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Abstract 

A new spectral problem is proposed, and the associated hierarchy of nonlinear evolution equations (NLEEs) are constructed 
by using the spectral gradient method. The Lax representations of this hierarchy are established through solving a key operator 
equation. Under a constraint between the potentials and the eigenfunctions, the spectral problem is nonlinearized as a finite- 
dimensional completely integrable system in the Liouville sense. Finally, the involutive solutions of the hierarchy of N-LEEs are 
presented. 

1. Introduction 

An important and very active topic in the theory of integrability is to search for as many as possible new 
integrable systems. In recent years, the discoveries of bi-Hamiltonian structures of finite-dimensional dynamical 
systems [ 1,2 ], the nonlinearization theory for the Lax equations of the soliton systems [3,4], and the finite- 
dimensional restricted flows of the underlying infinite systems [ 5 ] seem to be the most important accomplish- 
ment in the theory of integrable systems. The above three discoveries lie in the existence of Lax representations 
for a given hierarchy of NLEEs. Hence, to find the Lax representation of the hierarchy of NLEEs is of great 
importance. It is well-known that the inverse scattering transform (IST) method plays a very important part in 
the study and discussion of NLEEs [6,7 ]. The major features of the evolution equations integrable by the IST 
are decided by the associated spectral problem. However, the main difficulty is how to connect NLEEs with the 
suitable spectral problem. Thus it is interesting for us to find a new spectral problem and the corresponding 
hierarchy of NLEEs. 

In the present paper we first introduce a new spectral problem 

' - 2 + ~ u v  ' 

where u, v are two different potentials, 2 is a constant spectral parameter, ]~= const, and construct the hierarchy 
of isospectrai NLEEs associated with (1) by the spectral gradient method (SGM) [8], which is applied to 

' Mailing address. 
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effectively obtain the hereditary symmetries of soliton equations, and simply derive the hierarchies of NLEEs 
associated with given spectral problems [ 9, lo]. Then we establish the commutator (or Lax) representations of 
this hierarchy of NLEEs through solving a key operator equation. Moreover, using the nonlinearization ap- 
proach of the spectral problem broposed in Refs. [ 3,4,11,12 1, we get a set of involutive function systems F,,, 
(m = 0, 1, 2, . ..) in explicit form, which guarantees that the nonlinearization of spectral problem ( 1) is com- 
pletely integrable in the Liouville sense under a constraint between the potentials and the eigenfunctions. Fi- 
nally, the involutive solutions [ 13 ] of the hierarchy of NLEEs are given. 

2. The hierarchy of NLEEs and Lax representations 

Let 1 be an eigenvalue, and y= (y,, y2)= be the corresponding eigenfunction of ( 1). It is easy to calculate the 
spectral gradient VCU,“) 1 of the eigenvalue L with respect to the potentials U, u, 

(2) 

According to the spectral gradient method (SGM) [ 8,9] we seek for the so-called pair of Lenard operators 
K=K( U, v), J=J( U, v) which satisfy the equality KV ~U,v+I;wv~U,u&. Through some calculations and moditi- 
cations, we find that only letting 

K= 
dUC3-+i-l.d-'Uf3 a-aua-+b-ua-%a+240 

a+ad-~u+va-~ua-uv -ad-b+d-h3 

J=-2 
+a-'24 -i+ua-'v 
1+ua-'u > -d-'v ’ a=aiax, aa-‘=a-la=i, 

which are obviously skew-symmetric, we are sure to have 

~W)~=~oW)~ . 

The operators K, J defined by ( 3 ) are called a pair of Lenard operators of ( 1) . 
Now, choose G,, = ( v, u)=e Ker J, and recursively define the Lenard gradient sequences Gj as follows 

(3) 

(4) 

KGj_1 =JGj 7 j= 1, 2, . . . . 

It is not difficult to see that Gj= Gj( u, v) = (Gj” (u, v), Gjz) (u, v) )= can be calculated one by one. 
The nonlinear equations produced by the Lenard gradient sequences G, = G, ( U, v) , 

(u,v)~=KG,=KY"G,,, m=O, 1,2,..., 

(5) 

(6) 

are called a hierarchy of NLEEs associated with ( 1 ), the operator 9, 

Y=J-‘K=t 
( 

-a-ava-'24+24~*a-'24+242J ad-'v-Uv*a-'v 
a24a-'24+24*va--'24 > a-aua-'v-u*va-'V+UV 3 (7) 

is called the recursion operator of ( 6 ) . 
The first system in the hierarchy (6) is trivial. The second system of NLEEs in the hierarchy (6) is 

Ut=~UUc+~U*vX-~U3v2, U,=-~v,+~U*U,+~IPU*, 

whose physical properties are unknown. 

