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A b s t r a c t  

Under the constrained condition induced by the eigenfunctions and the potentials, the Lax 
systems of nonlinear evolution equations in relation to a matrix eigenvalue problem are nonlin- 
earized to be a completely integrable system (R zN ,dp A dq, H), while the time part of it is 
nonlinearised to be its N-involutive system (Fro). The involutive solution of the compatible 
system (F0), (Fro) is transformed into the solution of the rr~th nonlinear evolution equation. 

1. Introduct ion 

The Liouville-Arnold theory[ 1] of the finite-dimensional completely integrable system is 
beautiful, which includes a series of examples celebrated for ingenuity and skill in the history 
of analytic mechanics, e.g., the Jacobi problem of geodesic flow on the ellipsoid, C. Neumann 
problem of oscillators constrained on the sphere, Kovalevski's top, etc.(see [2]). The number 
of already known finite-dimensional completely integrable systems is small, which depends 
on the existence of N-involutive system of Hamiltonian functions. 

Flaschl~[31 pointed out an important principle to produce finite-dimensional integrable 
systems by constraining the infinite-dimensional integrable system on the finite-dimensional 
invariant manifold. However, it is not easy to realize the elaborately concrete framework 
according to this principle. Recently, Cao [4] developed a systematic approach to get a finite- 
dimensional integrable system by the non]Jnearisation of Lax pair of solution equations under 
certain constraints between the potentials and the eigenfunctions. 

In the present note, let's consider the following eigenvalue problem 

( -)~ --F v tt-F v~ (Yl )  (I .I)  
Y== \ u - u  A - v )  y '  Y =  Y2 " 

In [5], the gauge transformation between (1.1) and AKNS eigenvalue problem is given, and 
the nonlinear evolution equations in relation to (1.1) are presented. In this paper, firstly, 
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we are going to give the Lax pairs for evolution equation hierarchy in relation to (I.1), and 
then, nonlinearize the Lax systems by introducing certain constraint conditions between the 
potentials and the eigenfunctions and constructing a new polynomial involutive system, so 
as to prove that the nonlinearized form of (1.1) is a complete integrable Hamiltonian system 
in the LiouviIle sense. 

2. The Lax Pair for Evolution Equation Hierarchy in Relation to (1.1) 

First, we know that the eigenvalue problem (1.1) can be rewritten into 

Ly=Ay, where L--  (v-0v_u u+0u+v)' 0--4 0__0z. (2.1) 

Define the tangent mapping of differential operator L: 

= .__0L(~ + e~, ~ + ~2) = , 

and then L. is a one-to-one mapping, i.e., L.(~:) -- 0 implies ~I -- 0, ~2 -- 0. 

Lemrna 2.1. Let G(z) = (G(1)(z),G(2)(z)) r be an arbitrary smooth function. Then 

[v, L] = L.(KC) - L.(JG)~, (2.3) 

where 

V= (1G[Z)+G(2)01[G(1) G(=2)) " 1G(Z) ~I(G(=z)-G(=2))~2 / 

- ~  t ~' + 2 " + c - ~ a . '  
j .= ( -O 0) K =  1 (  0 --O2+2Ou> 

0 a ' 2 a =+2ua 4va+2v= " 
Define the Lenard sequence recursively: 

Gj is a polynomial of u, u and their derivatives [5], and is unique if its constant term is 

required to be zero. Xy ~ JGy is a vector field. 
T h e o r e m  2.2. Let G~ be a Lenard sequence. Then 

[Win, L] = L.(Xm), (2.5) 
where 

(IG(1) G2(.2} 0 I (G(.I) - G(.2z)~ ) 
" . , =  = ' c =)o ~-=o - ~  ,, - ~  j , : +  

e ,  oo[. Since [WL',  L] = [W, i ] i ' ,  by Lemma 2.1 we have 

[w~,  LI = ~ [ v j - ~ ,  LIL m-~ = L .  ( J a j ) L  "~-~ - ( Ja~_~)Lm-~  ÷~ 
i=o Li=O 

= L.(JC,,,) =L. (X, , . ) .  
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Corollary 2.S. Ut = Xm if and only if L, .  = [W~, L], where U = (u, v) r. 
Proo£. 

L,,,, - [W, , , ,L ]  = L . ( U , . , )  - L . ( X , , , )  = L . ( U , . ,  - X , , , ) .  

