenvalue yields a recursion operator,4,14,24,27 and therefore it generates a hierarchy
of bi-Hamiltonian equations. However, in order to prove the integrability for all equations in the
hierarchy We need to find a time part which composes of a Lax pair together with the eigenvalue
problem. In the present paper, we propose a new eigenvalue problem and adopt the gradient13 of
an eigenvalue to figure out a pair of Hamiltonian operators. Then we develop a hierarchy of
evolution equations through taking some kernel elements from both Hamiltonian operators. To
show the complete integrability of the hierarchy, we determine the time part of the Lax pair
through employing a crucial matrix equation. Furthermore, we present exact solutions of the
hierarchy both parametric and peak solitary.
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The whole paper is organized as follows. In Sec. II, we first propose a new spectral problem,
which stems the functional gradient of the spectral parameter. Then, we figure out a pair of
operators satisfying Lenard’s scheme problem. Usually, the two operators are Hamiltonian. In Sec.
III, based on the two Hamiltonian operators, we develop a new hierarchy of nonlinear evolution
equations associated with the new spectral problem. Particularly in the hierarchy we draw two new
soliton equations:

mt =
1

2
� 1

m2�
xxx

−
1

2
� 1

m2�
x
, �1�

mt + mx�u2 − ux
2� + 2m2ux = 0, m = u − uxx. �2�

The first one is the second positive member in the hierarchy while the second one is the second
negative member. In particular, both equations can be reduced from the two-dimensional Euler
equation by using the approximation procedure �see this in the last section�. All equations both
positive and negative members in the hierarchy are proven to be completely integrable in the sense
of Lax pairs through solving a crucial matrix equation. Therefore, the initial value problem of the
hierarchy may be solved by the inverse scattering transform �IST� method.2,17 In Sec. IV, we
restrict all negative members of the hierarchy to a symplectic submanifold, and give parametric
solutions of all negative members of partial differential equations �PDEs� through constructing the
constrained integrable Hamiltonian systems ordinary differential equations �ODEs�. In Sec. V, we
generate a new constraint between the eigenfunctions and the potential function in the standard
symplectic space R2N. Under the constraint, our spectral problem is cast in another new integrable
Hamiltonian system �ODE�, and furthermore we provide parametric solutions of all positive mem-
bers �PDEs� via a system of independently involutive functions. In Sec. VI and VII, we consider
the traveling wave solutions of the two new equations �1� and �2�. They are proven to have new
one-single-peak solitons and cusp solitons, respectively. These solutions are continuous and piece-
wise smooth but not in the regular type ce−�x−ct� �c is a constant�.5 Their first order derivative is
discontinuous at some point �see more mathematical studies about the Camassa-Holm �CH� equa-
tion in Refs. 8, 9, 21, and 25�. The most interesting things are both Eqs. �1� and �2� possess new
type of peaked solitons—continuous and piecewise smooth multipeak solitons—which are in the
shape of “W” or “M” three-peak solitons. We will take some graphs to show how these three-peak
solitons look like. The last section gives a brief derivation procedure for the two new equations �1�
and �2� from the two-dimensional Euler equations. In addition, we point out the two applications
of our new equations: one is closely related to Newton equation with new potentials which we
solve in this paper, and the other is to use peaked solutions for explaining electrophysiological
responses of visceral nociceptive neuron and sensitization of dorsal root reflex conclusions in
neuroscience. We also address some remarks and open problems in the last section.

II. SPECTRAL PROBLEMS AND LENARD’S OPERATORS

Let us consider the following spectral problem:

��1

�2
�

x
= � − 1/2 �1/2��m

− �1/2��m 1/2
���1

�2
� � U�m,����1

�2
� , �3�

where � is a spectral parameter, m is a scalar potential function periodic or approaching the same
constant at both infinities, and �= ��1 ,�2�T is the spectral function corresponding to the spectral
parameter �. Then, calculating the functional gradient �� /�m of the spectral parameter � with
respect to the potential m yields
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�� ª

��

�m
=

�

2
��1

2 + �2
2� .

Here during our computation, we need the boundary conditions of approaching the same constant
at both infinities or periodical condition for the potential function m. A general calculated method
can be found in Refs. 4 and 27. Through some guesswork, we find two operators K, J satisfying

K � � = �2J � � , �4�

where K=�3−�, J=−�m�−1m�, �=� /�x, and �−1 is the inverse operator of �, namely, ��−1=�−1�
=1. Such operators K, J are called a pair of Lenard’soperators, and Eq. �4� is called Lenard’s
eigenvalue problem. Therefore, we can figure out the inverses of K and J,

J−1 = − �−1m−1�m−1�−1,

K−1 = �−1e−x�−1e2x�−1e−x.

So, they lead to

£ = J−1K = − �−1m−1�m−1��2 − 1� , �5�

£−1 = K−1J = − e−x�−1e2x�−1e−xm�−1m� , �6�

which are actually the two recursion operators we need in the next section.

