# A NEW POLYNOMIAL INVOLUTIVE SYSTEM AND A CLASSICAL COMPLETELY INTEGRABLE SYSTEM• 

Mu Weihua（年卫华）Zhang Baocai（张保才）<br>（Shijïachuang Razway Institute，Shïjachuang 050049，China）<br>QIao Zhijun（乔志军）<br>（Liaoning University，Shenyang 1．10096，China）


#### Abstract

Under the constrained condition induced by the eigenfunctions and the potentials，the Lax systems of nonlinear evolution equations in relation to a matrix eigenvalue problem are nonlin－ earized to be a completely integrable system $\left(\boldsymbol{R}^{\boldsymbol{z} N}, d p \wedge d q, H\right)$ ，while the time part of it is nonlinearized to be its $N$－involutive system $\left\{F_{m}\right\}$ ．The involutive solution of the compatible system $\left(F_{0}\right),\left(F_{m}\right)$ is transformed into the solution of the $m$－th nonlinear evolution equation．


## 1．Introduction

The Liouville－Arnold theory ${ }^{[1]}$ of the finite－dimensional completely integrable system is beautiful，which includes a series of examples celebrated for ingenuity and skill in the history of analytic mechanics，e．g．，the Jacobi problem of geodesic flow on the ellipsoid，C．Neumann problem of oscillators constrained on the sphere，Kovalevski＇s top，etc．（see［2］）．The number of already known finite－dirnensional completely integrable systems is small，which depends on the existence of N －involutive system of Hamiltonian functions．

Flaschka ${ }^{[3]}$ pointed out an important principle to produce finite－dimensional integrable systems by constraining the infinite－dimensional integrable system on the finite－dimensional invariant manifold．However，it is not easy to realize the elaborately concrete framework according to this principle．Recently，Cao ${ }^{[4]}$ developed a systematic approach to get a finite－ dimensional integrable system by the nonlinearization of Lax pair of solution equations under certain constraints between the potentials and the eigenfunctions．

In the present note，let＇s consider the following eigenvalue problem

$$
y_{x}=\left(\begin{array}{cc}
-\lambda+v & u+v  \tag{1.1}\\
u-v & \lambda-v
\end{array}\right) y, \quad y=\binom{y_{1}}{y_{2}} .
$$

In［5］，the gauge transformation between（1．1）and AKNS eigenvalue problem is given，and the nonlinear evolution equations in relation to（1．1）are presented．In this paper，firstly，

[^0]we are going to give the Lax pairs for evolution equation hierarchy in relation to (1.1), and then, nonlinearize the Lax systems by introducing certain constraint conditions between the potentials and the eigenfunctions and constructing a new polynomial involutive system, so as to prove that the nonlinearized form of (1.1) is a complete integrable Hamiltonian system in the Liouville sense.

## 2. The Lax Pair for Evolution Equation Hierarchy in Relation to (1.1)

First, we know that the eigenvalue problem (1.1) can be rewritten into

$$
L y=\lambda y, \quad \text { where } L=\left(\begin{array}{cc}
v-\partial & u+v  \tag{2.1}\\
v-u & v+\partial
\end{array}\right), \quad \partial \triangleq \frac{\partial}{\partial x}
$$

Define the tangent mapping of differential operator $L$ :

$$
\left.L_{*}\binom{\xi_{1}}{\xi_{2}} \triangleq \frac{d}{d \varepsilon}\right|_{\varepsilon=0} L\left(u+\varepsilon \xi_{1}, v+\varepsilon \xi_{2}\right)=\left(\begin{array}{cc}
\xi_{2} & \xi_{1}+\xi_{2}  \tag{2.2}\\
\xi_{2}-\xi_{1} & \xi_{2}
\end{array}\right)
$$

and then $L_{*}$ is a one-to-one mapping, i.e., $L_{*}\binom{\xi_{1}}{\xi_{2}}=0$ implies $\xi_{1}=0, \xi_{2}=0$.
Lemma 2.1. Let $G(x)=\left(G^{(1)}(x), G^{(2)}(x)\right)^{T}$ be an arbitrary smooth function. Then

$$
\begin{equation*}
[V, L]=L_{*}(K G)-L_{*}(J G) L \tag{2.3}
\end{equation*}
$$

where

$$
\begin{aligned}
& V=\left(\begin{array}{cc}
\frac{1}{2} G_{x}^{(1)}+G^{(2)} \partial & \frac{1}{2}\left(G_{x}^{(1)}-G_{x}^{(2)}\right) \\
-\frac{1}{2}\left(G_{x}^{(1)}+G_{x}^{(2)}\right) & -\frac{1}{2} G_{x}^{(1)}+G_{x}^{(2)} \partial
\end{array}\right) \\
& J=\left(\begin{array}{cc}
-\partial & 0 \\
0 & \partial
\end{array}\right), \quad K=\frac{1}{2}\left(\begin{array}{cc}
0 & -\partial^{2}+2 \partial u \\
\partial^{2}+2 u \partial & 4 v \partial+2 v_{x}
\end{array}\right) .
\end{aligned}
$$

