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Abstract 

A general approach for generating the commutator representations of the hierarchies of nonlinear evolution equations (NLEEs) 
is presented. For this approach, three concrete examples are given. 

The inverse scattering transform (IST) method plays a very important role in the investigation of nonlinear 
evolution equations (NLEEs) [ 1-10]. This method has been successfully applied to the NLEEs, which are of 
great importance in physics. In the theory ofintegrable systems, it is significant for us to search for as many new 
integrable evolution equations as possible. Tu [ 11 ] presented a method for deriving the isospectral hierarchy of 
integrable evolution equations from a proper linear spectral problem and successfully obtained many isospectral 
hierarchies of integrable evolution equations [ 12-16 ]. For these methods there is one isospectral hierarchy of 
NLEEs associated with a proper given linear spectral problem. 

In this Letter, directly starting from the spectral problem L~u=;t~u or Yx= U~u (2 is a spectral parameter) and 
not requiring to consider its auxiliary problem C/t= V¢,, by making use of  the spectral gradient method (SGM) 
which was invented by Fuchssteiner [ 17 ] and used by Fokas and Andersen [ 18 ] for obtaining hereditary sym- 
metries for Hamiltonian systems more than ten years ago, we shall generate two different hierarchies of  NLEEs 
connected with the same given spectral problem. Moreover, a general approach for obtaining the commutator 
(or Lax) representations of  the hierarchies of  NLEEs is given. In order to acquire the commutator representa- 
tions of  NLEEs it is crucial to find the operator solution of a key operator equation. We shall present three 
examples to show them. Here, it should be pointed out that the approach, used for producing two different 
hierarchies of  NLEEs associated with the given spectral problem in this Letter, is a reformulation of the IST 
method. 

In the following we give some fundamental symbols and notations. Let x~Q ( ~  is the underlying interval 
( - ~ ,  +~ ) )  or (0, T) for decaying conditions at infinity or periodic conditions, respectively), t ~ ,  u=  (ul ..... 
Uq ) T, U~ = Ui ( X, t ) ,  1 ~ i <~ q. fl is denoted by all complex (or real ) functions P [ u ] = P ( x, t, u (x, t) ) which are C ~- 
differentiable with respect to x, t. Let 
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fls={(p,,--., ps)Vlp~fl,  1 <~i<~s}, 

C.[2l= {~z pk[ul2kl k~z ~ isafinite sum, p~[ul~B, 2aCorR}. 

We denote by 0 o ( y.k~Z Pk [ U ] 2 k) the degree of the polynomial Z k~Z Pk [ U ] 2 k, i.e. 

O°(k~ Pk[U]2k) = m a x { k l k a Z ,  k~z i sa f in i tesum } • 

Conventions: ( . )  x= 0 ( . )  / Ox, ( . ) ,= 0 ( ' ) / 0  t, 0 = 0/Ox, O0 - ~ = 0 - ~0 = 1. 
Consider the spectral problem as follows, 

~,x = U(u, 2)~,, U(u,2)=(uu).×. ,  uo=uo(u,2)~Cu[21, (1) 

where u is a q-dimensional vector potential function, 2 is a spectral parameter, ~v= (~'l ..... qJ.)xeB", U(u, 4) is 
an n X n matrix. 

On the one hand, for the spectral problem (1) (especially as Tr U(u, 2 ) = 0 ) ,  in the light of the methods 
proposed by Tu [ 19] and Cao [20 ] we can always obtain the functional gradient V~2 = (a2/au~ .... , a2/6Uq) r 
(V,2 # 0) of the spectral parameter 2 with respect to the vector potential function u. In general, Vu2 is related to 
the potential u, the spectral parameter 2 and the corresponding spectral function ~v. 

Suppose that there exist two q×q matrix integro-differential operators K=K(u ,  O, 0 -~ ), J=J(u ,  O, 0-~)  
which are only related to u, 0 and 0 - ~ such that 

KV,2=2°JV~2,  (2) 

where 0 is an invariant constant connected with ( 1 ). K and J, which satisfy (2), are called the pair of Lenard 
operators of ( 1 ). Generally speaking, the pair of Lenard operators K, J are skew-symmetric and J is usually a 
symplectic or Hamiltonian operator. K, J are mainly obtained by ( 1 ), the actual expression of V~2 and some 
delicate techniques. Here, the pair of Lenard operators K, J exactly constitute the recursion operator ~ = J - I K  
in NLEEs solvable by the IST method. 

