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A three-component Camassa-Holm system with cubic nonlinearity and peakons
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In this paper, we propose a three-component Camassa-Holm (3CH) system with cubic nonlinearity and peaked
solitons (peakons). The 3CH model is proven to be integrable in the sense of Lax pair, Hamiltonian structure,
and conservation laws. We show that this system admits peakons and multi-peakon solutions. Additionally,
reductions of the 3CH system are investigated so that a new integrable perturbed CH equation with cubic
nonlinearity is generated to possess peakon solutions.
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1. Introduction

In the past two decades, the Camassa-Holm (CH) equation [4]

mt −2mux −mxu = 0, m = u−uxx + k, (1.1)

with k being an arbitrary constant, derived by Camassa and Holm [4] as a shallow water wave
model, has attracted much attention in the theory of soliton and integrable system. The CH equation
was first included in the work of Fuchssteiner and Fokas on hereditary symmetries as a very special
case [18]. Since the work of Camassa and Holm [4], more diverse studies on this equation have
remarkably been developed [2, 5, 7, 10, 13, 15, 16, 20, 23, 28, 32, 33]. The most interesting feature
of the CH equation (1.1) is that it admits peaked soliton (peakon) solutions in the case k = 0. A
peakon is a kind of weak solution in some Sobolev space with corner at its crest. The stability and
interaction of peakons were discussed in several references [1, 3, 8, 9, 26].
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As extension of the CH peakon equation, other integrable peakon models have also been found,
such as the Degasperis-Procesi (DP) equation [11, 12, 29]

mt +3mux +mxu = 0, m = u−uxx, (1.2)

the cubic nonlinear peakon equation [15, 20, 32, 34, 35]

mt =
1
2
[
m(u2 −u2

x)
]

x , m = u−uxx, (1.3)

and the Novikov’s cubic nonlinear equation [25, 31]

mt = u2mx +3uuxm, m = u−uxx. (1.4)

Then, a naturally interesting theme is to study integrable multi-component peakon equations. For
example, in [6,14,24,32] the authors proposed a two-component generalization of the CH equation.
In [21, 38, 42, 43], two-component extensions of the cubic nonlinear equations (1.3) and (1.4) were
investigated, while in [17, 22, 36] three-component extensions of the CH equation are derived.

In this paper, we propose the following three-component system

m11,t =
1
2
[m11(u2

11 −u2
11,x +u12u21 −u12,xu21,x)]x

+
1
2

m12(u11,xu21 −u11u21,x)−
1
2

m21(u11u12,x −u11,xu12),

m12,t =
1
2
[m12(u2

11 −u2
11,x +u12u21 −u12,xu21,x)]x

+m11(u11u12,x −u11,xu12)+
1
2

m12(u12,xu21 −u12u21,x),

m21,t =
1
2
[m21(u2

11 −u2
11,x +u12u21 −u12,xu21,x)]x

+m11(u11u21,x −u11,xu21)+
1
2

m21(u12u21,x −u12,xu21),

m11 =u11 −u11,xx, m12 = u12 −u12,xx, m21 = u21 −u21,xx.

(1.5)

Apparently, this system is reduced to the CH equation (1.1) as u11 = 0, u21 = 2 and to the cubic
nonlinear CH equation (1.3) as u12 = u21 = 0. Therefore, it is a three-component formation based on
the CH equation (1.1) and the cubic nonlinear CH equation (1.3), and we may call equation (1.5) the
3CH model. We show that the 3CH system is Hamiltonian and possesses a Lax pair and infinitely
many conservation laws. Furthermore, this three-component system admits the single peakon of
traveling wave type as well as multi-peakon solutions. Additionally, we pay attention to reductions
of the 3CH system so that a new integrable perturbed CH equation with cubic nonlinearity is gen-
erated to possess peakon solutions.

