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ABSTRACT

Multiple-input multiple-output (MIMO) radar utilizes the flexible configuration of transmitting and receiving
antennas to construct images of target scenes. Because of the target scenes’ sparsity, the compressive sensing
(CS) technique can be used to realize a feasible reconstruction of the target scenes from undersampling data.
This paper presents the signal model of MIMO radar and derive the corresponding CS measurement matrix,
which shows success of the CS technique. Also the basis pursuit method and total-variation minimization
method are adopted for different scenes’ recovery. Numerical simulations are provided to illustrate the validity
of reconstruction for one dimensional and two dimensional scenes.
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1. INTRODUCTION

Multiple-input multiple-output (MIMO) radar has been a very popular topic in the last ten years since the
concept was proposed in 2004,1 which can flexibly utilize multiple transmitting and receiving antennas. The
improvements of target detection and parameter identifiability make a MIMO radar more and more popular and
recognized. As we know, the concept of MIMO radar is from the wireless communication field, where MIMO
was developed with an amazing success. However, there still exist many challenges in the signal processing
of MIMO radar. When the electromagnetic wave is irradiated to the target scene, each echo of the reflectors
corresponds to one path, which therefore results in a large number of paths. Mathematically, the reconstruction
of the target scene needs lot of transmitting or receiving antennas and enough sampling data, which will greatly
reduce advantages of the MIMO technology.

Fortunately, the novel compressive sensing (CS) theory2 can realize accurate reconstruction under the tradi-
tional Nyquist sampling rate for some sparse signals. Recently, the combination of MIMO and CS theory arises
a promising research direction.3–7 The signal model of MIMO radar is a basis of synthetic aperture radar (SAR)
imaging, and the CS matrix is the key of SAR image reconstruction with the compressive sensing. This paper
will analyze a general signal model of MIMO radar and its image reconstruction with CS.

The whole paper is organized as follows. In Section 2 we present a signal model of MIMO radar, and then
in Section 3 we derive a CS matrix by the CS theory and choose the basis pursuit method and total-variation
minimization method to reconstruct the scene. In the fourth section, the simulations of one dimensional and
two dimensional target scenes validate the feasibility of the CS imaging reconstruction for MIMO radar. Last
section concludes the paper with some comments.
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2. MIMO SIGNAL MODEL

Figure 1 shows a geometry schematic diagram with Nt transmitting antennas and Nr receiving antennas, which
can be equipped flexibly. Also each of the transmitting antennas can emit different signals separately. As an
imaging radar, there are Np targets reflecting signals from the transmitting antennas to the receiving antennas.
If the baseband signal of the `th transmitting antenna is x`(t), then the radio frequency signal with carrier

Figure 1: Geometry schematic diagram of MIMO radar.

frequency f0` is
s`(t) = e2πif0`tx`(t). (1)

Due to the demand of demodulations for different receivers, the carrier frequencies of all transmitters and
receivers are required same, namely, all frequencies equal to f0. Let ym(t) denote the received data of the mth
receiving antenna at time t, which is the superposition of the attenuated transmitting signals with time delay
reflected by Np targets with coefficients σk, k ∈ [1, Np]. Then the received data ym(t) can be calculated through
the following formula8

ym(t) =

Np∑
k=1

Nt∑
`=1

σke
−2πif0τk

` e−2πif0τ̃
k
mx`(t− τk` − τ̃km), m = 1, 2, . . . , Nr (2)

where τk` =
|ZT

` −Zk|
c0

, τ̃km =
|ZR

m−Zk|
c0

, and ZT` , Z
R
m, Zk stand for the locations of the `th transmit antenna, the mth

receiving antennas, and the kth target, respectively, and c0 is the speed of light. Because τk` , τ̃
k
m are small and

the baseband signal x`(t) is slowly varying usually, we may apply some approximations in (2) to get

ym(t) ≈
Nk∑
k=1

Nt∑
`=1

βke
−2πif0τk

` e−2πif0τ̃
k
mx`(t− t0). (3)

where t0 is the time delay along with the path from the equivalent center of transmitting antennas to the
equivalent center of the scene, and then to the equivalent center of receiving antennas.

