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A generalized two-component model with peakon solutions is proposed in
this paper. It allows an arbitrary function to be involved in as well as
including some existing integrable peakon equations as special reductions. The
generalized two-component system is shown to possess Lax pair and infinitely
many conservation laws. Bi-Hamiltonian structures and peakon interactions
are discussed in detail for typical representative equations of the generalized
system. In particular, a new type of N -peakon solution, which is not in the
traveling wave type, is obtained from the generalized system.

1. Introduction

In recent years, the Camassa–Holm (CH) equation [1]

mt = 2mux + mx u, m = u − uxx + k, (1)

where (k is an arbitrary constant) derived by Camassa and Holm [1] as a
shallow water wave model, has attracted much attention and various studies.
The CH equation admits Lax representation [1], bi-Hamiltonian structure [2,3],
and is integrable by the inverse scattering transformation [4]. Also it possesses
multiple peaked soliton solutions [1, 5] and algebrogeometric solutions [6, 7].
The most interesting feature of the CH equation is that it admits peaked soliton
(peakon) solutions in the case k =0 [1, 5]. A peakon is a weak solution in
some Sobolev space with corner at its crest. The stability and analysis study of
peakons were discussed in several references [8–12].
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The interesting characteristics of the CH equation stimulated more people
to search new integrable models which admit peakon solutions. Among them,
for example, there are:

(1) The Degasperis–Procesi (DP) equation [13]

mt = 3mux + mx u, m = u − uxx , (2)

which was shown integrable with Lax pair and bi-Hamiltonian structure
in [14], multipeakon dynamics in [15], and shocks formation in [16];

(2) The cubic nonlinear peakon equation—the Fokas-Olver-Rosenau-Qiao
(FORQ) equation [3, 17, 18]

mt = [
m
(
u2 − u2

x

)]
x
, m = u − uxx , (3)

which was shown to have Lax pair and bi-Hamiltonian structure in [19],
and peakon solutions in [20];

(3) The Novikov’s cubic nonlinear equation [21]

mt = u2mx + 3uux m, m = u − uxx , (4)

which was shown integrable with Lax pair, bi-Hamiltonian structure,
and conservation laws in [22]; and

(4) The generalized CH equation with both quadratic and cubic nonlinearity
[17, 18, 23]

mt = 1

2
k1
[
m
(
u2 − u2

x

)]
x
+ 1

2
k2(2mux + mx u), m = u − uxx , (5)

where k1 and k2 are two arbitrary constants. Equation (5) was proven to
possess Lax pair, conservation laws, and peakon solutions in [23].

Equation (5) is actually a linear combination of CH equation (1) and
cubic nonlinear equation (3). This structure is very similar to the Gardner
equation, known as a linear combination of KdV and mKdV equations. Thus,
equation (5) is the dual system of the Gardner equation from the viewpoint of
tri-Hamiltonian duality [3,18]. In the literature [17], a more generalized version
of Equation (5) was derived by Fokas from the two-dimensional hydrodynamical
equations for surface waves. We also notice that by some appropriate rescaling
or gauge transformations Equation (5) is equivalent to Equation (3).

All equations shown above are scalar integrable peakon models. Another
important task is to find integrable multicomponent peakon systems to enrich
the theory of soliton and integrable systems. For example, the integrable
two-component CH equations are proposed in [3, 24–26]. The integrable
two-component forms of the cubic peakon systems (3) and (4) are presented in
[27–29].

In addition to the integrable generalizations of peakon equations, there
are also some works appearing to study the nonintegrable generalizations of
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peakon equations. The most well-known example is the so-called b-family
equation by Holm and Staley [30, 31]

mt = bmux + mx u, m = u − uxx , (6)

where b is an arbitrary constant. The case of b = 2 is exactly the CH equation,
while the case of b = 3 recovers the DP equation. According to various tests
for integrability, it is known that the cases of b = 2 and b = 3 are the only
integrable equations within this family [32–35]. However, for any b, all those
equations admit peakon solutions [31]. Holm and Staley also studied peakon
dynamics of (6) for different values of b and discussed how they behave with
changing b [31]. In the literature [36], Popowicz proposed a two-component
system, which can be considered as a coupling between the CH equation
and the DP equation. Later, Hone and Irle showed that the two-component
Popowicz system is nonintegrable, but admits single-peakon solution as well
as multipeakon solutions [37].

In this paper, we propose the following generalized version of the
two-component peakon system:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

mt = (m H )x + m H − 1
2 m(u − ux )(v + vx ),

nt = (nH )x − nH + 1
2 n(u − ux )(v + vx ),

m = u − uxx,

n = v − vxx,

(7)

where H is an arbitrary function of u, v, and their derivatives. As v = 2 and
H = u, Equation (7) is reduced to the CH equation (1). As v = 2u and
H = (u2 − u2

x ),Equation(7)isreducedtotheFORQequation(3).Asv = k1u + k2

and H = 1
2 [k1(u2 − u2

x ) + k2u], Equation (7) is cast into the generalized CH
equation (5). Thus, Equation (7) is a kind of the two-component generalization
of Equations (1), (3), and (5). We show that the generalized system (7) possesses
an sl(2)-valued Lax pair and infinitely many conservation laws. Since the
arbitrary function H is involved in (7), we do not expect all those equations have
bi-Hamiltonian structures in general. Nevertheless, we demonstrate that for some
special choices of H we may find the corresponding bi-Hamiltonian structures.
Such a system is interesting, because we may obtain quite a large number of
integrable peakon equations by choosing different H . We take some examples
to discuss in detail the bi-Hamiltonian structures and the peakon interactions for
some equations in the family (7). From the equations in the family (7), we obtain a
new type of N -peakon solution which is not presented in the traveling wave type.

The whole paper is organized as follows. Section 2 provides the Lax pair
and conservation laws for the system (7). Section 3 studies the bi-Hamiltonian
structures and the multipeakon solutions of some two-component equations in
the family (7). Section 4 supplies a proof for the bi-Hamiltonian property in
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each example discussed in Section 3. Some conclusions and open problems
are addressed in Section 5.

2. Lax pair and conservation laws

Let us consider a pair of 2 × 2 matrix spectral problems of the following type:

φx = Uφ, U = 1

2

( −1 λm
−λn 1

)
, (8)

φt = V φ, V = −1

2

(
V11 V12

V21 −V11

)
, (9)

where λ is a spectral parameter, φ = (φ1, φ2)T , m = u − uxx , n = v − vxx , and

V11 = λ−2 + 1

2
(u − ux )(v + vx ),

V12 = −λ−1(u − ux ) − λm H,

V21 = λ−1(v + vx ) + λnH,

(10)

and H is an arbitrary function of u, v, and their derivatives.
It is easy to see that the compatibility condition of (8) and (9) reads

Ut − Vx + [U, V ] = 0. (11)

Substituting the expressions of (8) and (9) into (11), we immediately find that
(11) is nothing but Equation (7). Thus, (8) and (9) compose of a Lax pair of
Equation (7).