The whole paper is organized as follows. In section 2, a Lax pair, Hamiltonian structure, and
conservation laws of equation (1.5) are presented. In section 3, the single-peakon and multi-peakon
solutions of equation (1.5) are given. Section 4 studies the reductions of system (1.5). Some con-
clusions and discussions are described in section 5.
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2. Lax pair, Hamiltonian form and conservation laws

Let us first introduce the sl(2) valued matrices u and m as follows:

u =

(
u11 u12

u21 −u11

)
, m =

(
u11 −u11,xx u12 −u12,xx

u21 −u21,xx −u11 +u11,xx

)
,

(
m11 m12

m21 −m11

)
. (2.1)

Using this notation, equation (1.5) can be expressed in a nice matrix equation form

mt =
1
2
[m(u2 −u2

x)]x +
1
4
[m(uux −uxu)− (uux −uxu)m], m = u−uxx, (2.2)

where u and m are the sl(2) matrices (2.1).
Consider a pair of linear spectral problems

ϕx =Uϕ , ϕt =V ϕ , (2.3)

with

ϕ = (ϕ1,ϕ2,ϕ3,ϕ4)
T ,

U =
1
2

(
−I2 λm
λm I2

)
,

(
U11 U12

U21 U22

)
,

V =
1
2

(
λ−2I2 − 1

2(u
2 −u2

x +uux −uxu) −λ−1(u−ux)+
1
2 λm(u2 −u2

x)

−λ−1(u+ux)+
1
2 λm(u2 −u2

x) −λ−2I2 +
1
2(u

2 −u2
x +uxu−uux)

)
,

(
V11 V12

V21 V22

)
,

(2.4)

where λ is a spectral parameter, I2 is the 2× 2 identity matrix, and u and m are the sl(2) valued
matrices (2.1).

The compatibility condition of (2.3) generates

Ut −Vx +[U,V ] = 0. (2.5)

Substituting the expressions of U and V given by (2.4) into (2.5), we find that (2.5) is nothing but
the matrix equation (2.2). Hence, (2.3) exactly gives the Lax pair of equation (1.5).

Motivated by the 2× 2 Hamiltonian operators we proposed in [42] and by a tough guesswork,
we figure out the following 3×3 operator

J =

 J11 J12 J13

J21 J22 J23

J31 J32 J33

 , (2.6)
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where

J11 =∂m11∂−1m11∂ +
1
2

m12∂−1m21 +
1
2

m21∂−1m12,

J12 =∂m11∂−1m12∂ −m12∂−1m11,

J13 =∂m11∂−1m21∂ −m21∂−1m11,

J21 =− J∗12 = ∂m12∂−1m11∂ −m11∂−1m12,

J22 =∂m12∂−1m12∂ −m12∂−1m12,

J23 =∂m12∂−1m21∂ +2m11∂−1m11 +m12∂−1m21,

J31 =− J∗13 = ∂m21∂−1m11∂ −m11∂−1m21,

J32 =− J∗23 = ∂m21∂−1m12∂ +2m11∂−1m11 +m21∂−1m12,

J33 =∂m21∂−1m21∂ −m21∂−1m21.

(2.7)

It is easy to check that J is skew-symmetric. By a direct but tedious calculation, we can prove the
Jacobi identity

⟨α,J′[Jβ ]γ⟩+ ⟨β ,J′[Jγ]α⟩+ ⟨γ,J′[Jα]β ⟩= 0, (2.8)

where the prime-sign stands for the Gâteaux derivative of an operator [20], and

α = (α1,α2,α3)
T , β = (β1,β2,β3)

T , γ = (γ1,γ2,γ3)
T , (2.9)

are arbitrary testing three-dimensional vectors. Thus J is a Hamiltonian operator.

Proposition 2.1. Equation (1.5) can be rewritten in the following Hamiltonian form

(m11,t , m12,t , m21,t)
T = J

(
δH

δm11
,

δH
δm12

,
δH

δm21

)T

, (2.10)

where J is given by (2.6), and

H1 =
1
2

∫ +∞

−∞
(u2

11 +u12u21 +u2
11,x +u12,xu21,x)dx. (2.11)

We believe that the 3CH equation (1.5) could be cast into a bi-Hamiltonian system. But we
didn’t find another Hamiltonian operator yet that is compatible with the Hamiltonian operator (2.6).
This is mainly due to complexity of the 3CH system (1.5) with three-component.

