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Abstract 

By the use of the spectral problem nonlinearization method, a finite-dimensional integrable system and the involutive solu- 
tions of the higher-order Heisenberg spin chain equations are presented. In particular, the involutive solution of the well-known 
Heisenberg spin chain equation ut= ½i(u~w- w,~u), vt= ½i(w~v- v,~w) (w2+ uv= 1 ) is obtained. 

In the middle of the 1970s, the continuous Heisenberg spin chain aroused considerable interest [ 1-4 ]. Tjon 
and Wright obtained the explicit formula for the single-soliton solution in the isotropic case [3]. Takhtajan 
studied the integration of the continuous Heisenberg spin chain equation through the inverse scattering trans- 
form method and obtained its Lax representation [ 4 ]. Afterwards, Chen and Li gave the higher-order Heisen- 
berg spin chain equations [ 5 ]. All of these studies about the Heisenberg spin chain are admirable. However, 
within the author's knowledge, there have not been any reports on the solution representations of the higher- 
order Heisenberg spin chain equations. 

In this Letter, using the spectral problem and Lax pair nonlinearization method [ 6,7 ], which was first sug- 
gested by Cao [ 8] in 1988 and was successfully applied to produce completely integrable finite-dimensional 
Hamfltonian systems in the Liouville sense, we first give a finite-dimensional integrable Hamiltonian system 
associated with the Heisenberg spin chain, and then through this completely integrable system in the Liouville 
sense and its involutive system, we present the solution representations of the higher-order Heisenberg spin 
chain equations. In particular, the solution representation of the well-known Heisenberg spin chain equation 
ut = ½ i ( u ~ w -  w ~ u  ), vt = ½ i ( w ~ v  " v~w ) ( w 2 d I. UZ) = 1 ) is obtained. 

Consider the Heisenberg spectral problem [ 4 ] 

(; u) ,1, y x = - i A S y ,  S =  - w  ' 

in which y =  (Yl, Y2) r, u and v are two potentials, 2 is a spectral parameter. Let Aj (1 <~j<~N) be N different 
spectral parameters, and y =  (qj, pi) T be the associated spectral functions. Define A~--" (2~p 2, _2//2 )r. Then Aj 
satisfies 
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KAj =,Z;J&, (2) 

where K and J are two operators ( d  = a / a X ,  0(9 - 1 = a - L d = 1 ), 

K:i(~ 00) , J--( uO-l(u/w)O uO-l(v/w)O-~-2w~ 
- \_vO,~(u/w)O_2 w _vO_l(v/w) 0 ] ,  (3) 

which are called the pair of Lenard operators of the spectral problem ( 1 ). 
Now, we recursively define the Lenard gradient sequence {Gj} of ( 1 ) as follows, 

Go=or(v, u)XeKer J, a = c o n s t ,  KGj=JGj+1, j = 0 ,  1, 2 . . . . .  (4) 

It is easy to see the recursion operator 5 °=J  - ~Kis 

_1 ((1/w)O--½vO-luO(1/w)O ½vO-'vO(1/w)O 
~e= 2 i \  _½uO-XuO(l/w)O --(1/w)O+½uO-lvO(l/w)O] " (5) 

The Lenard recursive sequence { Gj} can be calculated through (4) and ( 5 ). Xm = KG,,, (m = 0, 1, 2 .... ) are called 
the Heisenberg vector fields of ( 1 ), which yield the hierarchy of nonlinear evolution equations associated with 
(1), 

(u, v)tr.. =Xm(u, v)=KGm =K~mGo, 

The first few terms in the hierarchy (6) are 

(U)to~XO(U , V).~iol(U:) 

(this is trivial), 

() ; 
t l  

and 

m=0 ,  1, 2 . . . . .  (6) 

(7) 

(8) 

(12) 

where Gj= (Gj (1), Gj (2))T is determined by (4). 
Now, we introduce a constraint relation [ 7 ] between the eigenfunctions and the potentials of ( 1 ), 

N 

Gol,~=l= E Aj, 
j = l  

(11) 

( )  l" {Ux~+3[u(UxVx+WDlx) 
U =X2 (U, v) = - 41a/ 3 • (9) v ,2 \v~+~[V(UxVx+w~)lx 

Here, E q .  ( 8 )  is exactly the famous Heisenberg spin chain equation [ 4 ] w h e n  a = - i. T h u s ,  ( 6 )  stands for the 
hierarchy of Heisenberg spin chain equations. It is not difficult to see that the Heisenberg hierarchy (6) pos- 
sesses the Lax representations 

_u)0, w.u =l, (10, 
y , . : w , . y = - i  ~ ( -½o-I[(u/w)G}~)+(v/w)G}2)] G}2) ) 

j=o Gj (') ½B-t[ (u/w)Gj~ x) + (v/w)Gj (.if) ] 2m*l--jy, 
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which is equivalent to 

u = - ( A q ,  q), v f ( A p ,  p> . (13) 

Hence, w= ~/1 - u v f  x/1 + ( Aq, q> < Ap, p > . Here, p= (p~, ..., pN ) T, q= ( q~, ..., qN ) T, A=diag(2~, ..., AN), < > 
stands for the standard inner-product in R #. 