Define the Lenard sequence recursively:

$$
\begin{equation*}
G_{-1}=\binom{1}{1}, \quad G_{0}=\binom{-u}{v}, \quad K G_{j-1}=J G_{j}, \quad j=0,1,2, \cdots \tag{2.4}
\end{equation*}
$$

$G_{j}$ is a polynomial of $u, v$ and their derivatives ${ }^{[5]}$, and is unique if its constant term is required to be zero. $X_{j} \triangleq J G_{j}$ is a vector field.

Theorem 2.2. Let $G_{j}$ be a Lenard sequence. Then

$$
\begin{equation*}
\left[W_{m}, L\right]=L_{*}\left(X_{m}\right) \tag{2.5}
\end{equation*}
$$

where

$$
W_{m}=\sum_{j=0}^{m} V_{j-1} L^{m-j}, \quad V_{j}=\left(\begin{array}{cc}
\frac{1}{2} G_{j, x}^{(1)}+G_{j}^{(2)} \partial & \frac{1}{2}\left(G_{j, x}^{(1)}-G_{j, x}^{(2)}\right) \\
-\frac{1}{2}\left(G_{j, x}^{(1)}+G_{j, x}^{(2)}\right) & -\frac{1}{2} G_{j, x}^{(1)}+G_{j}^{(2)} \partial
\end{array}\right)
$$

Proof. Since $\left[W L^{s}, L\right]=[W, L] L^{\text {s }}$, by Lemma 2.1 we have

$$
\begin{aligned}
{\left[W_{m}, L\right] } & =\sum_{j=0}^{m}\left[V_{j-1}, L \mid L^{m-j}=L_{*}\left[\sum_{j=0}^{m}\left(J G_{j}\right) L^{m-j}-\left(J G_{j-1}\right) L^{m-j+1}\right]\right. \\
& =L_{*}\left(J G_{m}\right)=L_{*}\left(X_{m}\right)
\end{aligned}
$$

Corollary 2.s. $\quad U_{t}=X_{m}$ if and only if $L_{t_{m}}=\left[W_{m}, L\right]$, where $U=(u, v)^{T}$.
Proof.

$$
L_{t_{m}}-\left[W_{m}, L\right]=L_{*}\left(U_{t_{m}}\right)-L_{*}\left(X_{m}\right)=L_{*}\left(U_{t_{m}}-X_{m}\right)
$$

Corollary 2.4. The $m$-th evolution equation in relation to (1.1), $U_{t_{m}}=X_{m}$, is the consistency condition of the following Lax pair

$$
\begin{equation*}
L y=\lambda y, \quad y_{t_{m}}=W_{m} y \tag{2.6}
\end{equation*}
$$

Remark 2.5. The first few results of calculation:

$$
\begin{array}{ll}
G_{0}=\binom{-u}{v}, & G_{1}=\frac{1}{2}\binom{v_{x}-2 u v}{-u_{x}+3 v^{2}-u^{2}}, \cdots \\
X_{0}=\binom{u_{x}}{v_{x}}, & X_{1}=\frac{1}{2}\binom{-v_{x x}+2(u v)_{x}}{-u_{x x}+\left(3 v^{2}-u^{2}\right)_{x}}, \cdots
\end{array}
$$

## 3. The Nonlinearized Form of Lax System and a Classical Integrable System

Let's consider the eigenvalue problem (1.1), and introduce the constraint conditions between the potentials and the eigenfunctions

$$
\left\{\begin{array}{l}
u=\left\langle y_{1}, y_{1}\right\rangle-\left\langle y_{2}, y_{2}\right\rangle  \tag{3.1}\\
v=\left\langle y_{1}+y_{2}, y_{1}+y_{2}\right\rangle
\end{array}\right.
$$

where $y_{1}=\left(y_{11}, y_{12}, \cdots, y_{1 N}\right)^{T}, y_{2}=\left(y_{21}, y_{22}, \cdots, y_{2 N}\right)^{T},(\cdot, \cdot)$ is the standard innerproduct in $\boldsymbol{R}^{N}$, and $\left(y_{1 j}, y_{2 j}\right)^{T}$ satisfies

$$
\binom{y_{1 j}}{y_{2 j}}_{x}=\left(\begin{array}{cc}
-\alpha_{j}+v & u+v  \tag{3.2}\\
u-v & \alpha_{j}-v
\end{array}\right)\binom{y_{1 j}}{y_{2 j}}, \quad j=1,2, \cdots, N
$$