Next, let us construct conservation laws of equation (1.5) with the method developed in [40,41].
We consider (

Φ1

Φ2

)
x
=

(
U11 U12

U21 U22

)(
Φ1

Φ2

)
,

(
Φ1

Φ2

)
t
=

(
V11 V12

V21 V22

)(
Φ1

Φ2

)
, (2.12)

where Φ1, Φ2, Ui j and Vi j, 1 ≤ i, j ≤ 2, are all 2×2 matrices. Let Ω = Φ2Φ−1
1 , then we may check

that Ω satisfies the following matrix Riccati equation

Ωx =U21 +U22Ω−ΩU11 −ΩU12Ω. (2.13)

From the compatibility condition of (2.12), we arrive at the conservation law

[tr(U11 +U12Ω)]t = [tr(V11 +V12Ω)]x , (2.14)
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where tr(A) denotes the trace of a matrix A.
Substituting the expressions Ui j and Vi j, 1 ≤ i, j ≤ 2, given by (2.4) into (2.13) and (2.14), we

immediately obtain the Riccati equation and conservation law for our equation (1.5)

Ωx =
1
2

λm+Ω− 1
2

λΩmΩ, (2.15)

[tr(mΩ)]t =

[
tr
(
−λ−2(u−ux)Ω− 1

2
λ−1(u2 −u2

x)+
1
2

m(u2 −u2
x)Ω

)]
x
. (2.16)

Equation (2.16) shows that tr(mΩ) is a generating function of the conserved densities. To derive the
explicit forms of conserved densities, we expand mΩ in terms of negative powers of λ as below:

mΩ =
∞

∑
j=0

ω jλ− j. (2.17)

Substituting (2.17) into (2.15) and equating the coefficients of powers of λ , we arrive at

ω0 = (m2
11 +m12m21)

1
2 I2, ω1 = ω−1

0 [ω0 −m(m−1ω0)x],

ω j+1 = ω−1
0

[
ω j −

1
2 ∑

i+k= j+1, 1≤i,k≤ j
ωiωk −m(m−1ω j)x

]
, j ≥ 1.

(2.18)

Inserting (2.17) and (2.18) into (2.16), we finally obtain the following infinitely many conserved
densities ρ j and the associated fluxes Fj:

ρ0 = tr(ω0) = 2(m2
11 +m12m21)

1
2 ,

F0 =
1
2

tr[(u2 −u2
x)ω0] = (u2

11 −u2
11,x +u12u21 −u12,xu21,x)(m2

11 +m12m21)
1
2 ,

ρ1 = tr(ω1), F1 =
1
2

tr[−(u2 −u2
x)+(u2 −u2

x)ω1],

ρ2 = tr(ω2), F2 = tr[−(u−ux)m−1ω0 +
1
2
(u2 −u2

x)ω2],

ρ j+1 = tr(ω j+1), Fj+1 = tr[−(u−ux)m−1ω j−1 +
1
2
(u2 −u2

x)ω j+1], j ≥ 2,

(2.19)

where ω j is given by (2.18).

3. Peakon solutions

Let us suppose that a single peakon solution of (1.5) has the following form

u11 = c11e−|x−ct|, u12 = c12e−|x−ct|, u21 = c21e−|x−ct|, (3.1)

where the constants c11, c12 and c21 are to be determined. The first order derivatives of u11,u12 and
u21 do not exist at x = ct. Thus (3.1) can not be a solution of equation (1.5) in the classical sense.
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However, with the help of distribution theory we have

u11,x =−c11sgn(x− ct)e−|x−ct|, m11 = 2c11δ (x− ct),

u12,x =−c12sgn(x− ct)e−|x−ct|, m12 = 2c12δ (x− ct),

u21,x =−c21sgn(x− ct)e−|x−ct|, m21 = 2c21δ (x− ct).