III. THE HIERARCHY, BI-HAMILTONIAN STRUCTURES, AND LAX PAIRS

Now, according to Lenard’s operators K and J, we construct a hierarchy of nonlinear evolution
equations, and then we show the integrability of the hierarchy through solving a key matrix
equation. Let G0�ker J= 	G�C��R� �JG=0
 and G−1�ker K= 	G�C��R� �KG=0
. We define
Lenard’s sequence

Gj = � £ jG0, j � Z

£ j+1G−1, j � Z ,
� �7�

where £ and £−1 are defined by Eqs. �5� and �6�, respectively. Therefore, we generate a new
hierarchy of nonlinear evolution equations �NLEEs�:

mtk
= JGk, ∀ k � Z . �8�

Apparently, this hierarchy includes the positive members �k�0� and the negative members
�k�0�, and possesses the bi-Hamiltonian structure because of the Hamiltonian properties of K, J.

Let us now give special equations in the hierarchy �8�.

• Choosing G0=1/2m2�ker J leads to the second positive member of the hierarchy:

mt =
1

2
� 1

m2�
xxx

−
1

2
� 1

m2�
x
. �9�

This is a new integrable equation. Later in this section, we give its Lax pair. We will also
study the soliton solution for this new equation. Equation �9� has the following Hamiltonian
structure:

mt =
1

2
� 1

m2�
xxx

−
1

2
� 1

m2�
x

= J
�H1

+

�m
= K

�H0
+

�m
, �10�

where
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H0
+ = −

1

2



�

1

m
dx ,

H1
+ = −

1

2



�

� 1

4m3 + � 4

5m5 +
4

7m7�mx
2�dx .

• Choosing G−1=1�ker K yields G−2=2u, and therefore, we obtain the second negative mem-
ber of the hierarchy:

mt = JG−2 = − �m�u2 − ux
2��x, m = u − uxx. �11�

This equation is another new integrable equation with a new type of soliton solution—W-
shape soliton solution—which is proposed by Qiao in 2005, see Ref. 22 for more details.
Equation �11� can be cast in the following Hamiltonian structure:

mt = − �m�u2 − ux
2��x = J

�H0
−

�m
= K

�H1
−

�m
, �12�

where

J = − �m�−1m� , �13�

K = �3 − � ,

H0
− = 2


�

mudx ,

H1
− =

1

4



�

�u4 + 2u2ux
2�dx , �14�

�= �x0 ,x0+T� or �= �−� , +�� is the domain of u which needs to be periodic with T or to
approach a constant. Apparently, both operator J and operator K are Hamiltonian. So, our
Eqs. �11� and �9� are bi-Hamiltonian.

Of course, we may generate further nonlinear equations by selecting different members in the
hierarchy. In the following, we will see that all equations in the hierarchy �8� are integrable.
Particularly, the above two equations �9� and �11� are integrable.

Let us return to the spectral problem �3� and continue using the notations in Sec. II. Appar-
ently, the Gateaux derivative matrix U*��� of the spectral matrix U in the direction ��C��R� at
point m is

U*��� � � d

d	
�

	=0
U�u + 	�� = � 0 �1/2���

− �1/2��� 0
� , �15�

which is obviously an injective homomorphism, i.e., U*���=0⇔�=0.
For any given C�-function G, we construct the following 2
2 matrix equation with respect to

V=V�G�:

Vx − �U,V� = U*�KG − �2JG� . �16�

Theorem 1: For the spectral problem �3� and an arbitrary C�-function G, the matrix equation
�16� has the following solution:
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V = −
1

2
�� ��−1mGx Gx − Gxx − �2m�−1mGx

Gx + Gxx + �2m�−1mGx − ��−1mGx
� , �17�

where �=�x=� /�x ,�−1�=��−1=1, and subscripts stand for the partial derivatives in x.
Proof: Let us set

V = �V11 V12

V21 − V11
�

and substitute it into Eq. �16�, which is an overdetermined equation. Using calculation techniques
in Ref. 23, we obtain the following results:

V11 = −
1

2
�2�−1mGx,

V12 = −
1

2
��Gx − Gxx� +

1

2
�3m�−1mGx,

V21 = −
1

2
��Gx + Gxx� −

1

2
�3m�−1mGx,

which complete the proof.
Theorem 2: Let G0�ker J, G−1�ker K, and let each Gj be given through Eq. �7�. Then the

following are obtained.

1. Each new vector field Xk=JGk, k�Z satisfies the following commutator representation:

Vk,x − �U,Vk� = U*�Xk�, ∀ k � Z . �18�

2. The new hierarchy (8), i.e.,

mtk
= Xk = JGk, ∀ k � Z , �19�

possesses the zero curvature representation

Utk
− Vk,x + �U,Vk� = 0, ∀ k � Z , �20�

where

Vk = � V�Gj��2�k−j−1�, � =� �
j=0

k−1

, k � 0

0, k = 0

− �
j=k

−1

, k � 0,� �21�

and V�Gj� is given by Eq. �17� with G=Gj.

Proof:

1. For k=0, it is obvious. For k�0, we have

082701-5 New integrable hierarchy J. Math. Phys. 48, 082701 �2007�



Vk,x − �U,Vk� = − �
j=k

−1

�Vx�Gj� − �U,V�Gj����2�k−j−1� = − �
j=k

−1

U*�KGj − �2KGj−1��2�k−j−1�

= U*��
j=k

−1

KGj−1�2�k−j� − KGj�
2�k−j−1�� = U*�KGk−1 − KG−1�2k� = U*�KGk−1�

= U*�Xk� .

