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Abstract 

We consider two different Lax representations with the same Lax matrix in terms of 2 x 2 traceless matrices: one 
produces the discrete integrable symplectic mapping resulting from the well-known Toda spectral problem under the 

discrete Bargmann-Gamier (BG) constraint; the other generates the continuous non-linearized integrable system for the 
c-KdV spectra problem under the corresponding BG constraint. We are surprised to find that the two very different (one is 
discrete, the other continuous) integrable systems possess the same non-dynamical r-matrix. @ 1997 Published by Elsevier 

Science B.V. 

1. Introduction 

In recent years, it has been proven that the well- 
known non-linearized method (NM) [ 1 ] is a pow- 
erful tool to construct completely integrable finite- 
dimensional Hamiltonian systems from the Lax repre- 

sentations of non-linear evolution equations (NLEEs) 
[2,3]. With the help of this method, many soliton 
equations or NLEEs have been found to possess the 

so-called involutive or parameter representations of so- 
lutions [4-61. Besides, the NM can also successively 
be applied in a discrete context, naturally inducing the 

integrable symplectic mapping [ 7-91. 
Lately, Ragnisco, Cao and Wu have strictly estab- 

lished the connection of integrable mappings with the 

’ Permanent address. Email: zjqiao@lnu.edu.cn. 

stationary Toda flows and with the finite gap sector 

of the solution manifold for the Toda hierarchy [ lo]. 
In a further paper [ 1 l] Ragnisco has presented the 
dynamical r-matrices for integrable mappings result- 
ing from the Toda spectral problem under the dis- 
crete Bargmann-Garnier (we call this integrable map- 

ping IMTDBG) and discrete Neumann constraints. 

The conclusion of Ref. [ 111 concerns an open ques- 
tion: whether one can choose different Lax pairs for 
the same integrable mapping such that the correspond- 
ing r-matrices only depend on the spectral parameters, 
i.e. leading to constant or non-dynamical r-matrices. If 
so, then the calculations and proof (such as the Yang- 
Baxter equation) related to integrable systems will be 
much reduced. Thus this open problem is important. 

The aims of this paper are twofold. One is to answer 
the above problem. We find another Lax representation 
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for the IMTDBG, which admits a non-dyn~ic~ r- 
matrix instead of a dynamical r-matrix [ 111. Our Lax 
operator relates to that given by Ragnisco through a 
gauge transformation. The other is to report a surpris- 
ing result: we find that IMTDBG and the continuous 
non-lin~z~ integrable H~itoni~ system for the 
c-KdV spectra problem [ 12 J possess the same non- 
dynamical (or constant) r-matrix. 

The paper is organized as follows. In the next sec- 
tion, we first consider a 2 x 2 traceless Lax matrix 
L(A) ; and then, through introducing twodifferent aux- 
iliary matrices M,(A), M(A), from the two Lax equa- 
tions L,+iM,, = M,L,, L, = [L,M] (theformof L,, 
is the same as L) we obtain IMTDBG and the continu- 
ous non-linearized Hamiltonian system for the c-KdV 
spectra problem, respectively. Section 3 shows that the 
above two very different integrable systems possess 
the same non-dyn~c~ (or constant) r-matrix. Also 
a gauge transformation between our Lax operator and 
Ragnisco’s is given. Furthermore, in Section 4 we have 
shown that having the same kind of r-matrices assures 
the integrability of the above two non-linearized sys- 
tems. In the last section, some concluding remarks and 
discussions are given. 

2. Discrete and continuous systems CDS) 1, 

Let ( R2N,dp A dq) be a standard symplectic 
structure in the Euclid space R2N = {(p, q) Ip = 

blPl,;d;~~;~aN)3~~~~ ,...,qN)),qi,Pi beapairof 
. . 1,. . . , AN be N arbitrary given 

distinct parameters: A be a spectral parameter, and 
( , ) stand for the standard inner-product in the Euclid 
space RN. Denote _4 by A = diag( At, . . . , AN). 

Under the standard symplectic structure ( R2N, dp A 
dp) the Poisson bracket of two Hamiltonian functions 
F, G is defined by [ 131 

(1) 

Now let us consider a 2 x 2 traceless matrix (called 
the Lax matrix) 

(2) 

then we have 

Theorem 1. Let n be the discrete variable, p --+ pn, 

4 --+ 4tt (i.e. Pj + Pnj, qj ---t qnj) and L + L. 

Choose a 2 x 2 matrix M, as follows, 

= ( 0 *(whqn) - tPn74n) - (qn,qn)*)“* 
m31 m32 > 

(3) 

where 

m31 = r((&h,sJ - (pn,qn) - (qn,qn)2)-1/2, 
m32 = rfr(A - (h 4) 

x ((/tq,*qn) - (pmqn) - (qn47n)2r”2. 
Then, the discrete Lax equation 

L,+l M, = M,L, (4) 

is equivalent to a symplectic mapping (discrete system 

Pn-tl = ~(bh4n) - (Pmqn) - (q”4n)2)1’2q,, 
%+1 = Wwhqn) - cDn,qn) - (qn,qn)2)-1’2 

x (-&I - Pn - (qn.qn)qn) I 

which can be simply written as a mapping form, 

(5) 

(6) 

Proof: dough a lengthy but direct calcuiation, we 
know (3)%(4). The mapping H defined by (6) is 
symplectic by virtue of dp,,.+t A dq,+t = dp,, A dq,. 