Now, according to the IST method, we can directly define the two Lenard gradient recursive sequences of ( 1 ) 
as follows: 

(i) The first Lenard gradient sequence { G j}: 

G_~eKerJ={G~f lq[JG=O},  KGs_~=JG s , j=0 ,  1, 2, .... (3) 

(ii) The second Lenard gradient sequence { ~s}: 

d_~ eKerK= {0~#qlKd=0}, Jd~_,=Kdj, j=0, 1, 2,.... 
Xj(u) =JGj and ~-(u) =Kdj  ( j=0,  1, 2, ...) are called the first and second vector field of ( 1 ), respectively. The 
following two hierarchies of equations 

u , = X j ( u ) ,  j = 0 ,  1, 2, ..., (5) 

u ,= .~ j (u) ,  j = 0 ,  1, 2, ..., (6) 

are called the first and second hierarchy of NLEEs associated with ( 1 ), respectively. 
On the other hand, write 7= maxt,~j~<, 0°(Uo). Then U(u, 4) can be expressed as 

U(u, 2) = Uv(u)2r+ .... (7) 

o r  

U(u, 4) = u_~(u)2-~+ .... (7') 
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Here U~ ( u ) (or  U_ r ( u ) ) is an n X n matrix and each element of  it belongs to p. For convenience, we discuss ( 7 ) 
below ( ( 7 ' )  can be discussed similarly). 

Assume the n×n matrix Uy(u) is inverse. Then ( 1 ) can become 

(8) 

where/S=/S(u,  2, 0 ) is an n × n matrix differential operator. Let 2 e- y be multiplied in the two sides of  (8) ,  then 
(8) reads 

L ~ = 2 q u ,  (9)  

where the n X n matrix differential operator L =2e-r/S(u,  2, 0) depends on u, 2, and 0. 

Definition [21 ]. The Gateaux derivative operator L ,  of  the above operator L is defined by 

d[ L(u+¢¢) , ¢efl q . (10) 
L . ( ¢ )  = ~ ,=ol  

For any given vector function Ge flq, w e  construct an operator equation of  V= V(G),  

[ V, L]  = L ,  (KG)L a-1 - L ,  (JG)L'*. ( 11 ) 

Here [ , ] stands for the Lie bracket, K a n d  J a r e  the pair of  Lenard operators of  ( I ), L is determined by (9),  
ot is a proper  chosen constant according to ( 1 ). For some vector function G~fl q, we use V= V(G) to express the 
corresponding operator solution o f  ( 1 1 ). The following two theorems reveal the close connection between the 
commutator  representations o f  the two hierarchies ofNLEEs ( 5 ), (6)  and the operator solutions of  the operator 
equation ( 11 ). 

Theorem 1. Let {Gj}, {~j} be defined by (3) ,  (4),  respectively. Suppose that for any {Gj}, {~j}  (j~-~- - -  1, 0, 1, 
...), there exist differential operators Vs= V(Gj), ~ =  V(dj) solving the operator equation ( 11 ) with G =  Gj, dj. 
Then the operators 

W,~= ~. Vj_,L " - j - ' + l  , l'Vm= ~. G_,L  -m+j-" (12) 
j=O j=0  

satisfy the equations 

[Wm, L ] = L . ( X , . ) ,  [L, W,.] =L , ( .~ ' , . ) ,  m = 0 ,  1,2 . . . . .  (13) 

separately. 

Proof From ( 11 ), (3)  and (4) we have 

[Vj, L ] = L . ( K G j ) L a - ' - L . ( J G j ) L ' ~ = L . ( X s + , ) L ° ' - I - L . ( X j ) L  °' , j = - 1 ,  0, 1 .... , 

[~j, L I = L . ( K 4 j ) L a - ' - L . ( J ( ~ j ) L ° ~ = L . ( f ( i ) L ° ~ - I - L . ( ~ + , ) L  °e , j = - - 1 ,  0, 1 . . . . .  