Let
x(t) = [x1(t), . . . , xNt

(t)]
T ∈ CNt×1, (4)
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ak =
(
e2πif0τ

k
1 , . . . , e2πif0τ

k
Nt

)T
∈ CNt×1, k = 1, . . . , Np, (5)

bk =
(
e2πif0τ̃

k
1 , . . . , e2πif0τ̃

k
Nr

)T
∈ CNr×1, k = 1, . . . , Np. (6)

Then, the total data received at time t has the following form8,9

y(t) =

Nk∑
k=1

σkb̄ka
∗
kx(t) (7)

where y(t) = [y1(t), y2(t), . . . , yNr
(t)]

T ∈ CNr×1, (̄.) denotes the conjugation and (.)∗ represents the conjugate
transpose. Let us write the entire data over all time samples {t1, . . . , tN} in the matrix form

y = [y(t1)|y(t2)| · · · |y(tN )] ∈ CNr×N . (8)

Then
y = b̄kΣa∗kX, (9)

where

Σ =


σ1 0 0 · · · 0
0 σ2 0 · · · 0
0 0 σ3 · · · 0
...

...
...

. . .
...

0 0 0 · · · σk

 (10)

and
X = [x(t1)|x(t2)| · · · |x(tN )] ∈ CNt×N . (11)

So, we get the model of MIMO signal in matrix form.

3. CS PROCESSING FOR MIMO SIGNALS

3.1 Brief introduction of CS

Based on the CS theory, if signal x ∈ CN×1 is sparse in some domain, there are an orthogonal basis matrix
Ψ ∈ CN×N and a coefficient vector s ∈ CN×1 satisfying

x = Ψs (12)

where the transform coefficient s can be calculated through s = Ψ−1x mathematically. If there are only K(� N)
non-zero values in s, the signal x is sparse in the corresponding domain, and can be reconstructed by a few random
samples with very high probability. Suppose the linear observing process is Φ ∈ CM×N , where M < N , the
observation data y ∈ CM is

y = Φx = ΦΨs = Θs (13)

where Θ = ΦΨ ∈ CM×N is the observing matrix. The spirit of CS theory is the reconstruction of the sparse
coefficient s via the following optimization problem

ŝ = arg min ‖ s ‖0 s.t. y = Θs. (14)

Because l0 normalization optimization problem is difficult to resolve, l0 normalization is usually replaced by
l1 normalization for the actual situation. The signal x may be estimated by x̂ = Ψŝ. In this paper, we choose the
basis pursuit (BP)10,11 and total variation minimization12 (TV-min) methods to solve the above optimization
problem.

The BP optimization problem is described below

ŝBP = arg min ‖ s ‖1 s.t. y = Θs (15)
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and in the case of noisy data, we solve it through adopting the method of basis pursuit denoising (BPDN)13

ŝBPDN = arg min ‖ s ‖1 s.t ‖Θs− y‖2 ≤ ε (16)

where ε > 0 is a user parameter and ‖ · ‖2 is the `2 norm.

Sometime, when the sparsity of s is worse than its gradient, the TV-min method would be used to solve
equation (14). For example, a distributed target has many none-zero reflectors, but much less non-zeros exist in
the gradient image. Therefore, the above optimization problem becomes

ŝTV = arg min ‖ s ‖TV s.t. y = Θs (17)

where

‖s‖TV =
∑
i,j

√
|si+1,j − si,j |2 + |si,j+1 − si,j |2. (18)

3.2 Compressive sensing matrix

From the above subsection, we can see that the CS matrix Θ plays a key rule in applying the CS to reconstruct
SAR images. However, the CS matrix can not be directly extracted from the form of (9). We will rewrite (9) as
an equivalently linear system to apply for other signal processing techniques.

Let ym be the total data collected at receiver m, then

ym = [ym(t1), ym(t2), . . . , ym(tN )]
T ∈ CN×1, m = 1, 2, . . . , Nr (19)

and for each m, define Θm ∈ CN×Np as

Θm =
(
e−2πif0τ̃

1
mXT āk, e

−2πif0τ̃2
mXT āk, . . . , e

−2πif0τ̃
Nk
m XT āk

)
, m = 1, 2, . . . , Nr. (20)

Then
ym = ΘmΣ∗ (21)

where Σ∗ = (σ1, σ2, . . . , σNp)T ∈ CNp×1 is the scene vector. Stacking the ym,Θm,m ∈ [1, Nr] yields the following
linear system8