Set 
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then (5) naturally becomes then ( 13) actually reads 

Urdn+lj + unqnj +un-lqn-lj =Ajqnjv 

j=l,...,N, (8) 

which is just the well-known Toda spectral problem 

(TSP) 

pjx =-$Ajpj + ' z”Pj + CIj, 

qjx '-pj + ;Ajqj - ;Uqj, 
(16) 

which is non-other than the c-KdV spectral problem 

(CSP) [I21 

(E%, + vn + u,E)F = AP, 

Efn = fn+l, E-'fn = fn-1 (9) 

with A = Aj, p = qnj. Simultaneously, the poten- 
tials u,,, v, defined by (7) are exactly the Bargmann- 
Garnier constraint [ lo] 

with A = Aj, !J’ = (pj,qj)T. Simultaneously, the PO- 

tentials U, v determined by (15) exactly present the 

BG constraint [ l] 

t 10) 

of TSP (9), where SAj/SU,, SAjjlSv, are the two SP~C- 

tral gradients of the spectral parameter Aj with respect 
to the potentials u,, and v,, respectively. Therefore, 
Eq. (5) is IMTDBG. 

Now we turn to the Lax matrix (2). Analogous to 

the calculations of Theorem 1, it is not difficult to 

obtain 

Theorem 2. Let x be the continuous spatial variable, 
and the 2 x 2 traceless matrix M is chosen as 

M= ( -;A + ;+I) (P? 4) 
-1 > $A - ;(9,4) . 

(11) 

Then the continuous Lax equation 

L, = [M,L] s ML- LM, L =aL x ax (12) 

is equivalent to a finite-dimensional Hamiltonian sys- 

tem (continuous system (CS) ), H: 

px=-$Ap+L *GwdP + (P,4)4= -$ 

4x=-P+fA9-f(9,9)9=g 

(13) 

with the Hamiltonian function 

H= -;@,P) + $(&p) - +d(Pd 

Set 

u=(q,q), u=(p,q) 

(14) 

(15) 

(17) 

of CSP ( 17). In Ref. [ 11, Cao and Geng studied the 
non-linearized Bargmann-Gamier system and Neu- 
mann system, but they did not give the Lax represen- 
tation of (13). 

3. The same r-matrix for DS (5) and CS (13) 

In Section 2, we have already seen that the two 
very different systems DS (5) and CS (13) have the 
same form of Lax matrix L defined by (2). Thus, they 
should possess the same r-matrices. 

Proposition 1. Let A(A), B(A), C(A) be defined 
in (2)) and A, /_L be two different parameters. Then 

{A(A)++)} = {C(A),C(p)) =O, 

{B(A),W4} = 2(B(p) -B(A)) 1 

{A(A),Btpu)} = -& 
x (B(P) -B(A)), 

+WLW4)= -&C(A) -C(p)), 

@W,C(P~)} = --&U/4 -A(A)) - 2Ctpu). 

(18) 
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La .&(A) = L(A) @ f and Lz(,z) = I @ L(p), 
here I is the 2 x 2 unit matrix. Then from the above 
pro~sition one obtains the following theorem, 

Theorem 3. The J_.ax matrix L defined by (2) satis- 
fies the fund~ent~ Poisson bracket 

(19) 

where {L,(A), .ZQ(~)} is a 4 x 4 matrix [ 141 con- 
sisting of various possible Poisson brackets of the 
elements for L(A) and L(y), and the r-matrices 

QZ(A,CL), ~r(p, A) are given by 

T2lCkCL) = &2(A,p)P 3 

/I 0 0 o\ 

(20) 

P= 
0 0 1 0 

i i 

0100’ 
0001 

where [ , ] is the usual matrix commutator. 

(21) 

We readily verify the classical Yang-Baxter equa- 
tion (YBE), 

i,j,k= 1,2,3. (22) 

Obviously, the r-matrix formula (20) only depends on 
two constant spectral parameters A,,u and has noth- 
ing to do with the dynamical variables pi, qj for the 
continuous case (or pnj, qnj for the discrete case (j = 
1 , . . . , N) ). Thus, the symplectic mapping (5) for 
the discrete Toda lattice and the H~ltonian system 
( 13) for the continuous c-KdV hierarchy possess the 
same non-dynamical (or constant) r-matrices formula 
(20). 

Remark. In fact, since the r-matrix relation is con- 
cerned only with the commutator, the matrix S given 
by (21) can be chosen as 

/O 1 d Ot 

s (23) 

The elements c, d in the r-matrix formula (20) which 
make (19) hold can be chosen as arbitrary func- 
tions c(A,p,p,q), d(A,p,p,q) or c(A,~,p,,,q,,), 

d( A, p, p,, , q,,) with respect to the spectral parame- 
ters A, ,X and the dynamical variables p, q or pn, qn. 