For the case of k�0, it is similar to prove.
2. Noticing Utk

=U*�mtk
�, we obtain

Utk
− Vk,x + �U,Vk� = U*�mtk

− Xk� .

The injectiveness of U* implies that the second result holds.
So, the hierarchy �8� has Lax pair and all equations in the hierarchy are therefore integrable.

In particular, our new equations �9� and �11� have the following Lax pairs:

��1

�2
�

x
= U�m,����1

�2
� ,

��1

�2
�

t
= V1�m,����1

�2
� ,

and

��1

�2
�

x
= U�m,����1

�2
� ,

��1

�2
�

t
= V−2�m,u,����1

�2
�, m = u − uxx,

respectively, where U�m ,�� is defined by Eq. �3�, and

V1�m,�� =
�

2� − �/m �2 + �m�mx − mxx� + 3mx
2/m4�

− �2 + �m�mx + mxx� − 3mx
2/m4�

�

m
� ,

V−2�m,u,�� = � �−2 + �1/2��u2 − ux
2� − �−1�u − ux� − �1/2��m�u2 − ux

2�
�−1�u + ux� + �1/2��m�u2 − ux

2� − �−2 − �1/2��u2 − ux
2�

� .

Thus, both of them are integrable.

IV. PARAMETRIC SOLUTION OF THE NEGATIVE MEMBERS IN THE HIERARCHY

To get the parametric solution of the hierarchy, we use the constrained method4,23 which
connects finite dimensional integrable systems to the PDEs.

A. Hamiltonian systems on a symplectic submanifold

Let � j �j=1, . . . ,N� be N distinct spectral values of spectral problem �3�, and qj , pj be the
spectral functions corresponding to � j, respectively. Then we have
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qx = −
1

2
q +

1

2
m�p ,

px =
1

2
p −

1

2
m�q , �22�

where �=diag��1 , . . . ,�N�, q= �q1 ,q2 , . . . ,qN�T, p= �p1 , p2 , . . . , pN�T.
Now, we restrict the ODE system �22� to the following �2N−2�-dimensional symplectic

submanifold M of R2N:

M = 	�p,q�T � R2N�F = 0,G = 0
 , �23�

where F= 1
2 ���q ,q�−1�, G= 1

2 ���p , p�−1�, and �·,·� stands for the standard inner product in RN.
Thus, on the submanifold M, we obtain a constraint of m related to the spectral functions p, q:

m =
1

��2p,q�
. �24�

Remark 1: ��2p ,q��0 is necessary because it guarantees that M is a symplectic submanifold
of R2N.

Under the constraint �24�, on the symplectic submanifold M the finite dimensional system �22�
is changed to

qx = −
1

2
q +

1

2

1

��2p,q�
�p ,

px =
1

2
p −

1

2

1

��2p,q�
�q , �25�

which form a �2N−2�-dimensional nonlinear system on M with respect to p, q. Is it integrable? To
see this, in R2N the standard Poisson bracket3 of two functions F1, F2 is defined as follows:

	F1,F2
 = � �F1

�q
,
�F2

�p
� − � �F1

�p
,
�F2

�q
� , �26�

which is antisymmetric, bilinear, and satisfies the Jacobi identity.
Obviously,

	F,G
 = ��2p,q� � 0. �27�

Because the system �25� is imposed on the submanifold M, we need to introduce the so-called
Dirac-Poisson bracket of two functions f , g on M:

	f ,g
D = 	f ,g
 +
1

	F,G

�	f ,F
	G,g
 − 	f ,G
	F,g
� , �28�

which is still a Poisson bracket, namely, antisymmetric, bilinear, and satisfies, the Jacobi identity.
Let us now choose a very simple Hamiltonian

H− = −
1

2
�p,q� , �29�

then, the system �25� is able to be cast in a canonical Hamiltonian form in the support of Dirac-
Poisson bracket on M:

qx = 	q,H−
D,
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px = 	p,H−
D. �30�

It is easy to check that dH− /dx=0, i.e., H− is invariant along the flow �30�.
To show the integrability of canonical system �30�, we need to figure out a system of inde-

pendent functions in involution.

B. Integrability on the symplectic submanifold

For the Hamiltonian canonical system �30�, we set up the following independent functions:

Fk
− =

1

4
���2k+1p,p� − ��2k+1q,q�� +

1

4�
j=k

−1

���2j+2p,q���2�k−j�p,q� − ��2j+3q,q���2�k−j�−1p,p��

k = − 1,− 2,− 3, . . . ,

where �−1 is the inverse of �. According to the Dirac-Poisson bracket �28�, each Fk
− produces a

canonical Hamiltonian system on M:

qtk
= 	q,Fk

−
D,

ptk
= 	p,Fk

−
D. �31�

Therefore, on submanifold M we have the following theorem.
Theorem 3: All canonical Hamiltonian flows �30� and �31� mutually commute on M.
Proof: Through a lengthy calculation, we have

	H,Fk
−
D = 0,

	Fk
−,Fl

−
D = 0,

which complete the proof.
So, all Hamiltonian flows �30� and �31� are integrable on M.