Remark 1. Our generalized system with an arbitrary function H involved
does admit an sl(2)-valued Lax representation. System (7) is produced by
the compatibility condition (11) of the spectral problems (8) and (9) where
such an arbitrary function is included in V part. The arbitrary function H is
able to appear because the Lax equation (11) is an overdetermined system by
choosing the appropriate V (dependent on λ) to match U .

Next, let us construct the conservation laws for system (7) by using spectral
problems (8) and (9). Let ω = φ2

φ1
, then it follows from (8) that ω satisfies the

Riccati equation

ωx = −1

2
λmω2 + ω − 1

2
λn. (12)
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Based on (8) and (9), we obtain

(ln φ1)x = − 1
2 + 1

2λmω,

(ln φ1)t = − 1
2

[
λ−2 − λ−1(u − ux )ω + 1

2 (u − ux )(v + vx ) − λm Hω
]
,

(13)

which generates the following conservation law of Equation (7):

ρt = Ax , (14)

where

ρ = mω,

A = − 1
2λ

−1(u − ux )(v + vx ) + λ−2(u − ux )ω + m Hω.
(15)

Usually ρ and A are called a conserved density and an associated flux,
respectively.

We are able to derive the explicit forms of conservation densities by
expanding ω in powers of λ in two ways. The first one is to expand ω in terms
of negative powers of λ as

ω =
∞∑
j=0

ω jλ
− j . (16)

By substituting (16) into (12) and equating the coefficients of powers of λ, we
arrive at

ω0 =
√

− n

m
, ω1 = mnx − mx n − 2mn

2m2n
,

ω j+1 = 1

mω0

[
ω j − ω j,x − 1

2
m
∑

i+k= j+1,1≤i,k≤ j
ωiωk

]
, j ≥ 1.

(17)

Inserting (16) and (17) into (15), we obtain the following infinitely many
conserved densities and the associated fluxes

ρ0 = √−mn, A0 = H
√−mn,

ρ1 = mnx − mx n − 2mn

2mn
,

A1 = −1

2
(u − ux )(v + vx ) + (mnx − mx n − 2mn)H

2mn
,

ρ j = mω j , A j = (u − ux )ω j−2 + m Hω j , j ≥ 2,

(18)

where ω j is given by (17).
The second expansion of ω is in the positive powers of λ as

ω =
∞∑
j=0

ω jλ
j . (19)
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Substituting (19) into (12) and comparing powers of λ lead to

ω2 j = 0, j ≥ 0, (20)

ω1 = 1

2
(v + vx ), ω2 j+1 − ω2 j+1,x = 1

2
m

∑
i+k=2 j,0≤i,k≤2 j

ωiωk, j ≥ 1. (21)

From formula (20), we know

ρ2 j = 0, A2 j = 0, j ≥ 0, (22)

which means the even-index conserved densities and associated fluxes are
trivial. From formula (21), we arrive at the odd-index conserved densities and
associated fluxes

ρ1 = 1

2
m(v + vx ), A1 = (u − ux )ω3 + 1

2
m(v + vx )H,

ρ2 j+1 = mω2 j+1, A2 j+1 = (u − ux )ω2 j+3 + m Hω2 j+1, j ≥ 1,

(23)

where the odd-index ω2 j+1 is defined by the recursion relation

ω2 j+1 = 1

2
(1 − ∂x )−1

(
m

∑
i+k=2 j,0≤i,k≤2 j

ωiωk

)
, j ≥ 1. (24)

We should remark that the relation (24) shows the nontrivial high-order
conserved densities in the sequence (23) may involve in nonlocal expressions in
u and v. However, the conserved densities in the sequence (18) are local ones.

Remark 2. The expressions (18) and (23) show that all members in
our generalized system possess the same conserved quantities but different
conserved fluxes. This is because the conserved quantities are derived from
the Riccati equation (12) that only depends on the spatial part of the Lax
representation which keeps the same for all members in the family; while the
conserved fluxes rely on the temporal part of the Lax representation which
changes for different members.

3. Two-component peakon systems

The two-component system (7) is of great interest because different choices of
H lead to different peakon equations. Let us discuss some special cases in the
following examples.
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EXAMPLE 1. A new integrable system with a new type of peakon solutions.
Taking H = 0 in Equation (7) gives rise to the following integrable

two-component model:⎧⎪⎨
⎪⎩

mt = − 1
2 m(u − ux )(v + vx ),

nt = 1
2 n(u − ux )(v + vx ),

m = u − uxx , n = v − vxx .

(25)

This model can be rewritten as the following bi-Hamiltonian form

(mt , nt )
T = J

(
δH2

δm
,
δH2

δn

)T

= K

(
δH1

δm
,
δH1

δn

)T

, (26)

where

J =
(

0 −∂ − 1
−∂ + 1 0

)
, K =

(−m∂−1m m∂−1n
n∂−1m −n∂−1n

)
, (27)

H1 = 1

2

∫ +∞

−∞
m(v + vx )dx, H2 = 1

4

∫ +∞

−∞
(u − ux )2(v + vx )ndx . (28)

In Section 4, we will provide a detailed proof for the compatibility of the
Hamiltonian pairs J and K in this example and the next three examples.

Let us assume that (25) has the following one-peakon solution

u = p1(t)e−|x−q1(t)|, v = r1(t)e−|x−q1(t)|, (29)

where p1(t), r1(t), and q1(t) are functions of t needed to be determined.
Substituting (29) into (25) and integrating against the test function with support
around the peak, we obtain

p1,t = −1

3
p2

1r1, r1,t = 1

3
p1r2

1 , q1,t = 0, (30)

which yields

p1(t) = A2e− 1
3 A1t , r1(t) = A1

A2
e

1
3 A1t , q1(t) = A3, (31)

where A1, A2, and A3 are integration constants. Thus, we obtain the peakon
solutions as follows:

u(x, t) = A2e− 1
3 A1t e−|x−A3|, v(x, t) = A1

A2
e

1
3 A1t e−|x−A3|. (32)

This pair of single-peakon solutions is not presented in the traveling wave
type, because the peakon position q1(t) = A3 is stationary. To the best of our
knowledge, almost all integrable peakon models have single peakons which are
of traveling wave type. So, we find a new integrable peakon system (25) whose
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Figure 1. The single-peakon solution given by (32) with A1 = A2 = 1 and A3 = 0. Solid
line: u(x, t); Dashed line: v(x, t); Black: t = 1; Blue: t = 2.

peakon solution is not in traveling wave type. See Figure 1 for the profile of
the new single-peakon solution. We remark that the amplitudes of the peakons
of Equation (25) grow/decay exponentially with time. Recently, Lundmark and
Szmigielski [38] found that the Geng-Xue two-component system [29] has a
similar type of peakons (with amplitudes exponentially growing/decaying with
time).