(3.2)

Integrating the equation (1.5) against an arbitrary test function ϕ(x, t) with compact support, then
moving the derivatives to ϕ(x, t), and finally substituting (3.1) and (3.2) into the resulting equations,
the left hand side of the first equation in (1.5) produces

∫ +∞

−∞

∫ +∞

−∞
m11,tϕ(x, t)dxdt

=− cc11

∫ +∞

−∞

∫ +∞

−∞
(E −Exx)xϕ(x, t)dxdt

=cc11

∫ +∞

−∞

∫ +∞

−∞
(Eϕx(x, t)−Eϕxxx(x, t))dxdt

=cc11

∫ +∞

−∞
[
∫ ct

−∞
ex−ctϕx(x, t)dx+

∫ +∞

ct
e−(x−ct)ϕx(x, t)dx

−
∫ ct

−∞
ex−ctϕxxx(x, t)dx−

∫ +∞

ct
e−(x−ct)ϕxxx(x, t)dx]dt

=cc11

∫ +∞

−∞
[
∫ ct

−∞
ex−ctϕx(x, t)dx+

∫ +∞

ct
e−(x−ct)ϕx(x, t)dx

+
∫ ct

−∞
ex−ctϕxx(x, t)dx−

∫ +∞

ct
e−(x−ct)ϕxx(x, t)dx]dt

=cc11

∫ +∞

−∞
[
∫ ct

−∞
ex−ctϕx(x, t)dx+

∫ +∞

ct
e−(x−ct)ϕx(x, t)dx

+2ϕ
′
(ct, t)−

∫ ct

−∞
ex−ctϕx(x, t)dx−

∫ +∞

ct
e−(x−ct)ϕx(x, t)dx]dt

=2cc11

∫ +∞

−∞
ϕ

′
(ct, t)dt,

where the notations E = e−|x−ct| and ϕ ′
(ct, t) = ϕx(x, t)|x=ct . We split the right hand side of the first

equation in (1.5) into the following four parts

− 1
2

∫ +∞

−∞

∫ +∞

−∞
m11(u2

11 +u12u21)ϕx(x, t)dxdt

+
1
2

∫ +∞

−∞

∫ +∞

−∞
m11(u2

11,x +u12,xu21,x)ϕx(x, t)dxdt

+
1
2

∫ +∞

−∞

∫ +∞

−∞
m12(u11,xu21 −u11u21,x)ϕ(x, t)dxdt

− 1
2

∫ +∞

−∞

∫ +∞

−∞
m21(u11u12,x −u11,xu12)ϕ(x, t)dxdt

, I1 + I2 + I3 + I4.
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We compute I1 as follows

I1 =− 1
2

c11(c2
11 + c12c21)

∫ +∞

−∞

∫ +∞

−∞
(E −Exx)E2ϕx(x, t)dxdt

=− 1
2

c11(c2
11 + c12c21)

∫ +∞

−∞

∫ +∞

−∞
[E3 − (E2Ex)x +2EE2

x ]ϕx(x, t)dxdt

=− 1
2

c11(c2
11 + c12c21)

∫ +∞

−∞

∫ +∞

−∞
[(E3 +2EE2

x )ϕx(x, t)+E2Exϕxx(x, t)]dxdt

=− 1
2

c11(c2
11 + c12c21)

∫ +∞

−∞
[3
∫ ct

−∞
e3(x−ct)ϕx(x, t)dx+3

∫ +∞

ct
e−3(x−ct)ϕx(x, t)dx

+
∫ ct

−∞
e3(x−ct)ϕxx(x, t)dx−

∫ +∞

ct
e−3(x−ct)ϕxx(x, t)dx]dt

=− 1
2

c11(c2
11 + c12c21)

∫ +∞

−∞
[3
∫ ct

−∞
e3(x−ct)ϕx(x, t)dx+3

∫ +∞

ct
e−3(x−ct)ϕx(x, t)dx

+2ϕ
′
(ct, t)−3

∫ ct

−∞
e3(x−ct)ϕx(x, t)dx−3

∫ +∞

ct
e−3(x−ct)ϕx(x, t)dx]dt

=− c11(c2
11 + c12c21)

∫ +∞

−∞
ϕ

′
(ct, t)dt.