Notice that JG_ ~ =0, KO_ i =0, and L, (0) =0. Thus 

[W, . ,L]=  [j=~ ° Vj_,L"-J-a+~,L] 

= [V,_,,tltm-J-a+'= 
j=O j=O 
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= ~ [L.(X~)Lm-J-L.(Xi_,)L~-J+II=L.(X.,), m = 0 ,  1,2 .... , 
j=O 

tt, WmJ=-- 
j=0 j=0 

=-- ~., [L , ( f ( j _ , )L -m+J- ' -L , ( f [ j )L -m+J]=L , ( f (m) ,  
j=o 

The proof is completed. 

m=0 ,  1, 2, .... 

Theorem 2. Suppose that the condition of Theorem 1 is satisfied. If the Gateaux derivative operator L .  is an 
injective homomorphism, then the two evolution equations u, = X,, (u), ut = ~,, (u) (m = 0, l, 2 .... ) of ( 1 ) pos- 
sess the following commutator representations, 

Zt~.[Wm, Z]~=~oVj_lZm-j-°t'l'l,Z], 

tt=[t , [~yrm] = I t ,  j=o ~ ~rj-lt-m+J-°t] ' 

respectively. 

re=O, 1, 2 .... , (14) 

m=0 ,  1,2 . . . . .  (15) 

Proof. Notice that L t = L .  (ut). From Theorem 1 we obtain 

L t - [ W . , , L I = L , ( u t ) - L , ( X , . ) = L . ( u t - X . , )  , L t - [ L ,  W , , , l = L , ( u t ) - L , ( f ( , , , ) = L , ( u t - ~ , , , )  . 

In addition, because L .  is injective, we have ut=Xm(U), Ut=f(,,,(U) if  and only i fL t=  [ W,,,, L], Lt= [L, W,,,], 
respectively, which are the desired results. 

Immediately, from the relation [ W,., L] = L .  (Xm), [L, if'm] = L ,  (~'m) (m=O, 1, 2 .... ) and noting that L ,  
is injective, we have 

Corollary. The potential u= (ul, . . . ,  Uq) T is a finite gap, that is, it satisfies the two nonlinear stationary equations 

N N 
akXN--k=O, Y, flkffN--k=O (N>~O), (16) 

k=O k=0 

respectively, if and only if 

[k=~oOlkWN_k,L]=O, [k~=oflk'N_k,L]=O (N>~0), (17) 

where Otk, flk (N>~ k ~  O) are some constants. 

Thus according to the above skeleton, in order to secure the commutator representations of the two hierar- 
chies (5), (6) it is crucial to find the operator solution V= V(G) of operator equation ( 11 ) for any given vector 
function Ge flL Now, by making use of the above approach, in the following we study three spectral problems, 
give their corresponding two different hierarchies of NLEEs and construct the commutator representations of 
those hierarchies. 

Example 1. Consider the spectral problem studied by Geng [ 22 ], 
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From ( 18 ) it is not difficult to calculate that 

Vu2=62/6u=2(V/2-q/2) ( !  u(v2-g/2) dx) -~ 

Because of O 2V~2 = - 22uOV,2, only choosing 

K=O ~ , J= -2duo,  

as the pair of  Lenard operators of (18), we are sure to get 

(18) 

(19) 

(20) 

KVu,~=2eJVu,l, 0 = 1 .  (21) 

We recursively define the two Lenard gradient sequences of (18) as follows: (i) The first Lenard's gradient 
sequence {Gj}: 

G_l =O-lu-~eKerJ, KGj_I =JGj, j = 0 ,  1, 2, .... (22) 

(ii) The second Lenard gradient sequence { ~j}: 

G_l=ax2+bx+ceKerK, Va, b, ceRorC, J~j_I=K~j, j=O, 1,2 . . . . .  (23) 

The first vector field Xj= JGj yields the first hierarchy of NLEEs of (18) 

ut=Xj(u), j=O, 1, 2, ..., (24) 

with two representative equations 

ut=Xo(u)=---(u-2ux)x, u t=X,(u)-- - l (u-Z)~x.  (25) 

The first is the remarkable nonlinear diffusion equation and has important applications in plasma physics, solid 
state physics and other fields, such as metallurgy and polymer science [23-25 ]. 

The second vector field ~ .=  K~j produces the second hierarchy of NLEEs of (18) 

u, =~.(u), j=O, 1, 2 .... , (26) 

with two representative equations 

ut=f(o(U) = - -2[2a(XU)x+bux] , ut=f(~ (u)=- -4[(2ax+b)u2+2aUxO-t(xu)+bu~O-lu] . (27) 

For a = 0, b= 1, the latter can be reduced to the semi-classical limit KdV equation v,= -4VxV via the transfor- 
mation u = v~. 