Under the constraint (13), ( 1 ) is nonlinearized as 

q~=-i~/ l+<Aq,  q>(Ap, p>Aq+i<Aq, q>Ap, p~=i(Ap, p>Aq+i~/l+<Aq, q><Ap, p>Ap. (14) 

Proposition 1. Suppose (p, q)T satisfies Eq. (14), then 

(,,/1 + <aq, q> <Ap, p> - <Aq, p> )~ = 0 .  (15) 

Proof. 

<Ap, q>x =i( <Aq, q> <A2p, p> - < Ap, p> <d2q, q> ),  

<aq, q>x =2i( - ~ / i  + <Ap, p> <aq, q> <A2q, q> + (Ap, p> <A2p, #> ) ,  

<Ap, p>x =2i( - <dp, p> <A2p, q> +x/1 + <Ap, p> <aq, q> <A2p, p> ) ,  

(x/l + <Ap, p> <Aq, q> )~= (l + (Ap, p> (Aq, q> )-~/2(<Aq, q> <Ap, p~ > + <Ap, p> <Aq, qx> ) 

= <ap, q>~. 

( 15 ) implies x/1 + <Ap, p > ( Aq, q > = <Ap, q > +,8, fl= const. Let fl= 0, then (14) can be rewritten as 

qx= - i (Ap ,  q>Aq+i(Aq, q>Ap, Px= -i<Ap, p>Aq+i(Ap, q>Ap. 

Proposition 2. (16) can be expressed in the Hamiltonian form 

(H): qx=OH/Op, px= -OH/Oq , 

with the Hamiltonian function 

H=½i<Aq, q> (Ap, p> -½i(Ap, q>2. 

(16) 

(17) 

(18) 

Proof. This is obvious. 

In order to show the integrability of the Hamiltonian system (17) ,  we introduce a set of functions Fm as 
follows, 

F m -~ ½i ~ (<AJ+~q, q> <Am+l--jp, p> -- (AJ+'p,  q> <Am+l-Yp, q> ) ,  (19)  
jffio 

Note H f Fo. 

The Poisson bracket of two Hamiltonian functions F, C in the symplectic space (R 2N, dp ̂  dq) is defined by 
[91 

N (OF OF OF OG'~ 
(F, G)=.,.~=, \O'~ OP, Op/'~qj) =( " Gp)-(Fp, G¢> . (20) 

F, G are called involutive if (F, G) =0 .  
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According to formula (20), through some calculations, we can easily get 

Proposition 3. 

(Fro, F~) =0,  Vm, neZ + . (21) 

Proposition 4. (H, F,n) = 0, V meZ +, thus the Hamiltonian system ( 17 ) is completely integrable in the Liou- 
ville sense and its involutive system is {Fro}. 

Proposition 5. Fm defined by (19) is actually generated through nonlinearization of the time part ( 11 ) of the 
Lax pair for the Heisenberg hierarchy (6) under the constraint ( 13 ). 

Proof. Acting with the recursive operator L~ upon ( 12 ), and noticing (2) and (4), we have 

k=l =~-- (AJ+lq, q>]" 

In virtue of (13), (14) ,  (22) and w=x/1 + <Ap, p> <Aq, q> = <Ap, q>, we can deduce 

- ½ 0 - 1 (  u Gjl) + V-G~x2)) =<Aj+'p 'q )  

(22) 

(23) 

So, under the constraint (13), the time part ( 11 ) is nonlinearized as 

qtm = - i  ~. ( <AJ+~p, q>Am+l-jq - (AJ+~q, q>Am+~-lp), 
j = 0  

p t m = - i  ~, 
j = 0  

After expressing 
Fro. The proof is 

( (AJ+lp, p>Am+l-Jq - <AJ+~p, q>Am+l-~p) . (24) 

(24) in Hamiltonian form, we immediately know its Hamiltonian function is none other than 
complete. 