C. Parametric solutions of all negative members

Since Hamiltonian flows �H−� and �Fk
−� are completely integrable on M and their Dirac-

Poisson bracket 	H− ,Fk
−
=0 �k=−1,−2, . . . �., their phase flows gH−

x , gFk
−

tk are commutable.3 Thus,

we can define their compatible solution as follows:

�q�x,tk�
p�x,tk�

� = gH−
x gFk

−
tk �q�x0,tk

0�
p�x0,tk

0�
�, k = − 1,− 2, . . . , �32�

where x0, tk
0 are the initial values of phase flows gH−

x , gFk
−

tk .

Theorem 4: Let p�x , tk� ,q�x , tk� be the compatible solution of the two integrable flows �30�
and �31�, then

m =
1

��2p�x,tk�,q�x,tk��
�33�

satisfies the kth negative member mtk
=JGk �k�0,k�Z� in the hierarchy �19�.

Proof: Noticing the following formulas

Gk =
1

2
���2k+3q,q� + ��2k+3p,p��, k = − 1,− 2,− 3, . . . ,
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Gk,x =
1

2
���2k+3p,p� − ��2k+3q,q�� ,

�−1mGk,x = ��2k+2p,q� ,

and Eq. �31�, we directly compute and find that Eq. �33� satisfies mtk
=JGk=−�m�−1mGk,x �k

�0,k�Z� which completes the proof.
In particular, we obtain the following corollary.
Corollary 1: Let p�x , t� ,q�x , t� be the compatible solution of the two integrable flows �30� and

�31� with k=−2 on the symplectic submanifold M, then

m =
1

��2p�x,t�,q�x,t��
, �34�

u = −
��−1q�x,t�,q�x,t�� + ��−1p�x,t�,p�x,t��

2�p�x,t�,q�x,t��
, �35�

satisfy our new equation

mt + mx�u2 − ux
2� + 2m2ux = 0, m = u − uxx. �36�

Proof: A direct substitution leads to the result on M.
Similarly, we can discuss the parametric solution of the positive members mtk

=JGk=
−�m�−1mGk,x �k�0,k�Z� in the hierarchy �8�. That needs us to consider a new kind of constraint
and related integrable system, which we deal with in the next section.

V. PARAMETRIC SOLUTION OF THE POSITIVE MEMBERS IN THE HIERARCHY

Let us consider the following constraint:

G0 = �
j=1

N

� � j , �37�

where �� j =
1
2� j�qj

2+ pj
2� is the functional gradient of � j for the spectral problem �3�, and qj, pj are

the eigenfunctions corresponding to � j. By G0=1/2m2, Eq. �37� is saying that

m =
1

���q,q� + ��p,p�
, �38�

which forms a new constraint between the potential function m and the eigenfunctions qj, pj �j
=1, . . . ,N� in the whole space R2N. Under this constraint, the spectral problem �3� is cast in
another canonical Hamiltonian system in R2N:

�H+�:

qx = −
1

2
q +

1

2

1
���q,q� + ��p,p�

= 	q,H+
 ,

px = −
1

2

1
���q,q� + ��p,p�

+
1

2
q = 	p,H+
 ,

�39�

with the Hamiltonian

H+ =
1

2
���q,q� + ��p,p� −

1

2
�p,q� . �40�

To see the integrability of the system �39�, like the negative case, we take into account of the
following independent functions:
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Fk
+ =

1

4

�p,q�
���p,p� + ��q,q�

���2k+1p,p� + ��2k+1q,q�� +
1

4
��p,q� − 2���p,p� + ��q,q����2kp,q�

+
1

4�
j=0

k−1

���2j+1q,q���2�k−j�−1p,p� − ��2jp,q���2�k−j�p,q�� ,

k = 1,2,3 . . . , �41�

which generates the canonical Hamiltonian system in R2N for each k:

�Fk
+�:

qtk
= 	q,Fk

+
 ,

ptk
= 	p,Fk

+
 ,
k = 1,2,3,… . �42�

Through a lengthy computation, we obtain

	H+,Fk
+
 = 0, 	Fl

+,Fk
+
 = 0, k,l = 1,2, . . . , �43�

which show that each Hamiltonian tk-flow �Fk
+� commutes with both each other and Hamiltonian

x-flow �H+�. Thus, all Hamiltonian canonical systems �Fk
+� are integrable in R2N. Particularly, the

constrained system �39� is integrable.
Using a derivation procedure similar to the last section, we obtain the following theorem.
Theorem 5: Let p�x , tk� ,q�x , tk� �k=1,2 ,3 , . . . � be the compatible solution of the two inte-

grable flows �39� and �42� in R2N, then for each k,

m =
1

���q�x,tk�,q�x,tk�� + ��p�x,tk�,p�x,tk��
, k = 1,2,3, . . . �44�

satisfies the kth positive member mtk
=JGk, �k�0,k�Z� in the hierarchy �19�.