Eq. (18) is equivalent to 

u 1 1 7=1 (28) 

The Gateaux derivative operator L .  is 

L , ( O = -  -~L, VCefl, (29) u 

and L,:  ¢ ~ L .  (¢) is obviously an injective homomorphism. Here 0= y= 1. Now, for any given function Gefl, 
we consider the operator equation of  V= V(G), 
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[ V, L] = L ,  (KG)L- ' -L ,  (JG), (30) 

which corresponds to letting a = 0 in ( 11 ). 

Theorem 3. Let L, L,, K, J b e  defined by (28), (29), (20), respectively. Then for any function Gefl, the 
operator equation (30) has the operator solution 

\Gxx + 2Gx - 2Gx ] + 2uG~ 

Proof Let V= Vo+ V~L, L=Lo+ L~O, where 

Vo = k,G~ + 2G~ - 2Gx ] '  V~ = 2uGx ; 

1 - 1  
L o = u ( _ l  11)' L , = I ( 0 1  10). (32) 

Make the commutator [ V, L ] (notice O = L i- ~ ( L -  Lo) ): 

[V,L]=[Vo, L]+[V~,L]L=[Vo, Lo]-L~ Vox+[Vo, L~]O+([V~,Lo]-L~ V~x+ [V~,L1]O)L 

= [Vo, Lol -L~ Vox- [Vo, L~]LF~Lo 

+ ( [V o, L~]L? ~ + IVy, Lo] -L~ V ~ -  [Ill, L, ]L~'~Lo)L+ Jill, L,]LF'L z . (33) 

Furthermore, substituting (32) into ( 33 ), by direct calculation we can obtain [ V~, Lt ] = 0, 

[Vo, Lo]_L~Vox_[Vo, L~]LF~Lo=_G~x = KG=L,(KG)L_~ 
u II 

([Vo, L,]LFI +[V~,Lo]-L~Vtx)L= 2(uGx)x L=JG L = - L . ( J G ) .  
u u 

This shows that the operator V defined by (31) is an operator solution V= V(G) of Eq. (30). The proof is 
completed. 

So, from Theorem 2 we immediately know that the first hierarchy of ( 18 ), u, = X,,, (u), and the second hier- 
archy of NLEEs of (18), ut= ~.(u), have the commutator representations 

Lt=[Wm, L],  m=0,  1,2 ... . .  

~=o(\aj_,,~+2aj_,,x S2Gj_,,;," L"-J+~+ 2uGj_~,x ~ Lm-J+2' (34) 

L,= [L, ff'ml, re=O, 1, 2 ..... 

j=O~( 2~j--lx ~J-"x~-2(~J-':')L-'~+J+(2u~_l, 2u~-r~-"X)L-"+J+'}, W..= ~ (\@,_,~+2~,_,,x -2e ,_ , ,x  (35) 

respectively. 

Example 2. Consider the spectral problem proposed by Cao and Geng [26 ], 
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2U 3,V+22~ 
qt~= t ().v_22) _ 2 U ] V / ,  t = _ + l ,  (36) 

V('v)2= \t52/tSvJ = \;tgt 2 -o .v /2J  (tvgt 2 - 2 e 2 ~ 2 - 2 u ~ ,  v 2 - v ¢ 2 - 2 2 ~  2) dx . (37) 

Noticing the relation O ( V~ + eVz 2 ) = 2 ( 22v~1 ¥2 - e2u~2 ~ + 2uq/2), we should choose the pair of Lenard operators 
of (36) K, J a s  

( 4vO-tv 2~-4¢v0-~u~ 
K = ( ~  0 O ) ,  J = \ - 2 t - 4 ~ u O - ' v  4uO-~u J" 

Then we have 

KV(,.v)2 =2eJV(u,v)2, 0 = 2 .  

The two hierarchies of  NLEEs of (36 ) are determined in the following procedure: 
(i) The first Lenard gradient sequence {Gj} is defined by 

G_t=(~.u ,v )TeKerJ ,  KGj_I=JGj,  j = 0 ,  1,2 .....  