$\alpha_{j}$ being a real constant.
Introduce the canonical variables $q=\left(q_{1}, \cdots, q_{n}\right)^{T}=y_{1}, p=\left(p_{1}, \cdots, p_{N}\right)^{T}=y_{2}$, and $A=\operatorname{diag}\left(\alpha_{1}, \cdots, \alpha_{n}\right)$; and condense (3.2) into

$$
\left\{\begin{array}{l}
q_{x}=-A q+v q+u p+v p  \tag{3.3}\\
p_{x}=u q-v q+A q-v p
\end{array}\right.
$$

Then (3.3) can be written in the Hamiltonian canonical form under the constraint condition (3.1):

$$
\begin{equation*}
q_{x}=\frac{\partial H}{\partial p}, \quad p_{x}=-\frac{\partial H}{\partial q} \tag{3.4}
\end{equation*}
$$

with the Hamiltonian function

$$
\begin{equation*}
H=-\langle A q, p\rangle+(\langle q, q\rangle+\langle q, p\rangle)(\langle p, p\rangle+\langle q, p\rangle) \tag{3.5}
\end{equation*}
$$

Lemma 3.1. Let $(q, p)$ satisfy (3.3), with $u=\langle q, q\rangle-\langle p, p\rangle$, and $v=\langle q+p, q+p\rangle$. Then there exist constants $c_{1}, c_{2}, \cdots, c_{m+1}$, such that

$$
\begin{equation*}
\binom{\left\langle A^{m} p, p\right\rangle-\left\langle A^{m} q, q\right\rangle}{\left\langle A^{m}(q+p), q+p\right\rangle}=G_{m}+\sum_{j=1}^{m+1} c_{j} G_{m-j} \tag{3.6}
\end{equation*}
$$

Proof. First, we notice that

$$
\left\{\begin{array}{l}
q_{j x}=\left(-\alpha_{j}+v\right) q_{j}+(u+v) p_{j} \\
p_{j x}=(u-v) q_{j}+\left(\alpha_{j}-v\right) p_{j}
\end{array}\right.
$$

implies

$$
K\binom{p_{j}^{2}-q_{j}^{2}}{\left(q_{j}+p_{j}\right)^{2}}=\alpha_{j} J\binom{p_{j}^{2}-q_{j}^{2}}{\left(q_{j}+p_{j}\right)^{2}}, \quad j=1,2, \cdots, N ;
$$

thus

$$
K\binom{\left\langle A^{j} p, p\right\rangle-\left\langle A^{j} q, q\right\rangle}{\left\langle A^{j}(q+p), q+p\right\rangle}=J\binom{\left\langle A^{j+1} p, p\right\rangle-\left\langle A^{j+1} q, q\right\rangle}{\left\langle A^{j+1}(q+p), q+p\right\rangle}
$$

Under the action of $J^{-1} K, G_{j} \longmapsto G_{j+1}$.

$$
\binom{\left\langle A^{j} p, p\right\rangle-\left\langle A^{j} q, q\right\rangle}{\left\langle A^{j}(q+p), q+p\right\rangle} \longmapsto\binom{\left\langle A^{j+1} p, p\right\rangle-\left\langle A^{j+1} q, q\right\rangle}{\left\langle A^{j+1}(q+p), q+p\right\rangle}
$$

with an extra constant $G_{-1}$. (3.6) is obtained by an action of $m$ times upon

$$
G_{0}=\binom{\langle p, p\rangle-\langle q, q\rangle}{\langle q+p, q+p\rangle}
$$

A natural problem is whether the Hamiltonian system (3.4), (3.5) can be completely integrable in Liouville sense. Next, we shall construct a polynomial involutive system, and then give a complete solution of this problem.