In a similar manner, we obtain

I2 =
1
3

c11(c2
11 + c12c21)

∫ +∞

−∞
ϕ

′
(ct, t)dt,

I3 = I4 = 0.

Thus it follows from the first equation in (1.5) that

c2
11 + c12c21 =−3c. (3.3)

By similar calculations, we find that the second and the third equations in (1.5) also give rise to
(3.3). Hence the single peakon solution becomes

u11 = c11e−|x+ c2
11+c12c21

3 t|, u12 = c12e−|x+ c2
11+c12c21

3 t|, u21 = c21e−|x+ c2
11+c12c21

3 t|. (3.4)

In general, we assume that an N-peakon solution has the following form

u11 =
N

∑
j=1

p j(t)e−|x−q j(t)|, u12 =
N

∑
j=1

r j(t)e−|x−q j(t)|, u21 =
N

∑
j=1

s j(t)e−|x−q j(t)|. (3.5)

In the distribution sense, we have

u11,x =−
N

∑
j=1

p jsgn(x−q j)e−|x−q j|, m11 = 2
N

∑
j=1

p jδ (x−q j),

u12,x =−
N

∑
j=1

r jsgn(x−q j)e−|x−q j|, m12 = 2
N

∑
j=1

r jδ (x−q j),

u21,x =−
N

∑
j=1

s jsgn(x−q j)e−|x−q j|, m21 = 2
N

∑
j=1

s jδ (x−q j).

(3.6)
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Substituting (3.5) and (3.6) into (1.5) and integrating against test function with compact support,
we obtain the N-peakon dynamic system as follows:



p j,t =
1
2

r j

N

∑
i,k=1

pisk (sgn(q j −qk)− sgn(q j −qi))e−|q j−qk|−|q j−qi|

− 1
2

s j

N

∑
i,k=1

pirk (sgn(q j −qi)− sgn(q j −qk))e−|q j−qk|−|q j−qi|,

r j,t =p j

N

∑
i,k=1

pirk (sgn(q j −qi)− sgn(q j −qk))e−|q j−qk|−|q j−qi|

+
1
2

r j

N

∑
i,k=1

risk (sgn(q j −qk)− sgn(q j −qi))e−|q j−qk|−|q j−qi|,

s j,t =p j

N

∑
i,k=1

pisk (sgn(q j −qi)− sgn(q j −qk))e−|q j−qk|−|q j−qi|

− 1
2

s j

N

∑
i,k=1

risk (sgn(q j −qk)− sgn(q j −qi))e−|q j−qk|−|q j−qi|,

q j,t =
1
6
(p2

j + r js j)−
1
2

N

∑
i,k=1

(pi pk + risk)(1− sgn(q j −qi)sgn(q j −qk))e−|q j−qi|−|q j−qk|.

(3.7)

We still do not know whether this system is integrable for N ≥ 2 with respect to a suitable Poisson
structure.

4. Reductions and a new integrable perturbation equation

As mentioned above, system (1.5) can be reduced to the CH equation (1.1) as u11 = 0, u21 = 2
and to the cubic nonlinear CH equation (1.3) as u12 = u21 = 0. Now we discuss the two-component
reductions of system (1.5).

Example 1. The integrable two-component system proposed in [42]

As u11 = 0, equation (1.5) is reduced to a two-component equation


m12,t =

1
2 [m12(u12u21 −u12,xu21,x)]x +

1
2 m12(u12,xu21 −u12u21,x),

m21,t =
1
2 [m21(u12u21 −u12,xu21,x)]x +

1
2 m21(u12u21,x −u12,xu21),

m12 = u12 −u12,xx,

m21 = u21 −u21,xx,

(4.1)

which is exactly the system we derived in [42]. For the bi-Hamiltonian structure and peakon solu-
tions of this system, one may see [42].