Y = ΘΣ∗ (22)

where

Y =


y1

y2
...

yNr

 ∈ CNrN×1 (23)

and

Θ =


Θ1

Θ2

...
ΘNr

 ∈ CNrN×Np (24)

Let us now substitute the above Θ into (15) or (17) to recover the targets’ reflectivity coefficients through
sparse treatment. For a two dimensional scene, we may scan or decompose the scene into one dimensional
vectors. For example, if the pixel size of a scene is 1, 000×1, 000 while there are 100 non-zero reflectivity targets,
we may scan the scene along with range direction (or cross range direction) pixel by pixel, then we can get a
1,000,000 point column vector with keeping the number of the non-zero reflectivity points still 100. Thus, we
have Σ∗ = (σ1, σ2, . . . , σ1,000,000)T , and there are only 100 non-zeros values. If there are only a few points in the
scene, the sparsity of the signal s is obvious, while there are some distributed targets with piecewise constant
reflectivity, the sparsity of the two-dimensional gradient of s is better than that of itself. So, we suggest to
reconstruct different scenes with different methods.
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4. EXPERIMENTS

To validate the MIMO signal model and the CS reconstruction method. Three simulations are given, including
1 one-dimensional targets scene and 2 two-dimensional scenes with some random distrusted targets. The carrier
frequency f0 is 3GHz. The number of transmitters Nt is 8, and the number of samples N is 10. For our
convenience, the transmitting and receiving antennas were distributed linearly along a line through the line
[xT ,−1000, 100] and [xR, 1000, 100], respectively, where xT ∈ [−100, 100] and xR ∈ [−100, 100].

4.1 One-dimensional simulation

The y coordinates of the one dimensional scene range from -500m to 500m at 2m increments, and the x coordinates
are always 500m. We simulate 10 random points, whose reflectivity coefficients are 1 and those of the other 491
points are 0. Suppose the number of receivers Nr = 16, the dimension of the receiving data and the scene is 160
and 501, respectively. Obviously, this is under-determined problem. The traditional least square method cannot
solve it correctly. By the consideration of the sparsity of points, the BP and TV-min methods can be used to
recover the points, shown in Figure 2.

(a) (b)

(c) (d)

Figure 2: Simulation results of one-dimensional targets: (a) Origin random scene; (b) Recovery result by basics
pursuit method; (c) Recovery result by TV-min method; (d) Recovery result by least square method.
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According to the recovery results in Figure 2, the CS can be applied to a MIMO radar.

4.2 Two-dimensional simulations

Usually, imaging radar should display two dimensional scenes. In this subsection, two experiments for two-
dimensional scenes are given. The x-axis range is [400, 600]m, and the y-axis range is [−100, 100]m. The pixel
size is 2m× 2m.

Firstly, we simulate 10 non-zero points with random distributed in the two-dimensional scene. Figure 3
illustrates the original scene and the recovery results with the BP method, and TV-min method. According to
the results, we can see that the BP method is better than the TV-min method to reconstruct a MIMO radar
image.

(a) (b) (c)

Figure 3: Simulation results of two-dimensional point target scene: (a) Origin random scene; (b) Recovery result
by basics pursuit method; (c) Recovery result by TV-min method.

Furthermore, we design a scene with 3 distritbuted targets randomly, shown in Figure 4. Each distributed
target has 10×20 non-zero points.

(a) (b) (c)

Figure 4: Simulation results of two-dimensional distributed targets scene: (a) Origin random scene; (b) Recovery
result by basics pursuit method; (c) Recovery result by TV-min method.

Obviously, the result of TV-min method is much better than that of the other. It can be explained that
there are totally 600 nonzero points in this scene while the dimension of the received data is only 160, so the
BP method can not recover the right points directly. However, the sparsity of the scene in gradient space is
much better than that in time space. So, the TV-min method will get better recovery and be more suitable for
piecewise constant scenes.
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5. CONCLUSION

This paper discusses the signal model of MIMO radar. For sparse targets or scenes, the CS method can be used
to reconstruct the observed objects. The observing matrix and reconstruct method are also analyzed in this
paper. The simulations including one-dimensional and two-dimensional results are validated for the proposed
model and CS method. The BP method and TV-min method are suitable to reconstruct the sparse point scene
and distributed piecewise scene, respectively.
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