From (2.6), we have

$$
\left\{\begin{array}{l}
L y_{j}=\alpha_{j} y_{j}, \\
y_{j, t_{m}}=W_{m} y_{j},
\end{array} \quad j=1,2, \cdots, N\right.
$$

then

$$
\begin{align*}
y_{1 k, t_{m}}=\sum_{j=0}^{m}[ & \frac{1}{2} G_{j-1, x}^{(1)} \alpha_{k}^{m-j} y_{1 k} \\
& \left.+\frac{1}{2}\left(G_{j-1, x}^{(1)}-G_{j-1, x}^{(2)}\right) \alpha_{k}^{m-j} y_{2 k}+G_{j-1}^{(2)} \alpha_{k}^{m-j} y_{1 k, x}\right]  \tag{3.7}\\
y_{2 k, t_{m}}=\sum_{j=0}^{m}[ & -\frac{1}{2}\left(G_{j-1, x}^{(1)}+G_{j-1, x}^{(2)}\right) \alpha_{k}^{m-j} y_{1 k} \\
& \left.-\frac{1}{2} G_{j-1, x}^{(1)} \alpha_{k}^{m-j} y_{2 k}+G_{j-1}^{(2)} \alpha_{k}^{m-j} y_{2 k, x}\right]
\end{align*}
$$

Introduce the canonical variables

$$
q=\left(q_{1}, q_{2}, \cdots, q_{n}\right)^{T}=y_{1}, \quad p=\left(p_{1}, p_{2}, \cdots, p_{n}\right)^{T}=y_{2}
$$

then (3.7) can be condensed into

$$
\left\{\begin{align*}
q_{t_{m}}= & \sum_{j=0}^{m}\left[\frac{1}{2} G_{j-1, x}^{(1)} A^{m-j} q\right.  \tag{3.8}\\
& \left.+\frac{1}{2}\left(G_{j-1, x}^{(1)}-G_{j-1, x}^{(2)}\right) A^{m-j} p+G_{j-1}^{(2)} A^{m-j} q_{x}\right] \\
p_{t_{m}}=\sum_{j=0}^{n} & {\left[-\frac{1}{2}\left(G_{j-1, x}^{(1)}+G_{j-1, x}^{(2)}\right) A^{m-j} q\right.} \\
& \left.-\frac{1}{2} G_{j-1, x}^{(1)} A^{m-j} p+G_{j-1}^{(2)} A^{m-j} p_{x}\right]
\end{align*}\right.
$$

In virtue of Lemma 3.1 with $c_{j}=0(j=1, \cdots, m+1)$, and constraint conditions (3.1), through direct calculation, (3.8) can be written in the following Hamiltonian canonical form

$$
\begin{equation*}
q_{t_{m}}=\frac{\partial F_{m}}{\partial p}, \quad p_{t_{m}}=-\frac{\partial F_{m}}{\partial q} \tag{3.9}
\end{equation*}
$$

with the Hamiltonian functions

$$
\begin{align*}
F_{m}= & -\left\langle A^{m+1} q, p\right\rangle+\langle q, q\rangle\left\langle A^{m} p, p\right\rangle+\langle q, p\rangle\left\langle A^{m} p, p\right\rangle+\langle q, p\rangle\left\langle A^{m} q, q\right\rangle \\
& +\langle q, p\rangle\left\langle A^{m} q, p\right\rangle+\sum_{j=1}^{m}\left|\begin{array}{cc}
\left\langle A^{j} q, q\right\rangle, & \left\langle A^{j} q, p\right\rangle \\
\left\langle A^{m-j} p, q\right\rangle, & \left\langle A^{m-j} p, p\right\rangle
\end{array}\right|, \quad m=0,1,2, \cdots \tag{3.10}
\end{align*}
$$

Let's consider the integrability of systems (3.4) and (3.5). An important fact is given in the following.

The Poisson bracket of the two functions in the symplectic space ( $\boldsymbol{R}^{2 N}, d p \wedge d q$ ) is defined as:

$$
(F, G)=\sum_{j=1}^{N} \frac{\partial F}{\partial q_{j}} \frac{\partial G}{\partial p_{j}}-\frac{\partial F}{\partial p_{j}} \frac{\partial G}{\partial q_{j}}
$$

$F$ and $G$ are called in involution, if $(F, G)=0$. Define

$$
\Gamma_{k}=\sum_{\substack{j=1 \\ j \neq k}}^{N} \frac{B_{k j}^{2}}{\alpha_{k}-\alpha_{j}}, \quad \text { where } B_{k j}=p_{k} q_{j}-q_{k} p_{j}
$$

Lemma 3.2. $\left(\Gamma_{k}, \Gamma_{l}\right)=0,\left(\langle q, q\rangle, \Gamma_{l}\right)=0, \quad\left(\langle p, p\rangle, \Gamma_{l}\right)=0, \quad\left(\Gamma_{k}, q_{l}^{2}\right)=\frac{4 B_{k l}}{\alpha_{k}-\alpha_{l}} q_{k} q_{l}$, $\left(\Gamma_{k}, p_{l}^{2}\right)=\frac{4 B_{k l}}{\alpha_{k}-\alpha_{l}} p_{k} p_{l}$.