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

162



B.Q. Xia, R.G. Zhou and Z.J. Qiao / A three-component Camassa-Holm system

Example 2. The integrable two-component system presented in [37]

As u12 = u21, equation (1.5) is reduced to a two-component equation
m11,t =

1
2 [m11(u2

11 +u2
12 −u2

11,x −u2
12,x)]x +m12(u11,xu12 −u11u12,x),

m12,t =
1
2 [m12(u2

11 +u2
12 −u2

11,x −u2
12,x)]x +m11(u11u12,x −u11,xu12),

m11 = u11 −u11,xx,

m12 = u12 −u12,xx,

(4.2)

which was proposed by Qu, Song and Yao in [37]. Here in our paper, we want to derive the peakon
solutions to this system. Suppose that an N-peakon solution of (4.2) has the form

u11 =
N

∑
j=1

p j(t)e−|x−q j(t)|, u12 =
N

∑
j=1

r j(t)e−|x−q j(t)|. (4.3)

From (3.7) and the reduction condition u12 = u21, we immediately arrive at the N-peakon dynamic
system of (4.2):

p j,t =r j

N

∑
i,k=1

pirk (sgn(q j −qk)− sgn(q j −qi))e−|q j−qk|−|q j−qi|,

r j,t =p j

N

∑
i,k=1

pirk (sgn(q j −qi)− sgn(q j −qk))e−|q j−qk|−|q j−qi|,

q j,t =
1
6
(p2

j + r2
j )−

1
2

N

∑
i,k=1

(pi pk + rirk)(1− sgn(q j −qi)sgn(q j −qk))e−|q j−qi|−|q j−qk|.

(4.4)

For N = 1, we find that the single-peakon solution reads

u11 = c1e−|x+ c2
1+c2

2
3 t|, u12 = c2e−|x+ c2

1+c2
2

3 t|, (4.5)

where c1 and c2 are integration constants. For N = 2, we may solve (4.4) as

q1(t) =−1
3 A2

1t + 3A1A2 cos(A3−A4)

|A2
1−A2

2|
sgn(t)

(
e−

1
3 |(A

2
1−A2

2)t|−1
)
,

q2(t) =−1
3 A2

2t + 3A1A2 cos(A3−A4)

|A2
1−A2

2|
sgn(t)

(
e−

1
3 |(A

2
1−A2

2)t|−1
)
,

p1(t) = A1 sin(3A1A2 sin(A3−A4)

A2
1−A2

2
e−

1
3 |(A

2
1−A2

2)t|+A3),

p2(t) = A2 sin(3A1A2 sin(A3−A4)

A2
1−A2

2
e−

1
3 |(A

2
1−A2

2)t|+A4),

r1(t) = A1 cos(3A1A2 sin(A3−A4)

A2
1−A2

2
e−

1
3 |(A

2
1−A2

2)t|+A3),

r2(t) = A2 cos(3A1A2 sin(A3−A4)

A2
1−A2

2
e−

1
3 |(A

2
1−A2

2)t|+A4),

(4.6)

where A1, · · · , A4 are integration constants. In particular, letting A1 = 1, A2 = 2, A3 = 0 and A4 =
π
6 ,

we obtain the two-peakon solution of (4.2){
u11 = sin(e−|t|)e−|x−q1(t)|+2sin(e−|t|+ π

6 )e
−|x−q2(t)|,

u12 = cos(e−|t|)e−|x−q1(t)|+2cos(e−|t|+ π
6 )e

−|x−q2(t)|,
(4.7)

with

q1(t) =−1
3

t +
√

3sgn(t)
(

e−|t|−1
)
, q2(t) =−4

3
t +

√
3sgn(t)

(
e−|t|−1

)
. (4.8)
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The two-peakon collides at t = 0, since q1(0) = q2(0) = 0. See Figures 1 and 2 for the two-peakon
dynamics of the potentials u11(x, t) and u12(x, t).