This shows that given a Lax operator, the associ- 
ated r-matrix is not uniquely defined (even infinitely 
many). Here we take the simplest case c = d = 0. 

4. Integrability of DS (5) and CS (13) 

Now, from the Lax matrix (2), let us introduce two 
~-involutive sets, which guilty the integrability of 
DS (5) and CS (13). 

First, for the discrete version (i.e. L --+ L,) of (2), 
one gets 

detL,(A) = -1 TrLi(A) 

N E. =_;A2-~---lf__, 
ifl A - Ai 

where 

(24) 

N CqniPnj -pniq~~j)~ - II Ai - Aj ’ i# j,j=l 

i= ,***, 1 N. (25) 

By the r-matrix relation ( I9), we can immediately 
obtain 

~L~,(NJ:,W) = I~z(A,P),~,I(A)I 

- [~~I(cL,A),L~(~)I li 

where [ 161 

(26) 

Fijij(AtP) = kk L~~k(A)L~~‘(p) 
k=o I=0 

X ri~(A,CL)L~,(A)L~,(CL), 

i,j=12,21, (27) 
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and 

.Ltl(A) =L(h) @I, Ln2(p) =Zc3LL,(pu). 

Then, it follows from (26) that 

4{TrLi(A), TrLz(p)) = Tr{hE(A) @I L:(p)} 

=Tr{L~,(A),L~,(~u)}=O. 

Substituting (24) into (28), we obtain 

(28) 

{Efli,E~j}=O, i,j,= I,..., N. (29) 

In addition, Ecn+l Ii = Eni and dE,l , _ . . , dEnN are lin- 

early independent. So, according to the principle of in- 
tegrable symplectic mapping (8)) from the view point 
of the non-dynamical r-matrix we have shown 

theorem 4. The symplectic mapping H defined by 
(6) for the Toda lattice is completely integrable, and 

its N-involutive systems (invariant and functionally 

independent) are {Eni}El defined by (25). 

Second, let pnj -+ pj, qnj --$ qj in (25); for the 

continuous version of (2) we obtain the ~-invoIutive 
systemsEi,...,E,ofCS(13) 

Ek = -P,’ - (P, &I: + AkPkqk 

c 

(plqk - Pkd2 _ 

. A[ - Ak 
(30) 

i=i,i#k 

Since for the H given by ( 14) we have H = 1 c,?:, Ej, 
we obtain the following theorem. 

Theorem 5. The finite-Dimensions H~ltonian 

system (H) defined by ( 13) for the c-KdV hierar- 
chy is completely integrable in the Liouville sense, 

and its independent N-involutive systems are {&}E, 

defined by (30). 

5. Concluding remarks and discussions 

In the present paper, we have shown that, start- 

ing from the Lax matrix (2), two very different 
finite-dimensional integrable systems (one is DS (5), 
the other CS ( 13) ) possess the same kind of non- 
dynamicaf r-matrices. This is surprising and interest- 
ing. Are there, for other various finite-dimensional 

integrable systems (including discrete and continu- 

ous integrable systems), also two (or at least two) 
such systems like DS (5) and CS ( 13) that possess 
the same r-matrix (it would be best if the r-matrix is 
non-dynamical) ? Besides, can we regard the discrete 
system as an exact discreti~tion of some flow in the 
corresponding family of continuous systems? This 

problem is still open. 

The results on the Toda symplectic mapping in this 
paper give a definite solution for the open problem 

(see also Section 1) stated by Ragnisco in Ref. [ 111. 
On the other hand, we have found some other finite- 
dimensional integrable systems which have a dynam- 

ical r-matrix [ 181. Do they have a non-dynamical r- 
matrix? Furthermore, are there any gauge transforma- 

tions to relate corresponding Lax operators? To the 
authors’ knowledge, these problems do not seem to 
have any solutions. 

The Lax matrix (2) plays a key role in this pa- 
per. Beginning with it, we first obtained the discrete 
integrable system (5) and the continuous integrable 

system ( 13) through introducing the two auxiliary 
2 x 2 matrices M,, M; then we const~ct~ the non- 
dynamical r-matrix form&a (20) for two different in- 

tegrable systems. Finally, by the use of the determinant 

of _I_., and L (the forms of L, and L are the same), we 
have established two involutive sets {Eni}:, for DS 

(5), and {Ek}E, for CS ( 13), which assure the inte- 
grability of (5) and ( 13). In addition, using the sep- 
aration of variables [ 171, we have found N pairs of 

Darboux canonical coordinates ri, pi and thus sepa- 

rated the variables of DS (5) and CS ( 13). Eventually 
we managed to develop an approach from the non- 

linearized method to obtain the exact expressions of 
the algebraic geometry solution for the soliton equa- 
tionn ( 19). This result will be published elsewhere. 
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