(8) 

In order to establish the Lax representations of the hierarchy (6), we rewrite the spectral problem ( 1) as 
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Ly=2y ,  L = L ( u , v ) = (  O+~uv - u  ) vO+~uv 2 - O - ~ u v  ' 0 = 0 / 0 x .  (9) 

Proposition 1. The Gateaux derivative operator L.w of the spectral operator L defined by (9) in the direction 
~is 

t (10) 

and L.w (simply written as L.  below) is an injective homomorphism, where w= (u, v) T, ¢= (¢1, ¢2) T. 

Proof. Direct calculation. 

Consider the commutator [ V, L ] = V L - L V o f  the following two operators, 

V = V o + V I L ,  L = L o + L t O ,  

where 

(l 
- \ ½ u v  2 - ~ u  ' L I= _ . (11) 

Vo and vl are two function matrixes to be determined. 
Let G (~) and G (2) be two arbitrary given smooth functions, and G = ( G  ~), G(2>) T. We hope 

[ V, L ] = L ,  (KG) - L ,  (JG) L, where K, J and L.  are defined by (3) and (10), respectively. Through a lengthy 
calculation, we get 

Proposition 2. Let G (~) and G ~2) be two arbitrary given smooth functions, and G= (G ('), G (2~)T. Then the 
operator equation of V= V(G) determined by the pair of Lenard operators K, J and the spectral operator L =  
L(u,v) ,  

[ V, L] = L ,  (KG) -L, (JG)L, (12)  

possesses the operator solution 

V = V ( G ) = ( A ~ G  B(G) ~ [ 0 
_ A ( G ) ) + ~ C ( G )  00)L , (13) 

with 

A(G) =  -½ [O-'(uG}~ ') +vG~2))+uvO-l(uG('J-vG¢2)) ] , 

B(G)=G~2)+uO-t (uG~I) -vG ~2)) , C(G)=G~t)+vO-I (uG~I) -vG (2)) . (14) 

Proposition 3. Let Gj= (GJ I) , GJ2)) T be the Lenard gradient sequences, and Vj= V(Gj) be defined by (13) 
m n l  with G= Gj. Then the operator W m -  ~j=o VjL"-J satisfies the relation 

[Wm, L ] = L . ( K G , . ) ,  re=O, 1, 2, ..., (15) 

i .e .W.,  (m = O, 1, 2 .... ) are a sequence of Lax operators [ 14 ] for the spectral problem (9 ) .  

Proof I W,,, L] = EJ".o [ Vj, L]Lm-J= ~.~n. o [L , (KGj )Lm-J -L , ( JGj )L  m-j+' ] =L,(KGm).  
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Remark. The Lax operators W,, (m=0,  1, 2, ...) can compose a Lie operator algebra, which is going to be 
reported in another paper. 

Proposition 4. The hierarchy (8) of NLees possesses the Lax representations 

L,=[W,~ ,L]  , m=0,  1,2 . . . . .  (16) 

Proof Noticing Lt=L ,  (u,, vt) and Proposition 3, we have 

L , -  [ Win, L] =L , (u , ,  v , ) - L . ( K G , . )  = L , (  (u, v ) ~ - g G m )  . 

In addition, L.  is injective, which implies ( u, v) T = KG., .~ Lt= [ W,., L ]. 

Corollary 1. The hierarchy (6) is the natural compatibility condition 
7.7.0 vx~-Jy. 

From ( 15 ), we have the following result immediately. 

Corollary 2. The potentials u and v satisfy a stationary NLEE, 

N - - I  

KZe~Go+ ~.. OtN_kK,.~kGo=O (N>~0), 
k = O  

if and only if 

[ ] W~+ F. a~_kWk, L =0 (N>~O), 
k - O  

where Olk ( 1 ~k<~N) are some constants, Go-= (v, u) T. 

of Yx=My and y t=Wmy= 

(17) 

(18) 

3. Nonfinearization of the spectral problem (1) and its complete integrability 

Let 2j ( j= 1, 2 .... , N) and y= (q~, pj)'r be N different spectral parameters and corresponding eigenfunctions of 
( 1 ). Consider the constraint relation [4] Go= - Y~Y., m Vtu.v)2~, i.e. 

(Aq, q)  - (p, p )  
u= 1 - ( p , q )  ' v= 1 - ( p , q )  (19) 

Hence, under (19), ( 1 ) is nonlinearized to be 

(Aq, q)  P+ ( p , p ) ( A q ,  q)  (P 'P )  A q -  ( p , p ) ( A q ,  q ) _ ,  (20) 
qx=Aq+ l - ( p , q )  2 ( l - ( p , q ) )  2 q '  P x = - ' 4 P -  l - ( p , q )  2 - ( i : ~  p 

which can be expressed as the Hamiltonian system 

OH OH 
(H): qx = , Px = - KS_, (21) Op Utl 

with the Hamiltonian function 

( p , p )  (Aq, q)  (22) 
H = < p , q ) +  2 ( 1 - < p , q ) )  " 
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In order to prove the integrability of (21) in the Liouville sense, we now construct a set of functions Fm as 
follows, 