1

0.5

-4-8
0

2.5

2

x

1.5

840

u_11(x,t)

Fig. 1. The two-peakon dynamic for the potential u11(x, t) in (4.7). Red line: t =−2; Blue line: t =−1; Brown line: t = 0
(collision); Green line: t = 1; Black line: t = 2.

0
-4 4

1.6

1.2

x

0.8

0.4

80-8

u_12(x,t)

Fig. 2. The two-peakon dynamic for the potential u12(x, t) in (4.7). Red line: t =−2; Blue line: t =−1; Brown line: t = 0
(collision); Green line: t = 1; Black line: t = 2.

Example 3. A new integrable perturbation of cubic nonlinear CH equation

As u12 = 0, equation (1.5) is cast into
m11,t =

1
2 [m11(u2

11 −u2
11,x)]x,

m21,t =
1
2 [m21(u2

11 −u2
11,x)]x +m11(u11u21,x −u11,xu21),

m11 = u11 −u11,xx,

m21 = u21 −u21,xx.

(4.9)

This equation is different from the standard perturbation equation of the cubic nonlinear CH system
m11,t =

1
2 [m11(u2

11 −u2
11,x)]x,

m21,t =
1
2 [m21(u2

11 −u2
11,x)]x +[m11(u11u21 −u11,xu21,x)]x,

m11 = u11 −u11,xx,

m21 = u21 −u21,xx,

(4.10)
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which can be constructed by a small disturbance (in the sense of [19, 30]) of the cubic nonlinear
CH equation (for detail, see Remark 1 at the end of this example). Thus (4.9) is a new integrable
perturbation of the cubic nonlinear CH equation. It is noticed that by direct calculations one may
see that the second potential u21 of the standard perturbation equation (4.10) does not admit peakon
solution in the form of u21 = p(t)e−|x−q(t)|. However, we find that our new perturbation equation
(4.9) admits peakon solutions. In fact, suppose that an N-peakon solution of (4.9) has the form

u11 =
N

∑
j=1

p j(t)e−|x−q j(t)|, u21 =
N

∑
j=1

s j(t)e−|x−q j(t)|, (4.11)

we obtain the N-peakon dynamic system of (4.9) as follows:

p j,t =0,

q j,t =
1
6

p2
j −

1
2

N

∑
i,k=1

pi pk (1− sgn(q j −qi)sgn(q j −qk))e−|q j−qi|−|q j−qk|,

s j,t =p j

N

∑
i,k=1

pisk (sgn(q j −qi)− sgn(q j −qk))e−|q j−qk|−|q j−qi|.

(4.12)

For N = 1, we find that the single-peakon solution takes the form

u11 =
√
−3ce−|x−ct|, u21 = c21e−|x−ct|, (4.13)

where c21 is an arbitrary constant.
For N = 2, (4.12) becomes

p1,t =p2,t = 0,

q1,t =− 1
3

p2
1 − p1 p2e−|q1−q2|,

q2,t =− 1
3

p2
2 − p1 p2e−|q1−q2|,

s1,t =p1(p2s1 − p1s2)sgn(q1 −q2)e−|q1−q2|,

s2,t =p2(p2s1 − p1s2)sgn(q1 −q2)e−|q1−q2|.

(4.14)

From the first equation of (4.14), we obtain

p1 = A1, p2 = A2, (4.15)

where A1 and A2 are integration constants. Let us set 0 < A1 < A2. Then from (4.14), we arrive at
q1(t) =−1

3 A2
1t + 3A1A2

A2
2−A2

1
sgn(t)

(
e−

1
3 (A

2
2−A2

1)|t|−1
)
,

q2(t) =−1
3 A2

2t + 3A1A2
A2

2−A2
1
sgn(t)