Proposition 6. Let (q, p) a- be a solution of the Hamiltonian system ( 17 ). Then u = - (Aq, q >, v = < Ap, p > and 
w=x/1 + <Ap, p> <Aq, q> = <Ap, q> satisfy a stationary Heisenberg evolution equation 

N - - l  

K-W#Go la=l + ~ ct#_jK.WJGo 1,=1 = 0 ,  (25) 
j = 0  

where the c~j are determined by 2 i, ..., 2N. 

Proof. Consider the polynomial (ao = 1 ) 

N 

p(A) = l=I. (A--At) =ao2N +a l2  ~- l  + ... +aN.  
1= 1 

(26) 

Acting with the operator K ~V=o tx~_j upon (22) and using (26), we get (25). The Poisson bracket (H, Fro) = 0 
implies the Hamiltonian systems (H)  and (Fro) are consistent, and their solution operators g~, g ~  of the cor- 
responding initial-value problems commute (see Ref. [ 9 ] ). Denote the involutive solution [ 10 ] of the compat- 
ible equations (H)  and (Fro) qtm = OFm/ Op, Ptm = - OFm/ Oq by 
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~q(x,  tm)~ x tm [q(O' 0 )~  
(X, tm)J=g°gm~p(O,  0)J '  (27) 

which are smooth functions of (x, t~). 

Proposition 7. Let (q(x, tm), p (x ,  tin) )T be all involutive solution of the compatible systems (H) and (Fro). 
Then 

u(X, tm )= - (Aq ,  q>, v(X, tm)=<Ap, p>, W(X, tm) ~. x/l+<Ap, p><Aq, q>=<Ap, q> (28) 

satisfy the higher-order Heisenberg evolution equation 

( u ) = - i K - ~ m G o l ~ = l ,  G o l ~ = l = ( v , u ) X , m = O , l , 2  ..... (29) 
~fl tm 

Proof. On the one hand, substituting (24) into the following two equalities, we have 

_Ou = -2 (Aq ,  qt,,> =2i((Ap, q> (Am+2q, q> - (Am+2p, q) (Aq, q> ) 
Otto 

OV 
- 2 (Ap, Ptm > = 2i ( <Ap, q> (A m+2p, p)  _ (A m+2p, q> (Ap, p> ).  

Otto 

On the other hand, from (3), (22) and (16), we get 

; v~m~ , __.~[-(Am+lq, qx )~__2[ - (Am+lq , - i (Ap ,  q)Aq+i(Aq, q)Ap)~ 
-u~.~ ~,o,~=~-,. k (Am+~p, px> ) -  k (Am+IP,- i (Ap,  p>Aq+i(Ap, q)Ap> ]" 

Thus, Proposition 7 holds. 

As applications of Proposition 7, we give two examples below. 

Example 1. When m= 1, (29) exactly becomes the well known Heisenberg spin chain equation (HSCE) (i.e. 
Eq. (8) as a =  - i )  

ut ,=½i(u~w-w=u),  vn =½i(w,~v-v~w) . (30) 

So, according to Proposition 7 and (27), we can know that the HSCE (30) possesses the solution representation 

u(x, tl ) = - (Ag~g[~q(O, 0), ggg[~q(O, O) >, v(x, t~ ) = (Ag~ggp(O, 0), g~gt~p(O, O) ), 

co(x, t] ) = [ 1 + (Aggg~ p(O, 0), g~g~' p(O, O) ) (Aggg[~q(O, 0), g~g~q(O, O) ) ] 1/2 

= (Ag~g~'p(O, 0), g~g~' q(0, 0) >, (31) 

where g~ and g~ stand for the solution operators of the initial-value problems of Hamiltonian systems (H) and 
(F~), respectively. 

Example 2. In (29), setting m=2, we may easily obtain 

() u =-iK.~2Gol,~=~=-~ v~+~[v(uxv~+w2) l~] ,  (32) 
II t2 

which is none other than Eq. (9) when a = - i. 
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Thus, Eq. (32) (i.e. the third-order Heisenberg spin chain equat ion)  has the solution representation 

u(x, t2)=-(Ag~g[2q(O,O),g~gt22q(O,O)), v(x, t2)=(Ag~gt22p(O,O),g~gt22p(O,O)) , 

w(x, t2) = [ 1 + (Ag~gt22p(O, 0), g~g[2p(O, O) ) (Ag~gt22q(O, 0), g~g~2q(O, O) ) ]1/2 

= (Ag~g~p(O, 0), g~g['q(O, 0) ) ,  (33) 

where g~ and gt, are the solution operators of the initial-value problems of the systems (H)  and (F2), respectively. 

The author would like to express his sincere thanks to Professor Cao Cewen for his guidance and suggestions 
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