Let us suppose the N -peakon solution in the form of

u(x, t) =
N∑

j=1

p j (t)e
−|x−q j (t)|, v(x, t) =

N∑
j=1

r j (t)e
−|x−q j (t)|. (33)

By substituting (33) into (25) and integrating against test functions, we obtain
the N -peakon dynamic system of (25)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q j,t = 0,

p j,t = 1
6 p2

j r j

+ 1
2 p j

∑N
i,k=1 pirk(sgn(q j − qi ) + 1)

(sgn(q j − qk) − 1)e−|q j −qi |−|q j −qk |,

r j,t = − 1
6 p jr2

j

− 1
2r j

∑N
i,k=1 pirk(sgn(q j − qi ) + 1)(sgn(q j − qk) − 1)e−|q j −qi |−|q j −qk |.

(34)
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In the above formula, q j,t = 0 implies that the peak position does not change
along with the time t .

For N = 2, solving (34) leads to⎧⎪⎪⎨
⎪⎪⎩

q1(t) = A4, q2(t) = A5,

r1(t) = A1
p1

, r2(t) = A2
p2

,

p1(t) = A6�1, p2(t) = p1

A3
e

1
3 (A1−A2)t ,

(35)

where A1, A2, . . ., A6 are integration constants, and

�1 = e
− 1

3 A1t− e−|A4−A5 |
2

[
3A1(1+sgn(A4−A5))

(A1−A2)A3
e

1
3 (A1−A2)t − 3A2 A3(1−sgn(A4−A5))

A1−A2
e− 1

3 (A1−A2)t
]
.

If A4 = A5, it is reduced to the one-peakon solution. If A4 �= A5, this
two-peakon solution will never collide because q1(t) �= q2(t) for any t . In
particular, for A1 = A3 = A4 = −A5 = A6 = 1 and A2 = 4, the two-peakon
becomes {

u(x, t) = e− 1
3 t+e−t−2

e−|x−1| + e− 4
3 t+e−t−2

e−|x+1|,

v(x, t) = e
1
3 t−e−t−2

e−|x−1| + 4e
4
3 t−e−t−2

e−|x+1|.
(36)

See Figure 2 for the profile of the two-peakon dynamics for the potentials
u(x, t) and v(x, t).

Remark 3. We point out that from (25) one may conclude (mn)t = 0
and thus mn = f (x), where f (x) is a free function of x . It then follows
that v = (1 − ∂2)−1( f (x)

m ). This means we can remove the component v in
Equation (25) and thus write (25) in the form of a single field equation.
However, the resulting single field equation involves in nonlocal expressions
and a free function f (x). Guided by this, we still write the equation associated
with the case of H = 0 in the form of (25).

EXAMPLE 2. The integrable two-component system proposed in [28].
By choosing H = 1

2 (uv − uxvx ), we obtain⎧⎪⎨
⎪⎩

mt = 1
2 [m (uv − uxvx )]x − 1

2 m (uvx − uxv) ,

nt = 1
2 [n (uv − uxvx )]x + 1

2 n (uvx − uxv) ,

m = u − uxx , n = v − vxx ,

(37)

which is exactly the dispersionless version of the system we derived in [28].
This system possesses the bi-Hamiltonian form

(mt , nt )
T = J

(
δH2

δm
,
δH2

δn

)T

= K

(
δH1

δm
,
δH1

δn

)T

, (38)
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Figure 2. The two-peakon solution given by (36). Solid line: u(x, t); Dashed line: v(x, t);
Black: t = 0; Blue: t = −1.

where

J =
(

0 ∂2 − 1

1 − ∂2 0

)
,

K =
(

∂m∂−1m∂ − m∂−1m ∂m∂−1n∂ + m∂−1n
∂n∂−1m∂ + n∂−1m ∂n∂−1n∂ − n∂−1n

)
,

(39)

H1 = 1

2

∫ +∞

−∞
(uv + uxvx )dx, H2 = 1

4

∫ +∞

−∞

(
u2vx + u2

xvx − 2uuxv
)
ndx .

(40)
In [28], we have derived the one-peakon of (37)

u(x, t) = c1e−|x+ 1
3 c1c2t |, v(x, t) = c2e−|x+ 1

3 c1c2t |, (41)

where c1 and c2 are two arbitrary integration constants. We also investigated
the N-peakon dynamical system. In particular, the two-peakon solution was
given explicitly and the collisions are discussed (for details, see [28]).
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EXAMPLE 3. A new integrable two-component peakon system with the same
bi-Hamiltonian operators as (37) but different Hamiltonian functions.

Taking H = 1
2 (uvx − uxv), we arrive at

⎧⎪⎨
⎪⎩

mt = 1
2 [m(uvx − uxv)]x − 1

2 m (uv − uxvx ),

nt = 1
2 [n(uvx − uxv)]x + 1

2 n (uv − uxvx ),

m = u − uxx , n = v − vxx .

(42)

This system can be rewritten as the following bi-Hamiltonian form:

(mt , nt )
T = J

(
δH2

δm
,
δH2

δn

)T

= K

(
δH1

δm
,
δH1

δn

)T

, (43)

where J , K are given by (39), and

H1 = 1

2

∫ +∞

−∞
(uvx + uxvxx )dx, H2 = 1

4

∫ +∞

−∞
(u2v + u2

xv − 2uuxvx )ndx .

(44)

From (38) and (43), we find that Equations (37) and (42) share the same
bi-Hamiltonian operators but with different Hamiltonian functions. We will
comment this at the end of this example (see Remark 4).