(
e−

1
3 (A

2
2−A2

1)|t|−1
)
,

s1(t) = 3A1A3
A2

1−A2
2
e−

1
3 (A

2
2−A2

1)|t|+A4,

s2(t) = 1
A1
(A2s1 −A3),

(4.16)

where A3 and A4 are integration constants. In particular, taking A1 =−A3 = 1, A2 = 2 and A4 = 0,
we obtain the two-peakon solution of (4.9)

u11 = e−|x−q1(t)|+2e−|x−q2(t)|, u21 = e−|t|e−|x−q1(t)|+(2e−|t|+1)e−|x−q2(t)|, (4.17)
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with

q1(t) =−1
3

t +2sgn(t)
(

e−|t|−1
)
, q2(t) =−4

3
t +2sgn(t)

(
e−|t|−1

)
. (4.18)

This two-peakon collides at the moment of t = 0, since q1(0) = q2(0) = 0. See Figures 3 and 4 for
the two-peakon dynamics of the potentials u11(x, t) and u21(x, t).
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x

2.5

1510

0.5

-10

1

2

0
-15 -5

1.5

0 5

u_11(x,t)

Fig. 3. The two-peakon dynamic for the potential u11(x, t) in (4.17). Red line: t = −5; Blue line: t = −2; Brown line:
t = 0 (collision); Green line: t = 2; Black line: t = 5.
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Fig. 4. 3-dimensional graph for the two-peakon dynamic of the potential u21(x, t) in (4.17).

Remark 1. There have been a lot of studies investigating the perturbation equations constructed
by a small disturbance of the soliton equations, such as the KdV equation, the MKdV equation, and
the AKNS equation (see for example Refs. [19,30,39]). However, discussions about the perturbation
equations of the CH type equations are rare [27]. This is mainly due to the CH type equations
being of non-evolutionary type. To the best of our knowledge, perturbation equations of the cubic
nonlinear CH system have not been proposed in the literature yet. So, we provide a brief derivation
in our paper. Following the paper [30], we make a perturbation expansion

u =
N

∑
j=0

η jε j, N ≥ 1. (4.19)
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Replacing u with (4.19) in the cubic nonlinear CH equation (1.3), and equating the coefficients of
powers of ε (up to εN), we obtain the nth perturbation system of the CH equation with variables η0,
η1, · · · , ηN : 

m0,t =
1
2
[m0(η2

0 −η2
0,x)]x,

m1,t = [m0(η0η1 −η0,xη1,x)]x +
1
2
[m1(η2

0 −η2
0,x)]x,

...

m j,t =
1
2

[
∑

k+l= j, k,l≥0
mk ∑

i+h=l, i,h≥0
(ηiηh −ηi,xηh,x)

]
x

,

...

mN,t =
1
2

[
∑

k+l=N, k,l≥0
mk ∑

i+h=l, i,h≥0
(ηiηh −ηi,xηh,x)

]
x

,

m0 = η0 −η0,xx, m1 = η1 −η1,xx, · · · , mN = ηN −ηN,xx.

(4.20)

For example, as N = 1, we arrive at the first-order perturbation of cubic nonlinear CH equation
m0,t =

1
2 [m0(η2

0 −η2
0,x)]x,

m1,t = [m0(η0η1 −η0,xη1,x)]x +
1
2 [m1(η2

0 −η2
0,x)]x,

m0 = η0 −η0,xx,

m1 = η1 −η1,xx,

(4.21)

which is nothing but equation (4.10). With suitable adaptations of the techniques used in [30], we
may derive the Lax representation, bi-Hamiltonian structure and recursion operator for the resulting
perturbation system (4.20). We neglect the details of these results here, since this topic is out of the
scope of the present paper. But we would like to stress that, as mentioned before, this perturbation
equation does not admit a peakon solution.

5. Conclusions and discussions

We have presented an integrable 3CH peakon system with cubic nonlinearity. The Lax representa-
tion, Hamiltonian structure and infinitely many conservation laws of this system are investigated.
We also discuss the reductions of this system. In particular, by a reduction we found a new integrable
perturbation equation of the cubic nonlinear CH system. In contrast with the standard perturbation
of the cubic nonlinear CH equation, this new integrable perturbation of the cubic nonlinear CH
equation admits peakon solutions.
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