The first hierarchy of NLEEs of (36) is 

(u, v)t T =Xj(u, v)=JGj ,  j = 0 ,  l, 2, ..., 

which produces the C-G hierarchy of equations [ 26 ] with the representative equations 

(u, v), a" =X~ (u, v) -- ( - Vx~ + (~u 3 +  uv2)x, tUx~ + (~u2v+ vSL)  T • 

(ii) The second Lenard gradient sequence { ~j} is defined by 

~_t  = (0, 0)a '~KerK, (O- lv -eO-~u)O=¼t ,  Jt~j_~=Kt~j, 

The second hierarchy NLEEs of (36) is given by 

(u, v)T =.~j(u, v ) = K ~ j ,  j = 0 ,  1, 2, ..., 

with the representative equation 

(u, vff  = ~  (u, v) = - (4v (d- lvO-~v+eO- luO-~u) -2ed-~u ,  

- 4 t u (  O -lvO - lv+ ~O - luO - lu ) -2 tO  - IV)T, 

which can be reduced to 

~lxt=2Vx(V2+~t 2) - - 2 ~ a ,  17xt= --  2t/~x(/~2 + t/~ 2 ) -2cO, 

via the transformation u = ~x, v= bx. 
Eq. (36) can be rewritten as 

( 2v - d u - ~ O )  
L V = 2 ~  , L =  - 2 u + O  - 2 v  ' 

Here 0= 7 = 2. 

(~2 --~t ) L l/2 
L , ( O =  _ ~  --¢2J ' 

7 = 2 ,  ~ = + 1 .  

~=  (~1, ~2)%/~ 2 , L,  is injective. 

(38) 

(39) 

(40) 

(41) 

(42) 

j=O, 1, 2, .... (43) 

(44) 

(45) 

(46) 

(47) 

(48) 
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Choose a =  ½, then by using a method similar to Theorem 3 we can prove 

Theorem 4. For  any vector  function G = ( G ( 1 ), G ~ 2) )T ~ f12, the following operator  equation of  V= V(G), 

[ V, L ] = L ,  ( K G ) L - I / 2 _ L ,  (JG)L 1/2, (49) 

possesses the operator  solution 

V= V ( G ) =  keG(2) - ¢G  tl)] + -2¢O- I (uGt2 ) -¢vG° ) )  

In (49) ,  L, L , ,  K, J are expressed by (47) ,  (48) ,  ( 38 ), respectively. 
Hence, the two hierarchies of  NLEEs of  (36)  (u, v)T =Xm(u, v), (u, v) T, =Xm(U, v) have the commuta to r  

representations 

Lt=[Wm,  L] , m = 0 ,  1,2 .... , Wm 

- - V  ~(  ~'GJ-1 G~2_.) l ~ L m _ j + l / 2 +  0 20-'(uG)2_)~-evG}~_)~) L , ,_ j+ 1 
- j=o ~ l,,''eGj-~2~', _ ~G}~ ] - 2e0 - '  (uG)!~l - ¢vG)5{ ) 0 ' 

(51) 

Lt = [L, l'[Zm I , m = 0 ,  1, 2 ..... l~Vm 

~ ~(IE~j{/) 1 ~(2) 'X ( 0 2 0 - ' ( u a ~ 2 ) l - - ~ . v ~ l ' l ) L _ m + j }  = j-1 | L _ m + j _ l / 2 +  
j=o [ \ ,4)2-~ - , d ) !  { J - 2cO - i  (u4)2)  1 __ ~.Vdy(I) 1 ) 0 ' 

(52) 

respectively. Here @_,  = (G)!{ ,  G)_2{ )T, ~ j _ , =  (~)!) l ,  d)2{)T ( j =  0, l, 2 .... ) are the first and second Lenard 
sequence of  (36)  separately. 