In particular, we have the following corollary.
Corollary 2: Let p�x , t� ,q�x , t� be the compatible solution of the two integrable flows �H+�

and �F1
+� given by Eqs. �39� and �41� with k=1, respectively. Then

m =
1

���q�x,t�,q�x,t�� + ��p�x,t�,p�x,t��
�45�

is a parametric solution of our new equation

mt =
1

2
�m−2�xxx −

1

2
�m−2�x. �46�

Proof: A direct verification completes the proof.

VI. W-/M-SHAPE PEAK SOLITONS

Let us consider the traveling wave solutions of two new equations �9� and �11� through a
generic setting m�x , t� or u�x , t�=U�x−ct�, where c is the wave speed.

A. W-/M shape peak solitons of Eq. „9…

Let us first solve Eq. �9�. Set m=1/�v�x , t�, then Eq. �9� becomes

−
��/�t�v�x,t�
v�x,t��3/2� =

�3

�x3v�x,t� −
�

�x
v�x,t� . �47�

Denote �=x−ct and let v�x , t�=U���. Substituting it into Eq. �47� yields the following ODE:
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U��� − U� = cU−3/2U�. �48�

Generally, we have the following trivial facts.

1. Any constant function is a solution of Eq. �47� and the ODE �48�.
2. Any translation U��−�0� of a solution U��� of ODE �48� is still a solution.
3. If v�x , t� is a solution of Eq. �47�, then any translation v�x−x0 , t− t0� in space x and time t is

a solution, too.

Because of the translation invariance of the differential equation �48�, without any loss of
generality, we choose �0 as vanishing, namely, �0=0. Apparently U=const is a solution, which is
not interesting for us. Let us find nontrivial solutions. Taking indefinite integral twice on both sides
of the ODE �48�, we obtain

2c
�U

+ U�� − U + C1 = 0, �49�

4c�U + C1U −
U2

2
+

1

2
U�

2 + C2 = 0, �50�

where C1 and C2 are two constants to be determined.
To have solitary traveling wave solutions, we set U=V2 and impose the boundary condition

lim�→±� V = A, A � 0, �51�

which implies m→1/A as x approaches ±� �see Ref. 26 for more details�. We can figure out the
two constants C1, C2 through substituting the boundary condition �51� into the ODEs �49� and
�50�, which generate the following two constants:

C1 = A2 −
2c

A
, �52�

C2 = −
1

2
A4 − 2cA . �53�

So the ODE �50� becomes

dV

d�
= − sign���

�V − A��AV2 + 2A2V + A3 + 4c

2�AV
.

Taking integral on both sides of the above equation, we arrive at

2 ln�A + V +��A + V�2 +
4c

A
� −

�A3

�A3 + c
�2 ln 2

+ ln
A3 + 2c + A2V + ��A3 + c��AV2 + 2A2V + A3 + 4c�

A�V − A�
� = − ��� .

In general, we cannot get an explicit form of V. But, if �A3 /�A3+c=2, namely, c=−3/4A3, then
we have

2 ln�A + V + �V2 + 2AV − 2A2� − 2 ln 2 − 2 ln
A�− A + 2V + �V2 + 2AV − 2A2�

V − A
= − ��� ,

which implies
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V = A
3 + 2X + 3X2 − �3�3 + 2X + 3X2��X − 1�2

4X
,

X = e−1/2���+ln 2,

� = x +
3

4
A3t .

Since m=1/V, we denote B=1/A�0, then m→B as �→ ±�, therefore we obtain the follow-
ing explicit solution of Eq. �9�:

m�x,t� = B�1

2
+

�3

2
� �X − 1�2

3X2 + 2X + 3
� ,

X = e−1/2�x+3/4B3t�+ln 2, �54�

which is able to be converted to

m�x,t� =
B

2 �1 + �6
sinh�s/2�

�3 cosh s + 1
� ,

FIG. 1. �a� 3D graph of the explicit solution m�x , t� defined by Eq. �55� when B=1, wave speed c=−3/4, and intervals of
x, t, m: −15
x
15, 0
 t
2, 0
m
1. �b� 2D graph of the explicit solution m�x , t� defined by Eq. �55� at t=0. This is
a W-shape peak soliton solution.
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s =
1

2
�x +

3

4B3 t� − ln 2. �55�

We take B=1, then

m�x,t� =
1

2�1 + �6
sinh�s/2�

�3 cosh s + 1
� ,

s =
1

2
�x +

3

4
t� − ln 2, �56�

whose three-dimensional �3D� and two-dimensional �2D� graphs are plotted in Fig. 1. This solu-
tion is of W-shape peak soliton.22

We can also set m=−1/V and take negative B�0 as its infinity, limit. For instance, B=−1,
then m→−1 as �→ ±� and we have

m�x,t� = −
1

2�1 + �6
sinh�s/2�

�3 cosh s + 1
� ,

s =
1

2
�x −

3

4
t� − ln 2, �57�

This is an M-shape peak soliton solution of Eq. �9�. See Fig. 2 for the details.