Let us study the peakon solutions of this example. By direct calculations,
we find that the one-peakon solution of (42) takes the form as

u(x, t) = c2e− 1
3 c1t e−|x−c3|, v(x, t) = c1

c2
e

1
3 c1t e−|x−c3|, (45)

where c1, c2, and c3 are three integration constants. In general, we suppose the
N -peakon solution of (42) in the form of (33). Then, we obtain the N -peakon
dynamical system of (42)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p j,t = 1
6 p2

j r j

+ 1
2 p j

N∑
i,k=1

pirk(sgn(q j − qi )sgn(q j − qk) − 1)e−|q j −qi |−|q j −qk |,

r j,t = − 1
6 p jr2

j

− 1
2r j

N∑
i,k=1

pirk(sgn(q j − qi )sgn(q j − qk) − 1)e−|q j −qi |−|q j −qk |,

q j,t = 1
2

N∑
i,k=1

pirk(sgn(q j − qk) − sgn(q j − qi ))e−|q j −qi |−|q j −qk |.

(46)
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For N = 2, the two-peakon dynamical system reads as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1,t = − 1
3 p2

1r1 − 1
2 p1 (p1r2 + p2r1) e−|q1−q2|,

p2,t = − 1
3 p2

2r2 − 1
2 p2 (p1r2 + p2r1) e−|q1−q2|,

r1,t = 1
3 p1r2

1 + 1
2r1 (p1r2 + p2r1) e−|q1−q2|,

r2,t = 1
3 p2r2

2 + 1
2r2 (p1r2 + p2r1) e−|q1−q2|,

q1,t = 1
2 (p1r2 − p2r1) sgn(q1 − q2)e−|q1−q2|,

q2,t = q1,t .

(47)

From the first four equations of (47), we may conclude p1(t)r1(t) = A1 and
p2(t)r2(t) = A2, where A1 and A2 are two integration constants. From the last
two equations of (47), we know q2(t) = q1(t) − B1 where B1 is a nonzero
constant, which indicates that the two-peakon will never collide. For A1 = A2,
we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1(t) = De[− 1
3 A1− 1

2 (A1C1+ A1
C1

)e−|B1 |]t
,

p2(t) = p1(t)

C1
, r1(t) = A1

p1(t)
, r2 = A1C1

p1(t)
,

q1(t) = 1

2

[(
A1C1 − A1

C1

)
sgn(B1)e−|B1|

]
t + B1

2
,

q2(t) = q1(t) − B1,

(48)

where B1, C1, and D are three integration constants. For example, choosing C1 =
D = 1, B1 = 2, A1 = 3, we have p2(t) = p1(t) = e−(3e−2+1)t , r2(t) = r1(t) =
3e(3e−2+1)t . Thus, the two-peakon solution accordingly reads as

{
u(x, t) = e−(3e−2+1)t

(
e−|x−1| + e−|x+1|) ,

v(x, t) = 3e(3e−2+1)t
(
e−|x−1| + e−|x+1|) , (49)

which are apparently M-shape peakon solutions with two peaks (see
Figure 3 for details). If choosing C1 = B1 = 2, D = 1, A1 = 3, then we have
the following two-peakon solution

⎧⎨
⎩

u(x, t) = 1
2 e−( 15

4 e−2+1)t
(

2e−|x− 9
4 e−2t−1| + e−|x− 9

4 e−2t+1|
)

,

v(x, t) = 3e( 15
4 e−2+1)t

(
e−|x− 9

4 e−2t−1| + 2e−|x− 9
4 e−2t+1|

)
.

(50)

Figure 4 shows the profile of this two-peakon solution.
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Figure 3. The M-shape peakon solution given by (49). Solid line: u(x, t); Dashed line:
v(x, t); Black: t = 0; Blue: t = −1.

x

6

2

5

3

4

1

20-2-4

4

0

u(x,t)

Figure 4. The two-peakon solution given by (50). Solid line: u(x, t); Dashed line: v(x, t);
Black: t = 0; Blue: t = −1.
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For A1 �= A2, we obtain the following solution of (47):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1(t) = B3e− 1
3 A1t− 3e−|B1 |

2(A1−A2) ( A1
B2

e
1
3 (A1−A2)t −A2 B2e− 1

3 (A1−A2)t )
,

p2(t) = p1

B2
e

1
3 (A1−A2)t ,

r1(t) = A1
p1

, r2 = A2
p2

,

q1(t) = − 3sgn(B1)e−|B1 |
2(A1−A2)

[
A2 B2e− 1

3 (A1−A2)t + A1
B2

e
1
3 (A1−A2)t

]
+ B4,

q2(t) = q1 − B1,

(51)

where A1, A2, B1, B2, B3, and B4 are six integration constants. Let us consider
a special case of choosing A1 = B1 = B2 = B3 = 1, A2 = 4, B4 = 0. Then,
we have ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1 = e− 1
3 t+ 1

2 e−t−1−2et−1
,

p2 = e− 4
3 t+ 1

2 e−t−1−2et−1
,

r1 = e
1
3 t− 1

2 e−t−1+2et−1
,

r2 = 4e
4
3 t− 1

2 e−t−1+2et−1
,

q1 = 1
2 e−t−1 + 2et−1,

q2 = q1 − 1.

(52)

Figure 5 shows the dynamics of this two-peakon for the potentials u(x, t) and
v(x, t) determined by (52).

Remark 4. It has been shown that Equations (37) and (42) share the same
bi-Hamiltonian operators (but with different Hamiltonian functions). In fact,
the bi-Hamiltonian operators (39) generate two hierarchies of equations. To
see this, we define Lenard sequence recursively by

Jb−k = K b−k+1, Jb0 = 0, k = 1, 2, . . . ,

and the soliton hierarchy by

mt−n = K b−n, n = 1, 2, . . . . (53)

Let us take an initial value b0 = (0, 0)T . Then from Jb−1 = K b0, we may
reach b−1 = 1

2 (v, u)T or b−1 = 1
2 (vx , −ux )T . For b−1 = 1

2 (v, u)T , the first
member mt−1 = K b−1 in the hierarchy (53) is just Equation (37). While for
b−1 = 1

2 (vx , −ux )T , the first member mt−1 = K b−1 is nothing but Equation (42).

Remark 5. Although Equations (37) and (42) share the same bi-Hamiltonian
operators, their peakon dynamics are very different. In the single-peakon case,
the peakon solution of (37) is in the type of traveling wave (see (41)), while the
peakon solution of (42) is not, since the peak point does not change along with
the time t (see (45)). In the two-peakon case, the collision of the two-peakon



A Synthetical Two-Component Model with Peakon Solutions 15

3

2

1

0

4

x

420-2-4

5

u(x,t)

Figure 5. The two-peakon solution determined by (52). Solid line: u(x, t); Dashed line:
v(x, t); Black: t = −0.5; Blue: t = −1.

of Equation (37) is discussed in [28], while the two-peakon of Equation (42)
never collides since their positions are satisfied with q2(t) = q1(t) − B1, where
B1 is a nonzero constant.