Example 3. Consider the spectral problem presented by Boiti and Tu [ 27 ], 

( - L t + i 2 - ' s  u+i2-1v~ 
~x= \ u_iA_lv  i2_ i2_ l s j  V,  (53) 

v ,  . . . . .  = ( 5 4 )  

The pair  o f  Lenard operators  is chosen as 

K =  - 2 s  0 , J =  2 - 0  . (55) 
- 2 v  0 - 2 u  

Thus, we have 

g~(u,v,s)~=~teJV(u,v,s),~ , 0=2 .  (56)  

The two Lenard gradient sequences are defined by 

G_l = (u, 0, 1 ) X s K e r J ,  KGj_I=JGj,  j = 0 ,  1, 2, ..., (57) 

d _ l  = (0, v , - s ) X s K e r K ,  Jd j_~=K~j ,  j = 0 ,  1,2 . . . . .  (58) 

The first Lenard sequence {Gj} yields the first hierarchy of  NLEEs of  (53) 



Z. Qiao /Physics Letters A 195 (1994) 319-328 327 

(U, V, S)t T =Xj(u, v, s) =JGj, j = 0 ,  1, 2 .. . . .  

which are exactly the Boiti-Tu hierarchy of equations [27 ] with the representative equation 

ut = Ux + 2v, vt = - 2us, st = - 2uv. 

The second hierarchy of  NLEEs of (53) is given by the second Lenard sequence {~j}, i.e. 

(u, v, s f f  =.~j(u, v, s) =K~j ,  j = 0 ,  l, 2, ..., 

with the representative equation 

Ut=2V, Vt=--Vx--2US, St=--2UV. 

Eq. (5 3 ) can become 

f ~ = 2 y  ~ [.= ( i O + 2 - ' s  - i u + 2 - 1 v ~  
, \ i u+X_tv  _ i O + 2 _ t s ] ,  7= 1 . 

Here 0 - y =  1, so we should choose the spectral operator L as follows 

L=Aff,= (i2O+s - i2u+v~  
\ i2u+v  - i 2 O + s } '  

and we have 

Lg/=22~. 

L , ( ~ ) = ( ~  ~ ) + ( i ~ , - O ~ l )  L' /2 ,  

(59) 

(60) 

(61) 

(62) 

(63) 

(64) 

(65) 

(66) V~--- (~1, ~2, ~3)x~fl 3 , L.  is injective. 

Let a =  3. Through a lengthy calculation it is not difficult for us to obtain. 

Theorem 5. Let L, L.,  K, J be expressed by (64), (66), (55 ), respectively. Then for any given vector function 
G= (G (I), G (2), G (3))Tefl3, the operator equation 

[ V, L ] = L ,  (KG)L 1/2_ L ,  (JG)L 3/2, (67) 

possesses the operator solution 

GO ) + •_iG(2 ) iG(3)] . (68) 

So, the two hierarchies of (53) (u, v,s)Tt=Xm(u, v,s), (u, v,s)rt =.~m(u, v,s) have the commutator 
representations 

L t=  [ WIn, L] , m=0,  1, 2 .... , 

~. 0 G(L). \ " " ' o )  
W,,, = G>I_,, ' ]  L " - : - I / 2 +  \_iG>_2) I itU_,/'--'O, l (69) / .  ) 

j = 0  

Lt= [L, l'Pm], m=0,  1, 2 .....  

{( o i)  } rVm= 0 'I -re+j - , , ,+  \ -re+j-, 
: = o  8J - ), L k _  i~>2)i(~>_3)l) L (70) 

respectively. Here G j_ ~ = ( G  j(_ I )L, , - , j - , ,  ~- (2). ~j_,,-, (3),) T, ~ j _  l = ( ~j(-~ )t, ~J_2) ,  --~-~J~ (3) ~ r ( j  = 0,  1 , 2  . . . .  ) are the first and sec- 
ond Lenard sequence of (53) separately. 
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Remark.  In  the case o f  the A K N S  ( a n d  also o f  the K d V )  hierarchy,  the two hierarchies  genera ted  in  fo rmulas  
(5)  and  (6)  reduce  to one.  Its c o m m u t a t o r  represen ta t ions  (or  Lax represen ta t ions)  were o b t a i n e d  long ago. 

By us ing our  effective approach  descr ibed above,  we na tura l ly  th ink  abou t  looking for the  c o m m u t a t o r  rep- 
resenta t ions  of  the hierarchies  o f  NLEEs associated wi th  o ther  spectral  problems,  which  are left to papers.  

Th i s  work has been  suppor ted  by  the N a t i o n a l  Na tu ra l  Science F o u n d a t i o n  o f  China.  The  au thor  would  like 
to express his sincere thanks  to Professor  G u  Chaohao  a n d  Professor  H u  Hesheng  for the i r  encou ragemen t  a n d  
help. 
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