FIG. 2. �a� 3D graph of solution �57� when wave speed c=3/4 and intervals of x, t, m: −15
x
15, 0
 t
2, 0
m

1. �b� 2D graph of solution �57� at t=0. This is an M-shape peak soliton solution.
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B. W/M shape peak solitons of Eq. „11…

Similarly, we apply the above procedure to our new equation �11�, namely,

mt + mx�u2 − ux
2� + 2m2ux = 0, m = u − uxx. �58�

We arrive at the following explicit solutions:

u�x,t� = A�5

3
− �3z + 2��z −�z2 −

4

9
�� ,

z = cosh� �x − �11/3�A2t�
2

− ln 2� −
1

3
, �59�

Since A�0, there is no peaked soliton for homogeneous boundary conditions. Let us select a
special A=1, then the solution reads

u�x,t� = 2 − 3 cosh2 X + �cosh X +
1

3
��3�3 cosh X + 1��cosh X − 1� ,

X =
�x − �11/3�t�

2
− ln 2.

This solution has three peaks and its profile looks like a W-type wave. So, we called it W-shape
peak soliton. Three peaks occur at x= 11

3 t0, x= 11
3 t0−2 ln 2, x= 11

3 t0+2 ln 2, for each time t0. See
Fig. 3 for more details.

FIG. 3. 3D graph of the explicit solution u�x , t� for Eq. �58�, defined by Eq. �59� when A=1, s=8/3, wave speed c
=11/3, and the range of x, tu: −4
x
10, 0
x
2, −1
u
1. �b� 2D graph of the explicit solution u�x , t� defined by Eq.
�59� when A=1, s=8/3, the wave speed c=11/3, and the range of �: −10
�
10. This is a W-shape peak soliton solution.
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If we select the boundary constant A=−1, we are able to get the anti-W-shape peak soliton,
called M-shape peak soliton. See a 3D and a 2D graph in Fig. 4 for more details.

VII. ONE-SINGLE-PEAK SOLITON

A. One-single-peak soliton for Eq. „9…

We just know that Eq. �9� has a three-peak �either W-shape peak or M-shape peaks� soliton
solution. For Eq. �9�, namely, mt=

1
2 �1/m2�xxx− 1

2 �1/m2�x, let us consider the solution m�x , t�,
defined by Eq. �54�, without the absolute value of x+ �3/4B3�t. So, we create

M�x,t� = B�1

2
+

�3

2
� X2 − 2X + 1

3X2 + 2X + 3
� ,

X = e−1/2�x+3/4B3t�, B � 0. �60�

Note that there is no absolute value in X’s expression. A direct verification reveals that M�x , t� still
satisfies Eq. �9�.

We view solution �60� as a function of �=x+3/4B3t. Then apparently, M��� has the following
properties:

M�0� =
1

2
B, M��0 + � =

�6

8
B, M��0 − � = −

�6

8
B .

So, we found a continuous and piecewise-smooth �but not smooth� soliton solution for our new
equation �9�. See the graphs of M�x , t� in Fig. 5.

Regarding negative B�0, we have similar consequence. For instance, B=−1, we have

FIG. 4. �a� 3D graph of the M-shape peaks soliton u�x , t� defined by Eq. �59� with A=−1 and c=11/3. �b� 2D graph of the
M-shape peaks soliton u�x , t� defined by Eq. �59� with A=−1 and c=11/3.
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M��� = − �1

2
+

�3

2
� X2 − 2X + 1

3X2 + 2X + 3
� ,

X = e−1/2�, � = x −
3

4
t .

In this case, M�0�=− 1
2 , M��0+ �=−�6/8, M��0− �=�6/8 imply that M��� is another continuous

and piecewise-smooth soliton solution. See Fig. 6 for more details.

B. Cusp solitons for Eq. „11…

The above procedure is also available for Eq. �11�, namely, mt+mx�u2−ux
2�+2m2ux=0, m

=u−uxx. This equation has the following solution:

U��� = A�5

3
− �3z + 2��z −�z2 −

4

9
�� ,

z = cosh� x

2
−

11

6
A2t� −

1

3
, A � 0. �61�

Let us take A= ±1. Then the corresponding solutions read

FIG. 5. �a� 3D graph of the explicit solution M�x , t� defined by Eq. �60� when B=1, wave speed c=−3/4, and intervals of
x, t, M: −15
x
15, 0
 t
2, 0
M 
1. �b� 2D graph of the explicit solution M�x , t� defined by Eq. �60� at t=0. This is
a one-single-peak soliton solution.
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U�X� = ± �2 − 3 cosh2 X + �cosh X +
1

3
��3�3 cosh X + 1��cosh X − 1�� ,

X =
x

2
−

11

6
t ,

which have the following characteristic features:

U�0� = � 1, U��0 + � = ± �, U��0 − � = � � .

Apparently, they differ from the regular peakons.5 So, the solution �61� is actually a cusp soliton
of our new equation �11�. See Figs. 7 and 8 for more details.

VIII. CONCLUSIONS AND OPEN PROBLEMS

In the paper, we present two new integrable systems �11� and �9�, which are two special
members in the whole hierarchy �8�. Through solving a crucial matrix equation, we give the Lax
pairs of the hierarchy, which guarantee the integrability of the whole hierarchy. Through placing
the hierarchy in a symplectic manifold or submanifold, we investigate the constraint between
spectral functions and potential functions, and obtain the parametric solutions of all equations in
the hierarchy. In particular, we obtain the parametric solutions of Eqs. �11� and �9�.