EXAMPLE 4. The two-component integrable system proposed by Song et al.
[27].

Choosing H = 1
2 (u − ux )(v + vx ) casts Equation (7) into⎧⎪⎨

⎪⎩
mt = 1

2 [m(u − ux )(v + vx )]x ,

nt = 1
2 [n(u − ux )(v + vx )]x ,

m = u − uxx , n = v − vxx,

(54)

which is exactly the equation derived by Song et al. [27]. This system possesses
a bi-Hamiltonian structure [39]:

(mt , nt )
T = J

(
δH2

δm
,
δH2

δn

)T

= K

(
δH1

δm
,
δH1

δn

)T

, (55)

where

J =
(

0 ∂2 + ∂

−∂2 + ∂ 0

)
, K =

(
∂m∂−1m∂ ∂m∂−1n∂

∂n∂−1m∂ ∂n∂−1n∂

)
, (56)

H1 = 1

2

∫ +∞

−∞
m(v + vx )dx, H2 = 1

4

∫ +∞

−∞
(u − ux )2(v + vx )ndx . (57)
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In the following, we want to derive the peakon solutions and discuss the
peakon interactions for this system. It is easy to check that the one-peakon
solution of (54) takes the same form as (41). In general, by direct calculations,
we can obtain the N-peakon dynamical system of (54) as follows:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

p j,t = 0,

r j,t = 0,

q j,t = 1

6
p jr j + 1

2

N∑
i,k=1

pirk(sgn(q j − qi ) + 1)

(sgn(q j − qk) − 1)e−|q j −qi |−|q j −qk |.

(58)

If N = 2, then the two-peakon system reads as⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

p1,t = p2,t = r1,t = r2,t = 0,

q1,t = − 1
3 p1r1 + 1

2 [p1r2 (sgn(q1 − q2) − 1)

−p2r1 (sgn(q1 − q2) + 1)] e−|q1−q2|,

q2,t = − 1
3 p2r2 + 1

2 [p1r2 (sgn(q1 − q2) − 1)

−p2r1 (sgn(q1 − q2) + 1)] e−|q1−q2|.

(59)

From the first equation of (59), we know

p1 = A1, p2 = A2, r1 = B1, r2 = B2, (60)

where A1, A2, B1, and B2 are four integration constants. If A1 B1 = A2 B2,
then we have ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
q1(t) =

{
− 1

3 A1 B1 + 1
2 [A1 B2(sgn(C1) − 1)

−A2 B1(sgn(C1) + 1)]e−|C1|
}

t + C1
2 ,

q2(t) = q1(t) − C1.

(61)

If A1 B1 �= A2 B2, then we arrive at{
q1(t) = − 1

3 A1 B1t + �(t),

q2(t) = − 1
3 A2 B2t + +�(t),

(62)

where

�(t) = 3(A1 B2 + A2 B1)

2|A1 B1 − A2 B2| sgn(t)
(

e− 1
3 |(A1 B1−A2 B2)t | − 1

)
+ 3(A1 B2 − A2 B1)

2(A1 B1 − A2 B2)
e− 1

3 |(A1 B1−A2 B2)t |.
(63)
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Figure 6. The two-peakon solution for the potential u(x, t) given by (64). Red line: t = −3;
Blue line: t = −1; Brown line: t = 0 (collision); Green line: t = 1; Black line: t = 3.5.

In particular, taking A1 = B1 = 1, A2 = 2, and B2 = 5 sends the two-peakon
solution to the following form:

{
u(x, t) = e−|x−q1(t)| + 2e−|x−q2(t)|,

v(x, t) = e−|x−q1(t)| + 5e−|x−q2(t)|,
(64)

where

{
q1(t) = − t

3 + 7
6 sgn(t)(e−3|t | − 1) − 1

2 e−3|t |,

q2(t) = − 10t
3 + 7

6 sgn(t)(e−3|t | − 1) − 1
2 e−3|t |.

(65)

For the potential u(x, t), the two-peakon collides at the moment t = 0, since
q1(0) = q2(0) = 0. For t < 0, the tall and fast peakon with the amplitude 2 and
peak position q2 chases after the short and slow peakon with the amplitude 1
and peak position q1. At the moment of t = 0, the two-peakon overlaps. After
the collision (t > 0), the two-peakon separates, and the tall and fast peakon
surpasses the short and slow one. Similarly, we may discuss the collision of the
two-peakon for the potential v(x, t). See Figures 6 and 7 for the two-peakon
dynamics of the potentials u(x, t) and v(x, t).
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Figure 7. The two-peakon solution for the potential v(x, t) given by (64). Red line: t = −3;
Blue line: t = −1; Brown line: t = 0 (collision); Green line: t = 1; Black line: t = 3.

4. A proof for the bi-Hamiltonian property

In this section, we will supply a proof for the bi-Hamiltonian property in each
example presented in the above section. Let us introduce the following basic
operators:

J1 =
(

0 −1
1 0

)
, J2 =

(
0 ∂

∂ 0

)
, J3 =

(
0 ∂2

−∂2 0

)
, (66)

K1 =
(−m∂−1m m∂−1n

n∂−1m −n∂−1n

)
, K2 =

(
∂m∂−1m∂ ∂m∂−1n∂

∂n∂−1m∂ ∂n∂−1n∂

)
. (67)

LEMMA 1. All the above operators are Hamiltonian operators.

Proof: It is obvious that J1, J2, and J3 are Hamiltonian operators since they
are skew-symmetric operators with constant-coefficient. It is easy to check K1

and K2 are skew-symmetric. We need to prove that both K1 and K2 satisfy the
Jacobi identities

〈α, K ′
1[K1β]γ 〉 + cycle(α, β, γ ) = 0, (68)

〈α, K ′
2[K2β]γ 〉 + cycle(α, β, γ ) = 0, (69)
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whereα = (α1, α2)T ,β = (β1, β2)T ,γ = (γ1, γ2)T arearbitraryvector functions,
the symbol cycle (α, β, γ ) means the cyclic permutation of α, β, γ , and the
prime-sign means the Gâteaux derivative of an operator F on q in the direction
σ defined as [18]

F ′[σ ] = F ′(q)[σ ] = ∂

∂ε

∣∣∣∣
ε=0

F(q + εσ ). (70)

Let us first prove the Jacobi identity (68). For brevity, we introduce the
notations:

A = ∂−1(mα1 − nα2), B = ∂−1(mβ1 − nβ2), C = ∂−1(mγ1 − nγ2). (71)

Direct calculations give rise to

〈α, K ′
1[K1β]γ 〉

=
∫ +∞

−∞
[(α1m B + α2nB)C + (α1m − α2n)∂−1(γ1m B + γ2nB)]dx . (72)

Integrating (72) by parts, we obtain

〈α, K ′
1[K1β]γ 〉

=
∫ +∞

−∞
[(α1m B + α2nB)C − (γ1m B + γ2nB)∂−1(α1m − α2n)]dx

=
∫ +∞

−∞
[(α1m B + α2nB)C − (γ1m B + γ2nB)A]dx

=
∫ +∞

−∞
[(α1m + α2n)BC − (γ1m + γ2n)B A]dx . (73)

Thus

〈α, K ′
1[K1β]γ 〉 + cycle(α, β, γ )

=
∫ +∞

−∞
[(α1m + α2n)BC − (γ1m + γ2n)B A]dx

+
∫ +∞

−∞
[(β1m + β2n)C A − (α1m + α2n)C B]dx

+
∫ +∞

−∞
[(γ1m + γ2n)AB − (β1m + β2n)AC]dx

= 0. (74)
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Now we turn to the proof of Jacobi identity (69). Let us set

Ã = ∂−1(mα1,x + nα2,x ), B̃ = ∂−1(mβ1,x + nβ2,x ),

C̃ = ∂−1(mγ1,x + nγ2,x ). (75)

With the similar calculations as (72) and (73), we arrive at

〈α, K ′
2[K2β]γ 〉

=
∫ +∞

−∞
[(γ1,x mx + γ2,x nx )B̃ Ã − (α1,x mx + α2,x nx )B̃C̃

+ C̃x B̃x Ã − Ãx B̃x C̃]dx . (76)

Then it follows that

〈α, K ′
2[K2β]γ 〉 + cycle(α, β, γ )

=
∫ +∞

−∞
[(γ1,x mx + γ2,x nx )B̃ Ã − (α1,x mx + α2,x nx )B̃C̃

+ C̃x B̃x Ã − Ãx B̃x C̃]dx

+
∫ +∞

−∞
[(α1,x mx + α2,x nx )C̃ B̃ − (β1,x mx + β2,x nx )C̃ Ã

+ Ãx C̃x B̃ − B̃x C̃x Ã]dx

+
∫ +∞

−∞
[(β1,x mx + β2,x nx ) ÃC̃ − (γ1,x mx + γ2,x nx ) Ã B̃

+ B̃x Ãx C̃ − C̃x Ãx B̃]dx

= 0. (77)

The proof of Lemma 1 is finished.

LEMMA 2. The following relations hold

〈α, J ′
1[J2β]γ 〉 + 〈α, J ′

2[J1β]γ 〉 + cycle(α, β, γ ) = 0, (78)

〈α, J ′
1[J3β]γ 〉 + 〈α, J ′

3[J1β]γ 〉 + cycle(α, β, γ ) = 0, (79)

〈α, J ′
2[J3β]γ 〉 + 〈α, J ′

3[J2β]γ 〉 + cycle(α, β, γ ) = 0, (80)

〈α, J ′
1[K1β]γ 〉 + 〈α, K ′

1[J1β]γ 〉 + cycle(α, β, γ ) = 0, (81)

〈α, J ′
2[K1β]γ 〉 + 〈α, K ′

1[J2β]γ 〉 + cycle(α, β, γ ) = 0, (82)
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〈α, J ′
2[K2β]γ 〉 + 〈α, K ′

2[J2β]γ 〉 + cycle(α, β, γ ) = 0, (83)

〈α, J ′
3[K2β]γ 〉 + 〈α, K ′

2[J3β]γ 〉 + cycle(α, β, γ ) = 0, (84)

〈α, K ′
1[K2β]γ 〉 + 〈α, K ′

2[K1β]γ 〉 + cycle(α, β, γ ) = 0. (85)

Proof: It is clearly formulas (78)–(80) hold since J1, J2, and J3 are
constant-coefficient operators. For (81), we have 〈α, J ′

1[K1β]γ 〉=0, and

〈α, K ′
1[J1β]γ 〉 =

∫ +∞

−∞
[(α1β2 + α2β1)C − (β1γ2 + β2γ1)A]dx .

Thus the left-hand side (LHS) of (81) becomes∫ +∞

−∞
[(α1β2 + α2β1)C − (β1γ2 + β2γ1)A]dx

+
∫ +∞

−∞
[(β1γ2 + β2γ1)A − (γ1α2 + γ2α1)B]dx

+
∫ +∞

−∞
[(γ1α2 + γ2α1)B − (α1β2 + α2β1)C]dx

= 0.

Similarly, by direct calculations, the LHS of (82) becomes∫ +∞

−∞
[(β1,xα2 − β2,xα1)C − (β1,xγ2 − β2,xγ1)A]dx

+
∫ +∞

−∞
[(γ1,xβ2 − γ2,xβ1)A − (γ1,xα2 − γ2,xα1)B]dx

+
∫ +∞

−∞
[(α1,xγ2 − α2,xγ1)B − (α1,xβ2 − α2,xβ1)C]dx

=
∫ +∞

−∞
[(β1α2 − β2α1)xC − (β1γ2 − β2γ1)x A − (γ1α2 − γ2α1)x B]dx

= −
∫ +∞

−∞
[(β1α2 − β2α1)Cx − (β1γ2 − β2γ1)Ax − (γ1α2 − γ2α1)Bx ]dx

= −
∫ +∞

−∞
[(β1α2 − β2α1)(mγ1 − nγ2) − (β1γ2 − β2γ1)(mα1 − nα2)

− (γ1α2 − γ2α1)(mβ1 − nβ2)]dx

= 0.
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The LHS of (83) is equal to

−
∫ +∞

−∞
[(α1,xβ2,x + α2,xβ1,x )C̃ − (β2,xγ1,x + β1,xγ2,x ) Ã]dx

−
∫ +∞

−∞
[(β1,xγ2,x + β2,xγ1,x ) Ã − (γ2,xα1,x + γ1,xα2,x )B̃]dx

−
∫ +∞

−∞
[(γ1,xα2,x + γ2,xα1,x )B̃ − (α2,xβ1,x + α1,xβ2,x )C̃]dx

= 0.

The LHS of (84) is equal to

−
∫ +∞

−∞
[(α1,xβ2,xx − α2,xβ1,xx )C̃ − (β2,xxγ1,x − β1,xxγ2,x ) Ã]dx

−
∫ +∞

−∞
[(β1,xγ2,xx − β2,xγ1,xx ) Ã − (γ2,xxα1,x − γ1,xxα2,x )B̃]dx

−
∫ +∞

−∞
[(γ1,xα2,xx − γ2,xα1,xx )B̃ − (α2,xxβ1,x − α1,xxβ2,x )C̃]dx

= −
∫ +∞

−∞
[(β1,xγ2,x − β2,xγ1,x )x Ã + (γ1,xα2,x − γ2,xα1,x )x B̃

+ (α1,xβ2,x − α2,xβ1,x )x C̃]dx

=
∫ +∞

−∞
[(β1,xγ2,x − β2,xγ1,x ) Ãx + (γ1,xα2,x − γ2,xα1,x )B̃x

+ (α1,xβ2,x − α2,xβ1,x )C̃x ]dx

=
∫ +∞

−∞
[(β1,xγ2,x − β2,xγ1,x )(mα1,x + nα2,x )

+ (γ1,xα2,x − γ2,xα1,x )(mβ1,x + nβ2,x )

+ (α1,xβ2,x − α2,xβ1,x )(mγ1,x + nγ2,x )]dx

= 0.

For the LHS of (85), we have

〈α, K ′
1[K2β]γ 〉 =

∫ +∞

−∞
[(mα1,x − nα2,x )C B̃ − (mγ1,x − nγ2,x )AB̃]dx,

〈α, K ′
2[K1β]γ 〉 =

∫ +∞

−∞
[(mα1,x − nα2,x )BC̃ − (mγ1,x − nγ2,x )B Ã]dx .
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Hence, the LHS of (85) reads as

∫ +∞

−∞
[(mα1,x − nα2,x )(C B̃ + BC̃) − (mγ1,x − nγ2,x )(AB̃ + B Ã)]dx

+
∫ +∞

−∞
[(mβ1,x − nβ2,x )(AC̃ + C Ã) − (mα1,x − nα2,x )(BC̃ + C B̃)]dx

+
∫ +∞

−∞
[(mγ1,x − nγ2,x )(B Ã + AB̃) − (mβ1,x − nβ2,x )(C Ã + AC̃)]dx

= 0.

This completes the proof of Lemma 2.

Lemma 2 implies that J1 + J2, J1 + J3, J1 + K1, J2 + J3, J2 + K1, J2 + K2,
J3 + K2 and K1 + K2 are Hamiltonian operators. However, we should notice
that J1 + K2 and J3 + K1 are not Hamiltonian operators. In fact, we have

LEMMA 3. The following two relations hold:

〈α, J ′
1[K2β]γ 〉 + 〈α, K ′

2[J1β]γ 〉 + cycle(α, β, γ )

=
∫ +∞

−∞
[(β1γ2 − β2γ1)x Ã + (α2γ1 − α1γ2)x B̃ + (α1β2 − α2β1)x C̃]dx,

〈α, J ′
3[K1β]γ 〉 + 〈α, K ′

1[J3β]γ 〉 + cycle(α, β, γ )

=
∫ +∞

−∞
[(β1,xγ2 − β1γ2,x + β2,xγ1 − β2γ1,x )x A

+ (γ1,xα2 − γ1α2,x + γ2,xα1 − γ2α1,x )x B

+ (α1,xβ2 − α1β2,x + α2,xβ1 − α2β1,x )xC]dx .

(86)
Proof: Direct calculations yield that

〈α, J ′
1[K2β]γ 〉 + 〈α, K ′

2[J1β]γ 〉 + cycle(α, β, γ )

= −
∫ +∞

−∞
[(β1α2,x − β2α1,x )C̃ − (β1γ2,x − β2γ1,x ) Ã]dx

−
∫ +∞

−∞
[(γ1β2,x − γ2β1,x ) Ã − (γ1α2,x − γ2α1,x )B̃]dx

−
∫ +∞

−∞
[(α1γ2,x − α2γ1,x )B̃ − (α1β2,x − α2β1,x )4̃C̃]dx

=
∫ +∞

−∞
[(β1γ2 − β2γ1)x 6̃ Ã + (α2γ1 − α1γ2)x B̃ + (α1β2 − α2β1)x 4̃C̃]dx,
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and 〈α, J ′
3[K1β]γ 〉 + 〈α, K ′

1[J3β]γ 〉 + cycle(α, β, γ )

= −
∫ +∞

−∞
[(α1β2,xx + α2β1,xx )C − (β1,xxγ2 + β2,xxγ1)A]dx

−
∫ +∞

−∞
[(β1γ2,xx + β2γ1,xx )A − (γ1,xxα2 + γ2,xxα1)B]dx

−
∫ +∞

−∞
[(γ1α2,xx + γ2α1,xx )B − (α1,xxβ2 + α2,xxβ1)C]dx

=
∫ +∞

−∞
[(β1,xγ2 − β1γ2,x + β2,xγ1 − β2γ1,x )x A

+ (γ1,xα2 − γ1α2,x + γ2,xα1 − γ2α1,x )x B

+ (α1,xβ2 − α1β2,x + α2,xβ1 − α2β1,x )xC]dx .

This finishes the proof of Lemma 3.

LEMMA 4. The following Jacobi identity holds:

〈α, J ′
1[K2β]γ 〉 + 〈α, K ′

2[J1β]γ 〉 + 〈α, J ′
3[K1β]γ 〉 + 〈α, K ′

1[J3β]γ 〉
+cycle(α, β, γ ) = 0.

(87)

Proof: By virtue of Lemma 3 and integration by parts, we arrive at

〈α, J ′
1[K2β]γ 〉 + 〈α, K ′

2[J1β]γ 〉 + 〈α, J ′
3[K1β]γ 〉 + 〈α, K ′

1[J3β]γ 〉 + cycle(α, β, γ )

=
∫ +∞

−∞
[(β1γ2 − β2γ1)x Ã + (α2γ1 − α1γ2)x B̃ + (α1β2 − α2β1)x C̃

+ (β1,xγ2 − β1γ2,x + β2,xγ1 − β2γ1,x )x A

+ (γ1,xα2 − γ1α2,x + γ2,xα1 − γ2α1,x )x B

+ (α1,xβ2 − α1β2,x + α2,xβ1 − α2β1,x )x C]dx

= −
∫ +∞

−∞
[(β1γ2 − β2γ1) Ãx + (α2γ1 − α1γ2)B̃x + (α1β2 − α2β1)C̃x

+ (β1,xγ2 − β1γ2,x + β2,xγ1 − β2γ1,x )Ax

+ (γ1,xα2 − γ1α2,x + γ2,xα1 − γ2α1,x )Bx

+ (α1,xβ2 − α1β2,x + α2,xβ1 − α2β1,x )Cx ]dx

= −
∫ +∞

−∞
[(β1γ2 − β2γ1)(mα1,x + nα2,x ) + (α2γ1 − α1γ2)(mβ1,x + nβ2,x )

+ (α1β2 − α2β1)(mγ1,x + nγ2,x )

+ (β1,xγ2 − β1γ2,x + β2,xγ1 − β2γ1,x )(mα1 − nα2)

+ (γ1,xα2 − γ1α2,x + γ2,xα1 − γ2α1,x )(mβ1 − nβ2)

+ (α1,xβ2 − α1β2,x + α2,xβ1 − α2β1,x )(mγ1 − nγ2)]dx

= 0.

The proof of Lemma 4 is finished.
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Based on the above lemmas, we finally obtain:

PROPOSITION 1. Let c j , 1 ≤ j ≤ 5, be arbitrary constants. For any
c1c5 = c3c4, we can conclude that J = c1 J1 + c2 J2 + c3 J3 + c4K1 + c5K2 is
a Hamiltonian operator.

Proof: We need to verify the Jacobi identity

〈α, J ′[Jβ]γ 〉 + cycle(α, β, γ ) = 0.

In fact, we have

〈α, J ′[Jβ]γ 〉 + cycle (α, β, γ )

= c2
1〈α, J ′

1[J1β]γ 〉 + c2
2〈α, J ′

2[J2β]γ 〉 + c2
3〈α, J ′

3[J3β]γ 〉
+ c2

4〈α, K ′
1[K1β]γ 〉 + c2

5〈α, K ′
2[K2β]γ 〉

+ c1c2(〈α, J ′
1[J2β]γ 〉 + 〈α, J ′

2[J1β]γ 〉)
+ c1c3(〈α, J ′

1[J3β]γ 〉 + 〈α, J ′
3[J1β]γ 〉)

+ c1c4(〈α, J ′
1[K1β]γ 〉 + 〈α, K ′

1[J1β]γ 〉)
+ c1c5(〈α, J ′

1[K2β]γ 〉 + 〈α, K ′
2[J1β]γ 〉)

+ c2c3(〈α, J ′
2[J3β]γ 〉 + 〈α, J ′

3[J2β]γ 〉)
+ c2c4(〈α, J ′

2[K1β]γ 〉 + 〈α, K ′
1[J2β]γ 〉)

+ c2c5(〈α, J ′
2[K2β]γ 〉 + 〈α, K ′

2[J2β]γ 〉)
+ c3c4(〈α, J ′

3[K1β]γ 〉 + 〈α, K ′
1[J3β]γ 〉)

+ c3c5(〈α, J ′
3[K2β]γ 〉 + 〈α, K ′

2[J3β]γ 〉)
+ c4c5(〈α, K ′

1[K2β]γ 〉 + 〈α, K ′
2[K1β]γ 〉)

+ cycle (α, β, γ )
= c1c5(〈α, J ′

1[K2β]γ 〉 + 〈α, K ′
2[J1β]γ 〉)

+ c3c4(〈α, J ′
3[K1β]γ 〉 + 〈α, K ′

1[J3β]γ 〉)
+ cycle (α, β, γ )

= 0,

where the last identity holds because of c1c5 = c3c4 and Lemma 4. This
completes the proof of the proposition. �

Recall that a pair of Hamiltonian operators J and K is called compatible, if
J + K is Hamiltonian. From the above proposition, we immediately arrive at:

COROLLARY 1. The case of c1 = −c2 = c4 = 1 and c3 = c5 = 0 leads to
the compatibility of the Hamiltonian operators (27).

COROLLARY 2. The case of c1 = c3 = c4 = c5 = 1 and c2 = 0 leads to the
compatibility of the Hamiltonian operators (39).
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COROLLARY 3. The case of c2 = c3 = c5 = 1 and c1 = c4 = 0 leads to the
compatibility of the Hamiltonian operators (56).

Remark 6. The Hamiltonian pair J and K in each example in Section
3 is a special case of the generalized form J = c1 J1 + c2 J2 + c3 J3 and
K = c4K1 + c5K2, where c1c5 = c3c4. The compatibility of such a Hamiltonian
pair is guaranteed by Proposition 1.

5. Conclusions and discussions

In the paper, from the spectral problems (8) and (9), we propose a generalized
two-component model (7) which allows for an arbitrary function H to be
involved in. We may generate many integrable peakon systems with different
choices of H in our model. So, our model provides a large class of peakon
systems and covers almost all existing integrable peakon equations associated
with 2 × 2 spectral problems. Because of the presence of an arbitrary function
in the generalized system, we do not expect all those equations possess the
bi-Hamiltonian structures in general. Nevertheless, we show that for some
special choices of the function H in (7) we may find the bi-Hamiltonian
structures. Moreover, from the generalized model we obtain very interesting
solutions, such as new type of N -peakon solution which is not in the traveling
wave type.

Different from the usual integrable soliton equations, the peakon equation
involved in an arbitrary function seems to be unusual. We believe that this
system deserves a further investigation. The following two problems seem to
be interesting:
� Is there a gauge transformation that can remove the arbitrary function H?
� Can the inverse scattering transforms be applied to solve our system in

general?

Very recently, we know that Li et al. [40] proposed a four-component peakon
equation with an arbitrary function involved in, where they cited a preprint
version [41] of the present paper. We believe that both our generalized peakon
system and Li–Liu–Popowicz’s system deserve a further investigation.

Acknowledgments

The authors would like to express their sincerest thanks to the anonymous
referee for the helpful suggestions and invaluable comments, which have
helped us to improve this paper. The authors Xia and Zhou were supported by
the National Natural Science Foundation of China (Grant Nos. 11301229 and
11271168), the Natural Science Foundation of the Jiangsu Province (Grant



A Synthetical Two-Component Model with Peakon Solutions 27

No. BK20130224) and the Natural Science Foundation of the Jiangsu Higher
Education Institutions of China (Grant No. 13KJB110009). The author Qiao
was partially supported by the National Natural Science Foundation of China
(No. 11171295, No. 61301187, and No. 61328103) and also thanks the U.S.
Department of Education GAANN project (P200A120256) to support UTPA
mathematics graduate program.

References

1. R. CAMASSA and D. D. HOLM, An integrable shallow water equation with peaked solitons,
Phys. Rev. Lett. 71: 1661–1664 (1993).

2. B. FUCHSSTEINER and A. S. FOKAS, Symplectic structures, their Bäcklund transformation
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