Proof. See [2].
Lemma 3.3. $E_{1}, E_{2}, \cdots, E_{N}$ defined as follows constitute an $N$-involutive system:

$$
E_{k}=-q_{k} p_{k}+\langle q, p\rangle \alpha_{k}^{-1} p_{k}^{2}+\langle q, p\rangle \alpha_{k}^{-1} q_{k}^{2}+2(q, p) \alpha_{k}^{-1} q_{k} p_{k}+\Gamma_{k}
$$

Proof. $\quad\left(E_{k}, E_{l}\right)=0$ is evidently valid for $k=l$. Suppose that $k \neq l$. Noticing $\left(q_{k}, q_{l}\right)=0,\left(p_{k}, p_{l}\right)=0,\left(q_{k}, p_{l}\right)=\delta_{k l}=\left\{\begin{array}{ll}1, & k=l \\ 0, & k \neq l\end{array}\right.$ and Lemma 3.1, in virtue of Leibnitz rule, we have

$$
\begin{aligned}
\left(\lambda_{k} E_{k}, \lambda_{l} E_{l}\right)= & 4 q_{k}^{2} p_{l}^{2}\langle q, p\rangle-4 q_{l}^{2} p_{k}^{2}\langle q, p\rangle+4\langle q, p\rangle q_{k} p_{k} p_{l}^{2}-4 q_{l} p_{l} p_{k}^{2}\langle q, p\rangle+4 q_{l} p_{l} q_{k}^{2}(q, p\rangle \\
& -4 q_{k} p_{k} q_{l}^{2}\langle q, p\rangle+4 B_{k l} p_{k} p_{l}\langle q, p\rangle+4 B_{k l} q_{k} q_{l}\langle q, p\rangle+4 B_{k l}\left(q_{l} p_{k}+q_{k} p_{l}\right)=0
\end{aligned}
$$

So $\left(E_{k}, E_{l}\right)=0$.
Consider a bilinear function $Q_{z}(\xi, \eta)$ on $\boldsymbol{R}^{N}$ and its partial fraction expansion and Laurant expansion:

$$
Q(\xi, \eta)=\left\langle(z-A)^{-1} \xi, \eta\right\rangle=\sum_{k=1}^{N}\left(z-\alpha_{k}\right)^{-1} \xi_{k} \eta_{k}=\sum_{m=0}^{\infty} z^{-m-1}\left\langle A^{m} \xi, \eta\right\rangle
$$

The generating function of $\Gamma_{k}$ is (see [2])

$$
\left|\begin{array}{ll}
Q_{z}(q, q) & Q_{z}(q, p) \\
Q_{x}(p, q) & Q_{z}(p, p)
\end{array}\right|=\sum_{k=1}^{N} \frac{\Gamma_{k}}{z-\alpha_{k}} .
$$

Hence, on the one hand, we have

$$
\sum_{k=1}^{N} \frac{E_{k}}{z-\alpha_{k}}=\sum_{m=0}^{\infty} \frac{1}{z^{m+1}} \sum_{k=1}^{N} \alpha_{k}^{m} E_{k} ;
$$

and on the other, we have

$$
\begin{aligned}
\sum_{k=1}^{N} \frac{E_{k}}{z-\alpha_{k}}= & \sum_{m=0}^{\infty} \frac{1}{z^{m+1}}\left[-\left\langle A^{m} q, p\right\rangle+\langle q, p\rangle\left\langle A^{m-1} p, p\right\rangle+\langle q, p\rangle\left\langle A^{m-1} q, q\right\rangle\right. \\
& \left.+2\langle q, p\rangle\left\langle A^{m-1} q, p\right\rangle+\sum_{j=1}^{m}\left|\begin{array}{cc}
\left\langle A^{j-1} q, q\right\rangle & \left\langle A^{j-1} q, p\right\rangle \\
\left\langle A^{m-j} p, q\right\rangle & \left\langle A^{m-j} p, p\right\rangle
\end{array}\right|\right] .
\end{aligned}
$$