Actually, both Eqs. �11� and �9� can be reduced from the two-dimensional Euler equation by
using the approximation procedure. For example, in two dimensional Euler equations18 vt

+v ·�v=−��p+gy�, div v=0, where p is a pressure and g is the gravitational acceleration con-
stant, we take the velocity v= �−�y ,�x�T, where � is a stream function. Then, the following
equation

FIG. 6. 3D and 2D graphs of a continuous and piecewise-smooth soliton solution for Eq. �9� with negative amplitude. This
is a one-single-peak soliton solution.
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rt + �xry − �yrx = 0, r ª �xx + �yy

is generated from the Euler equations, where r stands for the vorticity. Employing �=��� ,y ,��,
�=	�x−c0t�, �=	3t, imposing ��� ,y ,��=	�1�� ,y ,��+	2�2�� ,y ,��+	3�3�� ,y ,�� and �1�� ,y ,��
=B1�y�F�� ,��, �2�� ,y ,��=B2�y�F�� ,��+B3�y�F�� ,��2, and picking up the coefficient of 	4 term in
the approximation expansion of the equation, we will eventually arrive at

F� − a1F��� + �3a2F2 − a3F�
2�F� − �2a4F − 2a5F���F�F�� − ��a4 − a3�F2 − a5F�

2�F��� = 0,

�62�

where a1 , . . . ,a5 are constants. If we take a1=a2=a3=a5=1 and a4=2, Eq. �62� exactly gives the
new equation �11�. In a similar way, Eq. �9� is also able to be generated from the two-dimensional
Euler equation.

So, Eqs. �11� and �9� are the two new integrable equations derived from the 2D Euler equa-
tions. They very likely pertain also to the free surface problem in a water flow with vorticity, as it
is the case for the CH equation.10,19 This property may be the intrinsic difference between the two
new equations and classical solitary equations. Another notable feature is that two new integrable
equations �11� and �9� have no classical smooth solitons, because the first order derivatives of their
traveling wave solitary solutions do not exist �see those derivative expressions on pages 16 and
18�.

Moreover, through studying the two equations �11� and �9�, we develop a new type of soliton
solutions—W-shape peaks/M-shape peaks �three peaks, continuous, and piecewise smooth, but not
smooth� soltions �see Figs. 1–4�. Not only this but our new equations have new one-peak-soliton
solutions �see Figs. 5 and 6� and new cusp solitons as well �see Figs. 7 and 8�, which are
apparently different from regular peakons. No smooth solitons are found for our equations, but our

FIG. 7. �a� 2D graph of new cusp soliton solution U��� defined by Eq. �61� with amplitude A=1 and wave speed c
=11/3. �b� 3D graph of new cusp soliton solution U��� defined by Eq. �61� with A=1 and c=11/3.
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equations are completely integrable. The parametric solutions of our new equations cannot include
their one-peak and W-/M-shape peak solitons since their parametric solutions are smooth and
peaked solitons are not.

In the study of the CH traveling wave solutions, the CH peakons are orbitally stable,11 namely,
peakons are stable under small perturbations. But for our two equations �11� and �9�, we do not
know whether their cuspons, one-peak solitons, and M-/W-shape peak solitons are stable or not.
Later, we will deal with this problem and construct the interaction of the two cuspons, two
one-peak solitons, two W-shape peak solitons, two M-shape peak solitons, or one W-shape and the
other M-shape solitons.

Furthermore, we suggest a more general partial differential equation: mt+mx�u2−ux
2�+km2ux

=0, m=u−uxx with any constant k�R. When k=2, the equation is integrable, which is already
discussed in this paper. Any other integrable cases? We do not know yet. Also for the water
equation �62�, what conditions can be driven so that it is integrable in addition to a1=a2=a3

=a5=1 and a4=2?
The ODE �50� has a physical meaning and can be cast into the Newton equation U�2=S�U�

−S�A2� of a particle with a new potential S�U�=U2+ �2�2c−A3� /A�U−8c�U, or can be converted
to V�2=T�V�−T�A� with U=V2, T�V�= �V2 /4�− �2c /V�+ �A�A3+4c� /4V2�. Likewise, our new
equation �11� is able to be transformed to the following Newton equation U�2= P�U�− P�A2� of a
particle with a new potential P�U�=U2+sign�s��s�s+4A2−4AU�, s=c−A2, or to be changed to
V�2=Q�V�−Q�A� with U=A+ �1/4sA��s2−V2�, Q�V�= �V2 /4�+ �4s�s�A2 /V�+ �s3�s−8A2� /4V2�, s
=c−A2.

In the paper, we successfully solve those two new Newton systems with new one-single-peak
solitons, cusp solitons, and M-/W-shape peak solitons. Those peaked and cusped solutions might
be applied to neuroscience for providing a mathematical model and explaining electrophysiologi-
cal responses of visceral nociceptive neurons and sensitization of dorsal root reflexes.6,7

FIG. 8. 2D graph of new cusp soliton solution U��� defined by Eq. �61� when A=−1 and c=11/3. �b� 3D graph of new
cusp soliton solution U��� defined by Eq. �61� when A=−1 and c=11/3.