~ l (A~+tq, q) (AJ+tq, p) 
F " = ( I - ( p ' q ) ) ( A " + ' P ' q ) + ½ ( A m + ' q ' q ) ( P ' P ) + t  /=o (A"-JP, q) (Am-JP, P) ' 

m=O, 1,2 . . . . .  (23) 

wherep= (p~ ..... ps) T, q= (qt ..... qr¢) T, A=diag(2t ..... As), ( , ) is the standard inner product in ~ .  
In the symplectic space (~2~, dp ^ dq), the Poisson bracket (E, F) of two functions E, Fis  defined by [ 15 ] 

j=, \OqjOpj Opj~qj = ( E q ' F ° ) - ( E ° ' F ° >  " (24) 

E and Fare  called involutive if (E, F) =0. 
According to (24), it is not difficult for us to obtain 

Proposition 5. (Fro, F~)=0, V m, neZ + 

Proposition 6. The Hamiltonian system (21 ) is completely integrable in the Liouville sense. 

Proof. Through some direct calculations, we have (H, F,,) = 0. Thus the desired result is correct. 

Proposition 7. Let (q, p)r  be a solution of the Hamiltonian system (21). Then u and v determined by (19) 
are the solution of a stationary system, 

N--I  

K.ZNGo+ ~. ?N_kK.ZkGo=O, (26) 
k=O 

where the constants ?j ( 1 ~<j~< N) are determined by ;tt .... ,1#. 

Proof. We get (26) after considering the polynomial 

N 

p(2)= I'I (;t-AJ)=2~+~h 2N-I +...+y~ 
j - - I  

and the relation 
N 

.5/,kGo= y. k - ).j V~u,,)2j. (27) 
j=l 

4. The involutive solutions of the hierarchy (6) 

Denote the phase flows of the Hamiltonian systems (H) and (Fro): qt,. =OFm/Op, Pt~ =-OFm/aq, by gI~, 
g~ respectively. (H, Fro) =0 implies the compatibility of (H) and (F,.), and the commutativity ofg~  and g~ 
[15]. 

Define 

pq(x, t , . ) '~  ~, ,./q(o, o) 
(x, t,.)J=gng"~j)(O, 0 ) ) '  (28) 
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which is called the involutive solution [ 13] of the compatible systems (H) and (Fro). 

Proposition 8. Let (q(x ,  t . , ) ,  p(x ,  t , . ) )T  be an involutive solution of the consistent systems (H) and (Fro). 
Then 

(Aq(x,  tm),q(X, tm)) u(x, tm)= - ( p ( x , t ~ ) , p ( x , t ~ ) )  (29) 
u(x, tm)= l - ( p ( x ,  t m ) , q ( x , t ~ ) ) '  1 - ( p ( x , t ~ ) , q ( x ,  tm)) 

are a solution of the NLEEs 

(u,v)Tt,,=K.Z"Go=J.Y'~+IGo, re=O, 1,2,. . . .  (30) 

Proof 

Ou 
Otm 

dV 
Ot,, 

2(Aq, qt.) (1 - (p, q)  ) +  (Aq, q) ( (p, qt,.) + (q,P,.)  ) 
- -  ( 1 - -  ( p ,  q )  )2 

- -2 (p ,p , . ) ( l - - (p ,q )  ) - - (p ,p ) (  (p,q, . )  + (q,p,~,) ) 
- (1  - ( p ,  q )  )2 

Substituting the expressions of OFm/Op and OF,./Oq into the above two equalities, we obtain 

ut =2(A,,,+2q, q ) _ 2  (Aq, q) (A.,+tp, q) ' 
1 - ( p ,  q )  

vt ,=2(Am+tp,  p ) - 2  (P 'P)  (A"+tp, q) . (31) 
1 - ( p ,  q )  

On the other hand, in the light of (27), (29) and 0 - i  (u(A,.+~p, p)  +v(Am+2q, q) ) = (A,.+~p, q), we have 

- + ,  l/U° - 'u l -uO - ' v  v - <A-+'p, p> + v<A-+,p, J ~  G ° = 2 ~ _ l _ v 0 - ,  u vd- tv  ]~, (Am+2q, q)+u<Am+'p,q)  J 

2( ( A ' +  2q, q) - [ (Aq, q) / ( 1 - (p, q) ) ] (A "+ 'p, q) 
( A , , + , p , p ) _ [  ( p , p ) / ( l _ ( p , q )  )](Am+,p,q)  ] .  (32) 

(31 ) and (32) imply (30). 
From Proposition 6, we can directly get an involutive solution of equation (8). 

Proposition 9. 

( Aq(x, tt ), q(x, tt ) ) 
u(x, tt ) = 1 - (p(x,  t~ ), q(x, tl ) ) ' v(x, tl ) = 

- ( p ( x ,  t, ), p (x ,  tt ) ) 
1 - ( p ( x ,  tl ), q(x ,  t, ) ) 

satisfy Eq. (8), where (q (x, t t ), p (x, t~ ) )T is the involutive solution of the compatible systems (H) and (Ft). 
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