So we obtain
Theorem 3.4. The functions defined as follows are in involution in pairs, $\left(F_{k}, F_{l}\right)=0$,

$$
\begin{align*}
F_{0}= & -\langle A q, p\rangle+(\langle q, q\rangle+\langle q, p\rangle)(\langle p, p\rangle+\langle q, p\rangle),  \tag{3.11}\\
F_{m}= & -\left\langle A^{m+1} q, p\right\rangle+\langle q, q\rangle\left\langle A^{m} p, p\right\rangle+\langle q, p\rangle\left\langle A^{m} p, p\right\rangle+\langle q, p\rangle\left\langle A^{m} q, p\right\rangle \\
& +\langle q, p\rangle\left\langle A^{m} q, q\right\rangle+\sum_{j=1}^{m}\left|\begin{array}{cc}
\left\langle A^{j} q, q\right\rangle & \left\langle A^{j} q, p\right\rangle \\
\left\langle A^{m-j} p, q\right\rangle & \left\langle A^{m-j} p, p\right\rangle
\end{array}\right| . \tag{3.12}
\end{align*}
$$

Moreover, $F_{m-1}=\sum_{k=1}^{N} \alpha_{k}^{m} E_{k}, m=1,2, \cdots$.
Proof.

$$
\begin{aligned}
F_{m-1}= & -\left\langle A^{m} q, p\right\rangle+\langle q, p\rangle\left\langle A^{m-1} p, p\right\rangle+\langle q, p\rangle\left\langle A^{m-1} q, q\right\rangle+2\langle q, p\rangle\left\langle A^{m-1} q, p\right\rangle \\
& +\sum_{j=1}^{m}\left|\begin{array}{cc}
\left\langle A^{j-1} q, q\right\rangle & \left\langle A^{j-1} p, q\right\rangle \\
\left\langle A^{m-j} p, q\right\rangle & \left\langle A^{m-j} p, p\right\rangle
\end{array}\right|
\end{aligned}
$$

thus $F_{m-1}=\sum_{k=1}^{N} \alpha_{k}^{m} E_{k}$, and the involutivity of $\left\{E_{k}\right\}$ implies the involutivity of $\left\{F_{m}\right\}$.
Note that the Hamiltonian function $H$ of (3.5) is $F_{0}$; therefore, $\left\{F_{m}\right\}_{m=0}^{\infty}$ is a series of involutive integrals of motion of (3.5). On the other hand, because $\alpha_{i} \neq \alpha_{j}$ when $i \neq j$, the Vandermoude determinant of $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{N}$ is not zero. Thus it's not difficult to see that there is a region $\Omega \subseteq \boldsymbol{R}^{2 N}$ on which the $N$ 1-forms $d F_{0}, d F_{1}, \cdots, d F_{N-1}$ are everywhere linearly independent. Based upon these facts we obtain the following main theorem.

Theorem 3.5. The finite-dimensional Hamiltonian system (3.4) possesses a series of involutive integrals of motion $\left\{F_{m}\right\}_{m=0}^{\infty}$ of which $F_{0}, F_{1}, \cdots, F_{N-1}$ are linearly independent (strictly speaking, on some region $\Omega \subseteq \boldsymbol{R}^{2 N}$ ), thus being completely integrable.

## 4. The Involutive Representation of Solutions of Evolution Equation Hierarchy in Relation to (1.1)

Consider the canonical system of the $F_{m}$-flow:

$$
\left(F_{m}\right): \quad \frac{\partial}{\partial t_{m}}\binom{q}{p}=\binom{\frac{\partial F_{m}}{\partial p}}{-\frac{\partial F_{m}}{\partial q}}=I \nabla F_{m}, \quad I=\left(\begin{array}{cc}
0 & I_{N}  \tag{4.1}\\
-I_{N} & 0
\end{array}\right)
$$

where $I_{N}$ is an $N \times N$ unit matrix. Denote the solution operator of its initial value problem by $g_{m}^{t_{m}}$; then its solution can be expressed as

$$
\binom{q\left(t_{m}\right)}{p\left(t_{m}\right)}=g_{m}^{t_{m}}\binom{q(0)}{p(0)}
$$

Since any two $F_{x}, F_{l}$ are in involution, $\left(F_{k}, F_{l}\right)=0$, we have [1].
Proposition 4.1. Any two canonical systems $\left(F_{k}\right),\left(F_{l}\right)$ are compatible; the Hamiltonian pháse-fows $g_{k}^{t_{i}}, g_{i}^{t_{t}}$ commute.

Denote the flow variables of $\left(F_{0}\right)$ and $\left(F_{m}\right)$ by $x=t_{0}$, and $t_{m}$ respectively. Define

$$
\begin{equation*}
\binom{q\left(x, t_{m}\right)}{p\left(x, t_{m}\right)}=g_{0}^{x} g_{m}^{t_{m}}\binom{q(0,0)}{p(0,0)} \tag{4.2}
\end{equation*}
$$

The commutativity of $g_{0}^{x}, g_{m}^{t_{m}}$ implies that it is a smooth function of $\left(x, t_{m}\right)$, which is called the involutive solution of the consistent system of equations $\left(F_{0}\right),\left(F_{m}\right)$.

Theorem 4.2. Let $\left(q\left(x, t_{m}\right), p\left(x, t_{m}\right)\right)$ be an involutive solution of the consistent system $\left(F_{0}\right),\left(F_{m}\right)$ defined by (4.2). Let $u\left(x, t_{m}\right)=\langle q, q\rangle-\langle p, p\rangle, v\left(x, t_{m}\right)=\langle q+p, q+p\rangle$. Then

1) The flow equations $\left(F_{0}\right),\left(F_{m}\right)$ are reduced to the spatial part and the time part respectively of the Lax pair for the higher order nonlinear evolution equation in relation to (1.1) with $u$ and $v$ as their potentials ( $c_{j}$ are independent of $x$ ):

$$
\begin{align*}
L\binom{q}{p} & =\left(\begin{array}{cc}
v-\partial & u+v \\
v-u & v+\partial
\end{array}\right)\binom{q}{p}=A\binom{q}{p},  \tag{4.3}\\
\frac{\partial}{\partial t_{m}}\binom{q}{p} & =\left(W_{m}+c_{1} W_{m-1}+\cdots+c_{m} W_{0}\right)\binom{q}{p} . \tag{4.4}
\end{align*}
$$

2) $u\left(x, t_{m}\right)=\langle q, q\rangle-\langle p, p\rangle, v\left(x, t_{m}\right)=\langle q+p, q+p\rangle$ satisfy the higher order nonlinear evolution equation:

$$
\begin{equation*}
\frac{\partial}{\partial t_{m}}\binom{u}{v}=X_{m}+c_{1} X_{m-1}+\cdots+c_{m} X_{0} \tag{4.5}
\end{equation*}
$$

Proof. From expression (3.11) for $F_{0}$, we have

$$
\begin{align*}
& q_{x}=\frac{\partial F_{0}}{\partial p}=-A q+v q+(u+v) p  \tag{0}\\
& p_{x}=-\frac{\partial F_{0}}{\partial q}=A p-v p+(u-v) q
\end{align*}
$$

Obviously ( $F_{0}$ ) implies (4.3). From expression (3.12) for $F_{m}$, we have

$$
\begin{aligned}
\left(F_{m}\right) \quad q_{t_{m}}= & \frac{\partial F_{m}}{\partial p}=-A^{m+1} q+2\langle q, q\rangle A^{m} p+2\langle q, p\rangle A^{m} p+\left\langle A^{m} p, p\right\rangle q \\
& +\left\langle A^{m} q, q\right\rangle q+2\left\langle A^{m} q, q\right\rangle p+2 \sum_{j=1}^{m-1}\left[\left\langle A^{j} q, q\right\rangle A^{m-j} p-\left\langle A^{i} q, p\right\rangle A^{m-j} q\right] \\
p_{t_{m}}= & -\frac{\partial F_{m}}{\partial q}=A^{m+1} p-2\langle p, p\rangle A^{m} q-2\langle q, p\rangle A^{m} q-\left\langle A^{m} q, q\right\rangle p \\
& -\left\langle A^{m} p, p\right\rangle p-2\left\langle A^{m} p, p\right\rangle q-2 \sum_{j=1}^{m-1}\left[\left\langle A^{j} p, p\right\rangle A^{m-j} q-\left\langle A^{j} q, p\right\rangle A^{m-j} p\right]
\end{aligned}
$$

Through direct calculation $\left(F_{m}\right)$ can be written in the following form

$$
\begin{align*}
q_{t_{m}}=\sum_{j=1}^{m}[ & \frac{1}{2}\left(\left\langle A^{j-1} p, p\right\rangle-\left\langle A^{j-1} q, q\right\rangle\right)_{x} A^{m-j} q+\frac{1}{2}\left(\left\langle A^{j-1} p, p\right\rangle-\left\langle A^{j-1} q, q\right\rangle\right)_{x} A^{m-j} p \\
& \left.-\frac{1}{2}\left\langle A^{j-1}(q+p) ; q+p\right\rangle_{x} A^{m-j} p+\left\langle A^{j-1}(q+p), q+p\right\rangle A^{m-j} q_{x}\right]+A^{m} q_{x}  \tag{4.6}\\
p_{t_{m}}=\sum_{j=1}^{m}[ & -\frac{1}{2}\left(\left\langle A^{j-1} p, p\right\rangle-\left\langle A^{j-1} q, q\right\rangle\right)_{x} A^{m-j} q-\frac{1}{2}\left(A^{j-1}(q+p), q+p\right\rangle_{x} A^{m-j} q \\
& \left.-\frac{1}{2}\left(\left\langle A^{j-1} p, p\right\rangle-\left\langle A^{j-1} q, q\right\rangle\right)_{x} A^{m-j} p+\left\langle A^{j-1}(q+p), q+p\right\rangle A^{m-j} p_{x}\right]+A^{m} p_{x} \tag{4.7}
\end{align*}
$$

By using Lemma 3.1, (4.6) and (4.7) are reduced to ( $c_{0}=1$ ):

$$
\begin{aligned}
q_{t_{m}} & =\sum_{l=0}^{m} C_{l} \sum_{j=1}^{m}\left[\frac{1}{2} G_{j-l-1, x}^{(1)} A^{m-j} \cdot q+\frac{1}{2}\left(G_{j-l-1}^{(1)}-G_{j-l-1}^{(2)}\right)_{x} A^{m-j} p+G_{j-l-1}^{(2)} \partial A^{m-j} q\right], \\
P_{t_{m}} & =\sum_{l=0}^{m} c_{l} \sum_{j=l}^{m}\left[-\frac{1}{2}\left(G_{j-l-1}^{(1)}+G_{j-l-1}^{(2)}\right)_{x} A^{m-j} q-\frac{1}{2} G_{j-l-1, x}^{(1)} A^{m-j} p+G_{j-l-1}^{(2)} \partial A^{m-j} p\right] .
\end{aligned}
$$

So we have

$$
\binom{q}{p}_{t_{m}}=\sum_{l=0}^{m} C_{l} W_{m-l}\binom{q}{p} .
$$

(4.5) is obtained through direct calculation from ( $F_{m}$ ):

$$
\begin{aligned}
\frac{\partial u}{\partial t_{m}} & =2\left\langle q, q_{t_{m}}\right\rangle-2\left\langle p, p_{t_{m}}\right\rangle \\
& =2\left\langle A^{m}(q+p), q+p\right\rangle\langle q+p, q+p\rangle-2\left(\left\langle A^{m+1} q, q\right\rangle+\left\langle A^{m+1} p, p\right\rangle\right) \\
& =-\partial\left(\left\langle A^{m} p, p\right\rangle-\left\langle A^{m} q, q\right\rangle\right), \\
\frac{\partial v}{\partial t_{m}} & =2\left\langle q+p_{1}(q+p)_{t_{m}}\right\rangle \\
& =2(\langle q, q\rangle-\langle p, p\rangle)\left\langle A^{m}(q+p), q+p\right\rangle+2\left(\left\langle A^{m+1} p . p\right\rangle-\left\langle A^{m+1} q, q\right\rangle\right) \\
& =\partial\left\langle A^{m}(q+p), q+p\right\rangle .
\end{aligned}
$$

Hence

$$
\frac{\partial}{\partial t_{m}}\binom{u}{v}=J\binom{\left\langle A^{m} p, p\right\rangle-\left\langle A^{m} q, q\right\rangle}{\left\langle A^{m}(q+p), q+p\right\rangle}=J \sum_{s=0}^{m+1} c_{s} G_{m-s}=\sum_{s=0}^{m} c_{s} X_{m-s}
$$

Remark 4.3. In the above sense, under the constraints $u=\langle q, q\rangle-\langle p, p\rangle, v=$ $\langle q+p, q+p\rangle$, the spatial and the time parts of the Lax pair for the higher order evolution equation are nonlinearized to the canonical equations $\left(F_{0}\right),\left(F_{m}\right)$ respectively. Both of them are completely integrable in Liouville sense.

## References

[1] Arnold, V.I., Mathematical Methods of Classical Mechanics, Springer Verlag, 1978.
[2] Moser, J., Integrable Hamiltonian System and Spectral Theory, Proc. 1983 Beijing Symp. On Diff. Geom. and Diff. Equ's, Science Press, Beijing, 1986, 157-229.
[3] Flaschka, H., Relations Between Infinite-dimensional and Finite-dimensional Isospectral Equations, Proc. RIMS Symp. on Nonlinear Integrable Systems. Kyoto, Japan, World Sci. Pub. Singapore, 1983, 219-239.
[4] Cao Cewen, A Classical Integrable System and the Involutive Representation of the Kdv Equation (to appear).
[5] Li Yishen and Chen Danyuan, The Transformation Operator IV of Nonlinear Evolution Equations, Chinese Acta Mathematical Sinica, 29(1) (1986), 127-134.


[^0]:    ＊Received December 12， 1989.