082701-19 New integrable hierarchy J. Math. Phys. 48, 082701 �2007�



ACKNOWLEDGMENT

The author’s work was partially supported by UTPA-FRC and UTPA-URI grants.

1 Ablowitz, M. J., Kaup, D. J., Newell, A. C., and Segur, H., Stud. Appl. Math. 53, 249–315 �1974�.
2 Ablowitz, M. J., and Segur, H., Solitons and the Inverse Scattering Transform �SIAM, Philadephia, 1981�.
3 Arnol’d, V. I., Mathematical Methods of Classical Mechanics �Springer-Verlag, Berlin, 1978�.
4 Cao, C. W., “Nonlinearization of Lax system for the AKNS hierarchy,” Sci. China, Ser. A: Math., Phys., Astron. 32,
701–707 �1989� �in Chinese�; also see English edition, Sci. China, Ser. A: Math., Phys., Astron. 33, 528–536 �1990�.

5 Camassa, R., and Holm, D. D., “An integrable shallow water equation with peaked solitons,” Phys. Rev. Lett. 71,
1661–1664 �1993�.

6 Chen, J. H., and Teng, G. X., “Morphological characteristics and electrophysiological responses of visceral nociceptive
neurons in somatosensory cerebral cortex of cat,” Brain Res. 846, 243–252 �1999�.

7 Chen, J. H., Weng, H.-R., and Dougherty, P. M., “Sensitization of dorsal root reflexes in vitro and hyperalgesia in
neonatal rats produced by capsaicin,” Neuroscience 126, 743–751 �2004�.

8 Constantin, A., “On the inverse spectral problem for the Camassa-Holm equation,” J. Funct. Anal. 155, 352–363 �1998�.
9 Constantin, A., and McKean, H. P., “A shallow water equation on the circle,” Commun. Pure Appl. Math. 52, 949–982
�1999�.

10 Constantin, A., and Strauss, W., “Exact steady periodic water waves with vorticity,” Commun. Pure Appl. Math. 57,
481–527 �2004�.

11 Constantin, A., and Strauss, W., “Stability of peakons,” Commun. Pure Appl. Math. 53, 603–610 �2000�.
12 Dickey, L. A., Soliton Equations and Hamiltonian Systems �World Scientific, Singapore, 1991�.
13 Fokas, A. S., and Anderson, R. L., “On the use of isospectral eigenvalue problems for obtaining hereditary symmetries

for Hamiltonian systems,” J. Math. Phys. 23, 1066–1073 �1982�.
14 Fokas, A. S., and Fuchssteiner, B., “On the structure of symplectic operators and hereditary symmetries,” Lett. Nuovo

Cimento Soc. Ital. Fis. 28, 299–303 �1980�.
15 Fokas, A. S., Kaup, D. J., Newell, A. C., and Zakharov, V. E., Nonlinear Progresses in Physics �Springer-Verlag, Berlin,

1993�.
16 Fuchssteiner, B., and Fokas, A. S., “Symplectic structures, their Baecklund transformations and hereditaries,” Physica D

4, 47–66 �1981�.
17 Gardner, C. S., Greene, J. M., Kruskal, M. D., and Miura, R. M., “Method for solving the Korteweg-de Vries equation,”

Phys. Rev. Lett. 19, 1095–1097 �1967�.
18 Johnson, R. S., A Modern Introduction to the Mathematical Theory of Water Waves �Cambridge University Press,

Cambridge, 1997�.
19 Johnson, R. S., “Camassa-Holm, Korteweg-de Vries and related models for water waves,” J. Fluid Mech. 455, 63–82

�2002�.
20 Lax, P. D., “Periodic solutions of the KdV equation,” Commun. Pure Appl. Math. 28, 141–188 �1975�.
21 Lenells, J., “Traveling wave solutions of the Camassa-Holm equation,” J. Differ. Equations 217, 393–430 �2005�.
22 Qiao, Z. J., “A new integrable equation with cuspons and W/M-shape-peaks solitons,” J. Math. Phys. 47, 112701–09

�2006�.
23 Qiao, Z. J., Finite-dimensional Integrable System and Nonlinear Evolution Equations �Chinese National Higher Educa-

tion Press, Beijing, 2002�.
24 Qiao, Z. J., Master thesis, Zhengzhou University, 1989.
25 Qiao, Z. J., “The Camassa-Holm hierarchy, N-dimensional integrable systems, and algebro-geometric solution on a

symplectic submanifold,” Commun. Math. Phys. 239, 309–341 �2003�.
26 Qiao, Z. J., and Zhang, G., “On peaked and smooth solitons for the Camassa-Holm equation,” Europhys. Lett. 73,

655–663 �2006�.
27 Tu, G. Z., “An extension of a theorem on gradients of conserved densities of integrable systems,” Northeast. Math. J. 6,

26–32 �1990�.

082701-20 Zhijun Qiao J. Math. Phys. 48, 082701 �2007�




