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A new two-component system with cubic nonlinearity
and linear dispersion:

mt = bux + 1
2 [m(uv − uxvx)]x − 1

2 m(uvx − uxv),

nt = bvx + 1
2 [n(uv − uxvx)]x + 1

2 n(uvx − uxv),

m = u − uxx, n = v − vxx,

where b is an arbitrary real constant, is proposed
in this paper. This system is shown integrable
with its Lax pair, bi-Hamiltonian structure and
infinitely many conservation laws. Geometrically,
this system describes a non-trivial one-parameter
family of pseudo-spherical surfaces. In the case
b = 0, the peaked soliton (peakon) and multi-
peakon solutions to this two-component system
are derived. In particular, the two-peakon dynamical
system is explicitly solved and their interactions are
investigated in details. Moreover, a new integrable
cubic nonlinear equation with linear dispersion

mt = bux + 1
2 [m(|u|2 − |ux|2)]x − 1

2 m(uu∗
x − uxu∗),

m = u − uxx,

is obtained by imposing the complex conjugate
reduction v = u∗ to the two-component system. The
complex-valued N-peakon solution and kink wave
solution to this complex equation are also derived.

1. Introduction
In recent years, the Camassa–Holm (CH) equation [1]

mt − bux + 2mux + mxu = 0, m = u − uxx, (1.1)

where b is an arbitrary constant, derived by Camassa &
Holm [1] as a shallow water wave model, has attracted
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much attention in the theory of soliton and integrable system. As an integrable equation it was
implied in the work of Fuchssteiner & Fokas [2] on hereditary symmetries as a very special
case. Since the work of Camassa & Holm [1], more diverse studies on this equation have been
remarkably developed [3–14]. The most interesting feature of the CH equation (1.1) is that it
admits peaked soliton (peakon) solutions in the case b = 0 [1,3]. A peakon is a weak solution
in some Sobolev space with corner at its crest. The stability and interaction of peakons were
discussed in several references [15–19]. Moreover, in [20], the author discussed the potential
applications of the CH equation to tsunami dynamics.

In addition to the CH equation, other integrable models with peakon solutions have been
found [21–30]. Among these models, there are two integrable peakon equations with cubic
nonlinearity, which are

mt = bux + [m(u2 − u2
x)]x, m = u − uxx, (1.2)

and
mt = u2mx + 3uuxm, m = u − uxx. (1.3)

Equation (1.2) was proposed independently by Fokas [5], Fuchssteiner [6], Olver & Rosenau [4]
and Qiao [26–28]. Equation (1.2) is the first cubic nonlinear integrable system possessing peakon
solutions. Recently, the peakon stability of equation (1.2) with b = 0 was worked out by Gui
et al. [31]. In 2009, Novikov [30] derived another cubic equation, which is equation (1.3), from
the symmetry approach, and Hone & Wang [29] gave its Lax pair, bi-Hamiltonian structure and
peakon solutions. Very recently [32], we derived the Lax pair, bi-Hamiltonian structure, peakons,
weak kinks, kink-peakon interactional and smooth soliton solutions for the following integrable
equation with both quadratic and cubic nonlinearity [5,6]:

mt = bux + 1
2 k1[m(u2 − u2

x)]x + 1
2 k2(2mux + mxu), m = u − uxx, (1.4)

where b, k1 and k2 are three arbitrary constants. By some appropriate rescaling, equation (1.4)
was implied in the papers of Fokas & Fuchssteiner [5,6], where it was derived from the two-
dimensional hydrodynamical equations for surface waves. Equation (1.4) can also be derived by
applying the tri-Hamiltonian duality to the bi-Hamiltonian Gardner equation [4].

The above shown equations are one-component integrable peakon models. It is very
interesting for us to study multi-component integrable generalizations of peakon equations. For
example, in [4,33–37], the authors proposed two-component generalizations of the CH equation
(1.1) with b = 0, and in [38,39], the authors presented two-component extensions of the cubic
nonlinear equation (1.3) and equation (1.2) with b = 0.

In this paper, we propose the following two-component system with cubic nonlinearity and
linear dispersion

mt = bux + 1
2 [m(uv − uxvx)]x − 1

2 m(uvx − uxv),

nt = bvx + 1
2 [n(uv − uxvx)]x + 1

2 n(uvx − uxv),

m = u − uxx, n = v − vxx,

⎫⎪⎪⎬
⎪⎪⎭ (1.5)

where b is an arbitrary real constant. This system is reduced to the CH equation (1.1) as v = −2,
to the cubic CH equation (1.2) as v = 2u, and to the generalized CH equation (1.4) as v = k1u + k2.
Moreover, by imposing the complex conjugate reduction v = u∗, equation (1.5) is reduced to a new
integrable equation with cubic nonlinearity and linear dispersion

mt = bux + 1
2 [m(|u|2 − |ux|2)]x − 1

2 m(uu∗
x − uxu∗), m = u − uxx, (1.6)

where the symbol ∗ denotes the complex conjugate of a potential. The above reductions of the two-
component system (1.5) look very like the ones of AKNS system, which can be reduced to the KdV
equation, the mKdV equation, the Gardner equation and the nonlinear Schrödinger equation.
We prove the integrability of system (1.5) by providing its Lax pair, bi-Hamiltonian structure
and infinitely many conservation laws. Geometrically system (1.5) describes pseudo-spherical
surfaces and thus it is also integrable in the sense of geometry. In the case b = 0 (dispersionless
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case), we show that this system admits the single-peakon of travelling wave solution as well
as multi-peakon solutions. In particular, the two-peakon dynamic system is explicitly solved and
their interactions are investigated in details. Moreover, we propose the complex-valued N-peakon
solution and kink wave solution to the cubic nonlinear complex equation (1.6). To the best of our
knowledge, equation (1.6) is the first model admitting complex peakon solution and kink solution.

The whole paper is organized as follows. In §2, the Lax pair, bi-Hamiltonian structure as
well as infinitely many conservation laws of equation (1.5) are presented. In §3, the geometric
integrability of equation (1.5) are studied. In §4, the single-peakon, multi-peakon and two-peakon
dynamics are discussed. Section 5 shows that equation (1.6) admits the complex-valued peakon
solution and kink wave solution. Some conclusions and open problems are described in §6.

2. Lax pair, bi-Hamiltonian structure and conservation laws
Let us consider a pair of linear spectral problems(

φ1

φ2

)
x

= U

(
φ1

φ2

)
, U = 1

2

( −α λm

−λn α

)
(2.1)

and (
φ1

φ2

)
t

= V

(
φ1

φ2

)
, V = −1

2

(
V11 V12

V21 −V11

)
, (2.2)

where λ is a spectral parameter, m = u − uxx, n = v − vxx, α =
√

1 − λ2b, b is an arbitrary constant
and

V11 = λ−2α + α

2
(uv − uxvx) + 1

2
(uvx − uxv),

V12 = −λ−1(u − αux) − 1
2
λm(uv − uxvx)

and V21 = λ−1(v + αvx) + 1
2
λn(uv − uxvx).

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.3)

The compatibility condition of (2.1) and (2.2) generates

Ut − Vx + [U, V] = 0. (2.4)

Substituting the expressions of U and V given by (2.1) and (2.2) into (2.4), we find that (2.4) is
nothing but equation (1.5). Hence, (2.1) and (2.2) exactly give the Lax pair of (1.5).

Let

K =
(

0 ∂2 − 1

1 − ∂2 0

)

and J =
(

∂m∂−1m∂ − m∂−1m ∂m∂−1n∂ + m∂−1n + 2b∂
∂n∂−1m∂ + n∂−1m + 2b∂ ∂n∂−1n∂ − n∂−1n

)
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.5)

Lemma 2.1. J and K are a pair of Hamiltonian operators.

Proof. It is obvious that K is Hamiltonian, since it is a skew-symmetric operator with constant-
coefficient. It is easy to check if J is skew-symmetric. We need to prove that J satisfies the Jacobi
identity

〈ζ , J′[Jη]θ〉 + 〈η, J′[Jθ ]ζ 〉 + 〈θ , J′[Jζ ]η〉 = 0, (2.6)

where ζ = (ζ1, ζ2)T, η = (η1, η2)T and θ = (θ1, θ2)T are arbitrary testing functions, and the prime-
sign means the Gâteaux derivative of an operator F on q in the direction σ defined as [6]

F′[σ ] = F′(q)[σ ] = ∂

∂ε

∣∣∣∣
ε=0

F(q + εσ ). (2.7)
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For brevity, we introduce the notations

Ã = ∂−1(mζ1,x + nζ2,x), B̃ = ∂−1(mη1,x + nη2,x), C̃ = ∂−1(mθ1,x + nθ2,x)

and A = ∂−1(mζ1 − nζ2), B = ∂−1(mη1 − nη2), C = ∂−1(mθ1 − nθ2).

⎫⎬
⎭ (2.8)

By direct calculations, we arrive at

〈ζ , J′[Jη]θ〉 =
∫+∞

−∞
[(θ1,xmx + θ2,xnx)B̃Ã − (ζ1,xmx + ζ2,xnx)B̃C̃ + C̃xB̃xÃ − ÃxB̃xC̃] dx

+
∫+∞

−∞
[(ζ1,xm − ζ2,xn)(BC̃ + CB̃) − (θ1,xm − θ2,xn)(BÃ + AB̃)] dx

+
∫+∞

−∞
[(ζ1m + ζ2n)BC − (θ1m + θ2n)BA] dx

− 2b
∫+∞

−∞
[(ζ1,xη2,x + ζ2,xη1,x)C̃ − (η2,xθ1,x + η1,xθ2,x)Ã] dx

+ 2b
∫+∞

−∞
[(ζ2η1,x − ζ1η2,x)C − (η1,xθ2 − η2,xθ1)A] dx. (2.9)

Based on (2.9), we may verify (2.6) directly. This completes the proof of lemma 2.1. �

Lemma 2.2. The following relation holds

〈ζ , J′[Kη]θ〉 + 〈η, J′[Kθ ]ζ 〉 + 〈θ , J′[Kζ ]η〉 + 〈ζ , K′[Jη]θ〉 + 〈η, K′[Jθ ]ζ 〉 + 〈θ , K′[Jζ ]η〉 = 0. (2.10)

Proof. Direct calculations yield that

〈ζ , J′[Kη]θ〉 = −
∫+∞

−∞
[(ζ2,xη1 − ζ1,xη2)C̃ − (θ2,xη1 − θ1,xη2)Ã] dx

−
∫+∞

−∞
[(ζ1,xη2,xx − ζ2,xη1,xx)C̃ − (η2,xxθ1,x − η1,xxθ2,x)Ã] dx

+
∫+∞

−∞
[(ζ1η2 + ζ2η1)C − (η1θ2 + η2θ1)A] dx

−
∫+∞

−∞
[(ζ1η2,xx + ζ2η1,xx)C − (η1,xxθ2 + η2,xxθ1)A] dx. (2.11)

Formula (2.10) may be verified based on (2.11). The proof of lemma 2.2 is finished. �

From lemmas 2.1 and 2.2, we immediately obtain

Proposition 2.3. J and K are compatible Hamiltonian operators.

Furthermore, we have

Proposition 2.4. Equation (1.5) can be rewritten in the following bi-Hamiltonian form

(mt, nt)T = J
(

δH1

δm
,

δH1

δn

)T
= K

(
δH2

δm
,

δH2

δn

)T
, (2.12)

where J and K are given by (2.5), and

H1 = 1
2

∫+∞

−∞
(uv + uxvx) dx

and H2 = 1
4

∫+∞

−∞
[(u2vx + u2

xvx − 2uuxv)n + 2b(uvx − uxv)] dx.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.13)

Next, we construct conservation laws of equation (1.5). Let ϕ = φ2/φ1, where φ1 and φ2 are
determined through equations (2.1) and (2.2). From (2.1), one can easily verify that ϕ satisfies the
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Riccati equation

ϕx = − 1
2 λmϕ2 + αϕ − 1

2 λn. (2.14)

Equations (2.1) and (2.2) give rise to

(ln φ1)x = −α

2
+ 1

2
λmϕ and (ln φ1)t = −1

2
(V11 + V12ϕ), (2.15)

which yields conservation law of equation (1.5):

ρt = Fx, (2.16)

where

ρ = mϕ

and F = λ−2(u − αux)ϕ − 1
2 λ−1(αuv − αuxvx + uvx − uxv) + 1

2 m(uv − uxvx)ϕ.

⎫⎬
⎭ (2.17)

Usually, ρ and F are called a conserved density and an associated flux, respectively. In the case
b = 0, we are able to derive the explicit forms of conservation densities by expanding ϕ in powers
of λ in two ways. The first one is to expand ϕ in terms of negative powers of λ as

ϕ =
∞∑

j=0

ϕjλ
−j. (2.18)

Substituting (2.18) into (2.14) and equating the coefficients of powers of λ, we arrive at

ϕ0 =
√

− n
m

and ϕ1 = mnx − mxn − 2mn
2m2n

, (2.19)

and the recursion relation for ϕj:

ϕj+1 = 1
mϕ0

⎡
⎣ϕj − ϕj,x − 1

2
m

∑
i+k=j+1, i,k≥1

ϕiϕk

⎤
⎦ , j ≥ 1. (2.20)

Inserting (2.18), (2.19) and (2.20) into (2.17), we obtain the following infinitely many conserved
densities and the associated fluxes of equation (1.5):

ρ0 = √−mn, F0 = 1
2

√−mn(uv − uxvx),

ρ1 = mnx − mxn − 2mn
2mn

, F1 = −1
2

(uv − uxvx + uvx − uxv) + 1
2
ρ1(uv − uxvx)

and ρj = mϕj, Fj = (u − ux)ϕj−2 + 1
2
ρj(uv − uxvx), j ≥ 2,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.21)

where ϕj is given by (2.19) and (2.20).
The second expansion of ϕ is in the positive powers of λ,

ϕ =
∞∑

j=0

ϕjλ
j. (2.22)

Substituting (2.22) into (2.14) and comparing powers of λ produce

ϕ2j = 0, j ≥ 0

and ϕ1 = 1
2

(v + vx), ϕ2j+1 − ϕ2j+1,x = 1
2

m
∑

i+k=2j, 0≤i,k≤2j

ϕiϕk, j ≥ 1.

⎫⎪⎪⎬
⎪⎪⎭ (2.23)

By inserting (2.22) and (2.23) into (2.17), we arrive at

ρ2j = 0, A2j = 0, j ≥ 0, (2.24)
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and

ρ1 = 1
2 m(v + vx), A1 = (u − ux)ϕ3 + 1

4 m(uv − uxvx)(v + vx)

and ρ2j+1 = mϕ2j+1, A2j+1 = (u − ux)ϕ2j+3 + 1
2 m(uv − uxvx)ϕ2j+1, j ≥ 1,

⎫⎬
⎭ (2.25)

where the odd-index ϕ2j+1 is defined by the recursion relation

ϕ2j+1 = 1
2

(1 − ∂x)−1

⎛
⎝m

∑
i+k=2j, 0≤i,k≤2j

ϕiϕk

⎞
⎠ , j ≥ 1. (2.26)

Formula (2.24) means that the even-index conserved densities and associated fluxes are trivial.
Formulas (2.25) and (2.26) show that the non-trivial high-order odd-index conserved densities
may involve in non-local expressions in u and v.

Remark 2.5. Here, we have derived two sequences of infinitely many conserved densities and
the associated fluxes for equation (1.5). The conserved densities in the sequence (2.21) become
singular when the denominators have zero points. The conserved densities in the sequence (2.25)
have no singularity, but they might involve in non-local expressions.

3. Geometric integrability
Based on the work of Chern & Tenenblat [40] and the subsequent works [41,42], a differential
equation for a real-valued function u(x, t) is said to describe pseudo-spherical surfaces if it is
the necessary and sufficient condition for the existence of smooth functions fij, i = 1, 2, 3, j = 1, 2,
depending on x, t, u and its derivatives, such that the one-forms ωi = fi1 dx + fi2 dt satisfy the
structure equations of a surface of constant Gaussian curvature equal to −1 with metric ω2

1 + ω2
2

and connection one-form ω3, namely

dω1 = ω3 ∧ ω2, dω2 = ω1 ∧ ω3 and dω3 = ω1 ∧ ω2. (3.1)

Let us consider

f11 = −1
2
λ[e(α−λ)xm − e(λ−α)xn],

f12 = 1
2
λ−1[e(λ−α)x(v + αvx) − e(α−λ)x(u − αux)] + 1

4
λ[e(λ−α)xn − e(α−λ)xm](uv − uxvx),

f21 = λ,

f22 = λ−2α + α

2
(uv − uxvx) + 1

2
(uvx − uxv),

f31 = −1
2
λ[e(α−λ)xm + e(λ−α)xn]

and f32 = −1
2
λ−1[e(λ−α)x(v + αvx) + e(α−λ)x(u − αux)] − 1

4
λ[e(λ−α)xn + e(α−λ)xm](uv − uxvx),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.2)
and introduce the following three one-forms

ω1 = f11 dx + f12 dt, ω2 = f21 dx + f22 dt and ω3 = f31 dx + f32 dt. (3.3)

Through a direct computation, we find that the structure equations (3.1) hold whenever u(x, t)
and v(x, t) are solutions of system (1.5). Thus, we have

Theorem 3.1. System (1.5) describes pseudo-spherical surfaces.

Recall that a differential equation is geometrically integrable if it describes a non-trivial one-
parameter family of pseudo-spherical surfaces. It follows that

Corollary 3.2. System (1.5) is geometrically integrable.

According to [40–43], we have the following fact
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Proposition 3.3. A geometrically integrable equation with associated one-forms ωi, i = 1, 2, 3, is the
integrability condition of a one-parameter family of sl(2, R)-valued linear problem

dΦ = ΩΦ, (3.4)

where Ω is the matrix-valued one-form

Ω = X dx + T dt = 1
2

(
ω2 ω1 − ω3

ω1 + ω3 −ω2

)
. (3.5)

Therefore, the one-forms (3.3) and (3.4) yield an sl(2, R)-valued linear problem Φx = XΦ and
Φt = TΦ, whose integrability condition is the two-component system (1.5). The expression (3.5)
implies that the matrices X and T are

X = 1
2

(
λ λe(λ−α)xn

−λe(α−λ)xm −λ

)

and T = 1
2

⎛
⎜⎜⎜⎝

λ−2α + α

2
(uv − uxvx) + 1

2
(uvx − uxv)

[
λ−1(v + αvx) + λ

2
n(uv − uxvx)

]
e(λ−α)x

−
[
λ−1(u − αux) + λ

2
m(uv − uxvx)

]
e(α−λ)x −λ−2α − α

2
(uv − uxvx) − 1

2
(uvx − uxv)

⎞
⎟⎟⎟⎠ .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.6)

4. Peakon solutions to system (1.5) in the case b= 0
In this section, we shall derive the peakon solutions to the two-component system (1.5) with b = 0
in two situations. The first situation is the peakon solutions with the same peakon position. The
second situation is the peakon solutions with different peakon positions, which is studied by
Cotter et al. [37] for a cross-coupled CH equation.

(a) Peakon solutions to the two-component system (1.5) with the same peakon position
Let us suppose that a single peakon solution of (1.5) with b = 0 is of the following form

u = c1e−|x−ct| and v = c2e−|x−ct|, (4.1)

where the two constants c1 and c2 are to be determined. With the help of distribution theory, we
are able to write out ux, m and vx, n as follows:

ux = −c1 sgn(x − ct)e−|x−ct|, m = 2c1δ(x − ct)

and vx = −c2 sgn(x − ct)e−|x−ct|, n = 2c2δ(x − ct).

}
(4.2)

Substituting (4.1) and (4.2) into (1.5) with b = 0 and integrating in the distribution sense, one can
readily see that c1 and c2 should satisfy

c1c2 = −3c. (4.3)

In particular, for c1 = c2, we recover the single peakon solution u = ±√−3ce−|x−ct| of the cubic CH
equation (1.2) with b = 0 [31,32].

Let us now assume a two-peakon solution as follows:

u = p1(t)e−|x−q1(t)| + p2(t)e−|x−q2(t)| and v = r1(t)e−|x−q1(t)| + r2(t)e−|x−q2(t)|. (4.4)

In the sense of distribution, we have

ux = −p1 sgn(x − q1)e−|x−q1| − p2 sgn(x − q2)e−|x−q2|,

m = 2p1δ(x − q1) + 2p2δ(x − q2),

vx = −r1 sgn(x − q1)e−|x−q1| − r2 sgn(x − q2)e−|x−q2|

and n = 2r1δ(x − q1) + 2r2δ(x − q2).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.5)
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Substituting (4.4) and (4.5) into (1.5) with b = 0 and integrating through test functions yield the
following dynamic system:

p1,t = 1
2 p1(p1r2 − p2r1) sgn(q1 − q2)e−|q1−q2|,

p2,t = 1
2 p2(p2r1 − p1r2) sgn(q2 − q1)e−|q2−q1|,

q1,t = − 1
3 p1r1 − 1

2 (p1r2 + p2r1)e−|q1−q2|,

q2,t = − 1
3 p2r2 − 1

2 (p1r2 + p2r1)e−|q2−q1|,

r1,t = − 1
2 r1(p1r2 − p2r1) sgn(q1 − q2)e−|q1−q2|

and r2,t = − 1
2 r2(p2r1 − p1r2) sgn(q2 − q1)e−|q2−q1|.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.6)

Guided by the above equations, we may conclude the following relations:

p1 = Dp2, p1r1 = A1 and p2r2 = A2, (4.7)

where D, A1 and A2 are three arbitrary integration constants.
If A1 = A2, we arrive at the following solution of (4.6):

p1(t) = Be(1/2D)(D2A1−A1) sgn(C1)e−|C1 |t, p2(t) = p1

D
, r1(t) = A1

p1
, r2(t) = A1

p2
,

and q1(t) = −
[

1
3

A1 + 1
2D

(D2A1 + A1)e−|C1|
]

t + 1
2

C1, q2(t) = q1(t) − C1,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.8)

where B and C1 are two arbitrary non-zero constants. In this case, the collision between two
peakons will never happen since q2(t) = q1(t) − C1. For example, as A1 = B = D = 1, C1 = 2, (4.8) is
reduced to

p1(t) = p2(t) = r1(t) = r2(t) = 1,

q1(t) = −( 1
3 + e−2)t + 1

and q2(t) = −( 1
3 + e−2)t − 1.

Thus, the associated solution of (1.5) with b = 0 becomes

u(x, t) = v(x, t) = e−|x+(1/3+e−2)t−1| + e−|x+(1/3+e−2)t+1|. (4.9)

This wave has two peaks, and looks like a M-shape soliton. See figure 1 for this M-shape two-
peakon solution. As A1 = −B = −D = 1, C1 = 2, the associated solution of (1.5) with b = 0 becomes

u(x, t) = v(x, t) = −e−|x+(1/3−e−2)t−1| + e−|x+(1/3−e−2)t+1|, (4.10)

which has one peak and one trough and looks like N-shape soliton solution. See figure 2 for this
N-shape two-peakon solution. As B = 2D = 1, A1 = C1 = 2, (4.8) becomes

p1(t) = 1
2 p2(t) = e−(3/2)e−2t, r1(t) = 2r2(t) = 2e(3/2)e−2t

and q1(t) = −( 2
3 + 5

2 e−2)t + 1, q2(t) = −( 2
3 + 5

2 e−2)t − 1.

⎫⎬
⎭ (4.11)

and the associated solution of (1.5) with b = 0 becomes

u(x, t) = e−(3/2)e−2t(e−|x+(2/3+(5/2)e−2)t−1| + 2e−|x+(2/3+(5/2)e−2)t+1|)

and v(x, t) = e(3/2)e−2t(2e−|x+(2/3+5/2e−2)t−1| + e−|x+(2/3+(5/2)e−2)t+1|).

⎫⎬
⎭ (4.12)

From (4.11), one can easily see that the amplitudes p1(t) and p2(t) of potential u(x, t) are two
monotonically decreasing functions of t, while the amplitudes r1(t) and r2(t) of potential v(x, t) are
two monotonically increasing functions of t. Figures 3 and 4 show the profiles of the potentials
u(x, t) and v(x, t).
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Figure 1. The M-shape two-peakon solution u(x, t) in (4.9) at the moment of t = 0. (Online version in colour.)

u(x, t)

0.4

0
0

–0.4

0.8

–0.8

–4 –2
x

42

Figure 2. The N-shape peak-trough solution u(x, t) in (4.10) at the moment of t = 0. (Online version in colour.)

If A1 �= A2, we may obtain the following solution of (4.6):

p1(t) = Be(3(A2D2−A1)/2D(A1−A2))e−(1/3)|(A1−A2)t|
, p2(t) = p1

D
,

r1(t) = A1

p1
, r2(t) = A2

p2
,

q1(t) = −1
3

A1t + 3(A2D2 + A1)
2D(A1 − A2)

sgn[(A1 − A2)t](e−(1/3)|(A1−A2)t| − 1)

and q2(t) = −1
3

A2t + 3(A2D2 + A1)
2D(A1 − A2)

sgn[(A1 − A2)t](e−(1/3)|(A1−A2)t| − 1),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.13)

where B is an arbitrary integration constant. Let us study the following special cases of this
solution.
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Figure 3. The two-peakon solution u(x, t) in (4.12). Red line, t = −5; blue line, t = −2; brown line, t = 0; green line, t = 2
and black line, t = 5.
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Figure 4. The two-peakon solutionv(x, t) in (4.12). Red line: t = −5; blue line, t = −2; brown line, t = 0; green line, t = 2
and black line, t = 5.

Example 4.1. Let A1 = 1, A2 = 4, B = 1 and D = 1
2 , then

p1(t) = r1(t) = 1, p2 = r2(t) = 2,

q1(t) = − 1
3 t + 2 sgn(t)(e−|t| − 1)

and q2(t) = − 4
3 t + 2 sgn(t)(e−|t| − 1).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.14)

The associated two-peakon solution of (1.5) becomes

u(x, t) = v(x, t) = e−|x+(1/3)t−2 sgn(t)(e−|t|−1)| + 2e−|x+(4/3)t−2 sgn(t)(e−|t|−1)|. (4.15)

As t < 0 and t is going to 0, the tall peakon with the amplitude 2 chases after the short peakon
with the amplitude 1. The two-peakon collides at time t = 0. After the collision (t > 0), the peaks
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Figure 5. The two-peakon solution u(x, t) in (4.15). Red line, t = −5; blue line, t = −2; brown line, t = 0 (collision); green
line, t = 2 and black line, t = 5.

separate (the tall peakon surpasses the short one) and develop on their own way. See figure 5 for
the detailed development of this kind of two-peakon.

Example 4.2. Let A1 = 1, A2 = 4, B = 1 and D = 1, then we have

p1(t) = p2(t) = e−(3/2)e−|t|
,

r1(t) = e(3/2)e−|t|
, r2(t) = 4e(3/2)e−|t|

,

q1(t) = − 1
3 t + 5

2 sgn(t)(e−|t| − 1)

and q2(t) = − 4
3 t + 5

2 sgn(t)(e−|t| − 1).

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.16)

The associated two-peakon solution of (1.5) becomes

u(x, t) = e−(3/2)e−|t|
(e−|x+(1/3)t−(5/2) sgn(t)(e−|t|−1)| + e−|x+(4/3)t−(5/2) sgn(t)(e−|t|−1)|)

and v(x, t) = e(3/2)e−|t|
(e−|x+(1/3)t−(5/2) sgn(t)(e−|t|−1)| + 4e−|x+(4/3)t−(5/2) sgn(t)(e−|t|−1)|).

⎫⎬
⎭ (4.17)

For the potential u(x, t), the two-peakon solution possesses the same amplitude e−(3/2)e−|t|
, which

reaches the minimum value at t = 0. Figure 6 shows the profile of the two-peakon dynamics for
the potential u(x, t). For the potential v(x, t), the two-peakon solution with the amplitudes e(3/2)e−|t|

and 4e(3/2)e−|t|
collides at t = 0. At this moment, the amplitudes attain the maximum value and the

two-peakon overlaps into one peakon 5e(3/2)e−|x|, which is much higher than other moments. See
figures 7 and 8 for the two- and three-dimensional graphs of the two-peakon dynamics for the
potential v(x, t).

Example 4.3. Let A1 = 1, A2 = 4, B = 1 and D = −1, then we have

p1(t) = −p2(t) = e(3/2)e−|t|
,

r1(t) = e−(3/2)e−|t|
, r2(t) = −4e−(3/2)e−|t|

,

q1(t) = − 1
3 t − 5

2 sgn(t)(e−|t| − 1)

and q2(t) = − 4
3 t − 5

2 sgn(t)(e−|t| − 1).

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.18)
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Figure 6. The two-peakon solution u(x, t) in (4.17). Red line, t = −5; blue line, t = −1; brown line, t = 0 (collision); green
line, t = 1 and black line, t = 5.
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Figure 7. The two-peakon solution v(x, t) in (4.17). Red line, t = −4; blue line, t = −1; brown line, t = 0 (collision); green
line, t = 1 and black line, t = 4.

The associated two-peakon solution of (1.5) becomes

u(x, t) = e(3/2)e−|t|
(e−|x+(1/3)t+(5/2) sgn(t)(e−|t|−1)| − e−|x+(4/3)t+(5/2) sgn(t)(e−|t|−1)|)

and v(x, t) = e−(3/2)e−|t|
(e−|x+(1/3)t+(5/2) sgn(t)(e−|t|−1)| − 4e−|x+(4/3)t+(5/2) sgn(t)(e−|t|−1)|).

⎫⎬
⎭ (4.19)

For the potential u(x, t), the peakon–antipeakon collides and vanishes at t = 0. After the collision,
the peakon and antipeakon re-emerge and separate. For the potential v(x, t), the peakon and
trough overlap at t = 0, and then they separate. Figures 9 and 10 show the peakon–antipeakon
dynamics for the potentials u(x, t) and v(x, t).
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Figure 8. Three-dimensional graph for the two-peakon solution v(x, t) in (4.17).
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Figure 9. Peakon–antipeakon solution u(x, t) in (4.19). Red line, t = −6; blue line, t = −2; at t = 0 they collide and vanish;
green line, t = 2 and black line, t = 6.

In general, we suppose an N-peakon solution has the following form

u(x, t) =
N∑

j=1

pj(t)e
−|x−qj(t)| and v(x, t) =

N∑
j=1

rj(t)e
−|x−qj(t)|. (4.20)

Substituting (4.20) into (1.5) with b = 0 and integrating through test functions, we obtain the
N-peakon dynamic system as follows:

pj,t = 1
2

pj

N∑
i,k=1

pirk(sgn(qj − qk) − sgn(qj − qi))e
−|qj−qk|−|qj−qi|,

qj,t = 1
6

pjrj − 1
2

N∑
i,k=1

pirk(1 − sgn(qj − qi) sgn(qj − qk))e−|qj−qi|−|qj−qk|

and rj,t = −1
2

rj

N∑
i,k=1

pirk(sgn(qj − qk) − sgn(qj − qi))e
−|qj−qk|−|qj−qi|.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.21)
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Figure 10. Peakon–antipeakon solution v(x, t) in (4.19). Red line, t = −5; blue line, t = −2; brown line, t = 0 (collision);
green line, t = 2 and black line, t = 5.

(b) Peakon solutions to the two-component system (1.5) with different peakon positions
In this section, we discuss the N-peakon solutions with different peakon positions based on the
work in [37]. Let us assume that the N-peakon solutions of the two potentials u and v with
different peakon positions are given in the form

u(x, t) =
N∑

j=1

pj(t)e
−|x−qj(t)| and v(x, t) =

N∑
j=1

rj(t)e
−|x−sj(t)|, (4.22)

where qi(t) �= sj(t), 1 ≤ i, j ≤ N. With the help of delta functions, we have

m(x, t) = 2
N∑

j=1

pj(t)δ(x − qj(t)) and n(x, t) = 2
N∑

j=1

rj(t)δ(x − sj(t)). (4.23)

Substituting (4.22) and (4.23) into (1.5) with b = 0 and integrating through test functions, we arrive
at the following system regarding pj, qj, rj and sj:

pj,t = 1
2

pj

N∑
i,k=1

pirk(sgn(qj − sk) − sgn(qj − qi))e
−|qj−sk|−|qj−qi|,

rj,t = −1
2

rj

N∑
i,k=1

pirk(sgn(sj − sk) − sgn(sj − qi))e
−|sj−sk|−|sj−qi|,

qj,t = −1
2

N∑
i,k=1

pirk(1 − sgn(qj − qi) sgn(qj − sk))e−|qj−qi|−|qj−sk|

and sj,t = −1
2

N∑
i,k=1

pirk(1 − sgn(sj − qi) sgn(sj − sk))e−|sj−qi|−|sj−sk|.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.24)
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Different from the N-peakon dynamic system of the coupled CH equation proposed in [37],
our system (4.24) can not directly be rewritten in the standard form of a canonical Hamiltonian
system. It is interesting to study whether (4.24) is able to be rewritten as an integrable Hamiltonian
system by introducing a Poisson bracket. We will investigate the related topics in the near future.

For N = 1, (4.24) is reduced to

p1,t = 1
2

p2
1r1 sgn(q1 − s1)e−|q1−s1|,

r1,t = 1
2

p1r2
1 sgn(s1 − q1)e−|s1−q1|,

q1,t = −1
2

p1r1e−|q1−s1|

and s1,t = −1
2

p1r1e−|s1−q1|.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.25)

From the last two equations of (4.25), we obtain

s1 = q1 + A1, (4.26)

where A1 �= 0 is an integration constant. Without loss of generality, we suppose A1 > 0.
Substituting (4.26) into (4.25) leads to

p1 = A3e−(1/2)e−A1 A2t,

r1 = A2

A3
e(1/2)e−A1 A2t,

q1 = −1
2

e−A1 A2t

and s1 = −1
2

e−A1 A2t + A1,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.27)

where A2 and A3 are integration constants. In particular, we take A1 = ln 2 and A2 = A3 = 1, then
the single-peakon solutions with different peakon positions become

u = e−(1/4)te−|x+(1/4)t| and v = e(1/4)te−|x+(1/4)t−ln 2|. (4.28)

See figure 11 for the profile of this single-peakon solution at t = 0. We have not yet explicitly
solved (4.24) with N = 2. This is due to the complexity of (4.24) with N = 2, which is a coupled
ordinary differential equation with eight components.

5. Solutions to the integrable system (1.6)
As mentioned above, system (1.5) is cast into the integrable cubic nonlinear equation (1.6) under
the complex conjugate reduction v = u∗. Thus, equation (1.6) possesses the following Lax pair

(
φ1
φ2

)
x

= U

(
φ1
φ2

)
, U = 1

2

⎛
⎝ −α λm

−λm∗ α

⎞
⎠ (5.1)

and (
φ1
φ2

)
t

= V

(
φ1
φ2

)
, V = −1

2

⎛
⎝V11 V12

V21 −V11

⎞
⎠ , (5.2)
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Figure 11. The single-peakon solution (4.28) at t = 0. Solid line, u(x, 0) and dashed line, v(x, 0).

with α =
√

1 − λ2b, and

V11 = λ−2α + α

2
(|u|2 − |ux|2) + 1

2
(uu∗

x − u∗ux),

V12 = −λ−1(u − αux) − 1
2
λm(|u|2 − |ux|2)

and V21 = λ−1(v + αvx) + 1
2
λn(|u|2 − |ux|2).

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(5.3)

Next, we show that the dispersionless version of equation (1.6) with b = 0 admits the complex-
valued N-peakon solution, while the dispersion version of equation (1.6) with b �= 0 allows the
complex-valued kink wave solution.

(a) Complex-valued peakon solution of (1.6) with b= 0
Let us assume that a complex-valued N-peakon solution of (1.6) with b = 0 has the following form

u =
N∑

j=1

(pj(t) + √−1rj(t))e
−|x−qj(t)|, (5.4)

where pj(t), rj(t) and qj(t) are real-valued functions. Substituting (5.4) into (1.6) with b = 0 and
integrating through real-valued test functions, and separating the real part and imaginary part,
we finally obtain that pj(t), rj(t) and qj(t) evolve according to the dynamical system

pj,t = rj

N∑
l,k=1

plrk(sgn(qj − qk) − sgn(qj − ql))e
−|qj−qk|−|qj−ql|,

rj,t = pj

N∑
l,k=1

plrk(sgn(qj − ql) − sgn(qj − qk))e−|qj−qk|−|qj−ql|

and qj,t = 1
6

(p2
j + r2

j ) − 1
2

N∑
l,k=1

(plpk + rlrk)(1 − sgn(qj − ql) sgn(qj − qk))e−|qj−ql|−|qj−qk|.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.5)
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For N = 1, (5.5) becomes

p1,t = 0, r1,t = 0 and q1,t = − 1
3 (p2

1 + r2
1), (5.6)

which gives

p1 = c1, r1 = c2 and q1 = − 1
3 (c2

1 + c2
2)t, (5.7)

where c1 and c2 are real-valued integration constants. Thus, we arrive at the single-peakon
solution

u = (c1 + √−1c2)e−|x+((c2
1+c2

2)/3)t| = ce−|x+(1/3)|c|2t|, (5.8)

where c = c1 + √−1c2 and |c| is the modulus of c.
For N = 2, we may solve (5.5) as

q1(t) = − 1
3 A2

1t + Γ1(t),

q2(t) = − 1
3 A2

2t + Γ1(t),

p1(t) = A1 sin(Γ2(t) + A3),

p2(t) = A2 sin(Γ2(t) + A4),

r1(t) = A1 cos(Γ2(t) + A3)

and r2(t) = A2 cos(Γ2(t) + A4),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.9)

where

Γ1(t) = 3A1A2 cos(A3 − A4)

|A2
1 − A2

2|
sgn(t)(e−(1/3)|(A2

1−A2
2)t| − 1)

and Γ2(t) = 3A1A2 sin(A3 − A4)

A2
1 − A2

2
e−(1/3)|(A2

1−A2
2)t|,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.10)

and A1, . . . , A4 are real-valued integration constants. Hence, the two-peakon solution reads

u = A1
√−1e−√−1(Γ2(t)+A3)e−|x+(1/3)A2

1t−Γ1(t)|

+ A2
√−1e−√−1(Γ2(t)+A4)e−|x+(1/3)A2

2t−Γ1(t)|, (5.11)

where the Euler formula e
√−1x = cos x + √−1 sin x is employed.

(b) Complex-valued kink solution of (1.6) with b �= 0
We suppose that a complex-valued kink wave solution of equation (1.6) with b �= 0 has the form

u = (C1 + √−1C2) sgn(x − ct)(e−|x−ct| − 1), (5.12)

where the real constant c is the wave speed, and C1 and C2 are two real constants to be
determined. Substituting (5.12) into equation (1.6) with b �= 0 and integrating through real-valued
test functions, and separating its real part and imaginary part, we finally arrive at

c = − 1
2 b, C2

1 + C2
2 = −b. (5.13)

Formula (5.13) implies that the wave speed is exactly − 1
2 b, where b < 0 is the coefficient of the

linear dispersive term. Thus, the complex-valued weak kink solution becomes

u = C sgn(x + 1
2 bt)(e−|x+(1/2)bt| − 1), (5.14)

where C = C1 + √−1C2 and |C|2 = −b, b < 0. We remark that in (5.14) only the constant C is
complex, the variables x and t are real-valued variables.
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6. Conclusion and discussions
In our paper, we propose a new integrable two-component system with cubic nonlinearity and
linear dispersion. The system is shown to possess Lax pair, bi-Hamiltonian structure and infinitely
many conservation laws. Geometrically, this system describes a non-trivial one-parameter family
of pseudo-spherical surfaces. In the dispersionless case, we show the system admits N-peakon
solution and explicitly solve the system for the single-peakon and the two-peakon dynamical
system. Moreover, we propose a scalar integrable complex cubic nonlinear equation and find the
complex-valued N-peakon solution and kink wave solution to the integrable complex equation.

In [39], the authors introduced an integrable two-component extension of the dispersionless
version of cubic nonlinear equation (1.2) (or the FORQ equation called in some literature)

mt = −[m(uv − uxvx + uxv − uvx)]x,

nt = −[n(uv − uxvx + uxv − uvx)]x

and m = u − uxx, n = v − vxx.

⎫⎪⎪⎬
⎪⎪⎭ (6.1)

We remark that the dispersionless version of our two-component system (1.5) with b = 0 is not
equivalent to system (6.1). System (1.5) in our paper is able to be reduced to the CH equation,
but system (6.1) is not, which apparently implies that these two equations are not equivalent. In
fact, both system (1.5) with b = 0 and system (6.1) belong to a more general negative flow in a
hierarchy. For the details of this topic, one may see our very recent paper [44].

It is an interesting task to study whether there are other new features in the structure of
solutions for our two-component system, and particularly for our complex equation with a linear
dispersive term. Also other topics, such as smooth soliton solutions [45], cuspons, peakon stability
and algebra-geometric solutions, remain open for our system (1.5) and (1.6).
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