Coro l la ry  2.4,. The rn-th evolution equation ht relation to (1.i), Utm = X,~, is the 
consistency condition of the following Lax pair 

L y  = ,~y, yt,,, = w,,.,y. (2.6) 

R e m a r k  2.5. The first few results of calculation: 

oo_- Gl  = ~ \ _ u =  + 3,~2 _ u 2 , " " ;  

1 ( - % = + 2 ( u v ) .  "~ 
x~ = ~ \_,~== + (3,~2 - , ~ ) = /  " " "  

3. T h e  Non l inea r i zed  F o r m  o f  Lax  S y s t e m  
a n d  a Classical  I n t e g r a b l e  S y s t e m  

Let's consider the eigenvalue problem (I.i)) and introduce the constraint conditions 
between the potentials and the eigenfunctions 

( 3 . 1 )  
u = (yl  + ~ ,  Yl + y2), 

where Yl = ( Y l l , Y m , " "  ,PIN) r ,  Y2 = (Y21,922,""  ,Y2N) r ,  ( ' ,  ") is the standard inner- 
product in R N,  and (Yli, Y~i) T satisfies 

~ i / .  k ~ - o  ~ i - ~  \ ~ / '  j = I , a , . . , N ,  (3.2) 

ay being a real constant. 
Introduce the canonical variables q = (q l~""  , qn) T = Yl,  P = ( P l , " "  ,PN) T = Y2, and 

A = diag(o~t,---, ot)~); and condense (3.2) into 

q= = - d q  + vq + up + vp, (3.3) 
p= = uq - vq + Aq  - t~p. 

Then (3.3) can be written in the Hamiltonian canonical form under the constraint 
condition (3.1): 

8 H  0 f t  
q= = Up '  P= = - aq (3.4) 

with the Hamiltonian function 

H = - ( A q ,  p) + ((q,q) + (q ,p ) ) ( (p ,p )  + (q ,p)) .  (3.5) 

L p m m a  3.1. Let (q,p) satisfy (3.3), with u = ( q,q ) -- ( p , p  ), and v = ( q + p, q + p ). 
Then there exist constants ci, c2,---,  c,~+l, such that 

( ( A , , , p , p ) _ ( A m q ,  q) ~ m+1 
( s " O  + p),q + p) / = c , ,  + ~ ~ io , , - i .  (3.6) 

j=1 
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Proo/. 

implies 

First, we notice that  

q;: = ( - ~  + ~)qi + (,, + ~)p~, 
pj: = (~, - ,~)qj + (~; - V)p~, 

( K _  P~ ~ ; a  S= ~ ,2 , . . .  ,N;  
t,O; + p N /  .(q/+ pD~) ' 

thus 

(AYp'P)-(Aiq'q) = J (  (Ay+i(q+p),q+p) )" K<(AY(q+p)iq+p) ) (Ad+IP'P)-(AY+'q'q) 

Under the action of J-1K, G i ) ) Gi+l. 
(AYP, P) - IAYq, q)~ f(AY+~p, p) - (Ai+lq, q)~ 
(AY(q+p),q+p)]l , ~ (Ai+i(q+p),q+p) ) 

with an extra constant G-1.  (3.6) is obtained by an action of m times upon 

ao= (@'P)  - <q'q)~ k(q + p, q + p ) / "  

A natural  problem is whether the Hamiltonian system (3.4), (3.5) can be completely 
integrable in Liouville sense. Next, we shall construct a polynomial involutive system, and 
then give a complete solution of this problem. 

From (2.6), we have 

Ly i =aiy i, 
y~,,,,, = W..y~, 

then 

] = 1,2,---  ,N ;  

Ylk,t,~ --2"=0 

1 G(2) ci,,~_i. . ] 
ak ~+ j'-i k yik,zJ, 

Y2~,,. \ j-i,z + (2) = -- (~k Y l k  

y=O 

G(2) __m-j. 1 - -  I f , i(1) ~n~- - i_  i-lCik 92k,iJ ~ y - , , =  k ~ + 

Introduce the canonical variables 
q = (q l ,q2 ,  .... , q ~ ) r  = y l ,  

then (3.7) can be condensed into 

" [ 1  ~.,)l,=A,.,.,_y q 
j=o 2 - 

p = ( n ,  p 2 , " ' ,  p , , ) z  = y2; 

P t .* 

+~(G~.')~ = -  c;~', =)A-,-@ + d :l A--i,==1 
- , - , d - 1  ~ J J  

[ _ = _ G(=)  
j=O 2 - , " . i-l ,z] ': 

(3.7) 

(3.7') 

(3.s) 
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In virtue of Lemma 3.1 with cy = 0 (] = 1 , - . . ,  m + 1), and constraint conditions (3.1), 
through direct calculation, (3.8) can be written in the following Hamiltonian canonical form 

I.qol 
0p 3q 

with the Hamiltonian functions 

Fm= - (Am+tq, p) + (q,q) <Amp, p) + (q,p) (Amp, p) + (q,p) (Amq, q) 

"~ (AYq'q)' (A1q'P) l 
+ (~, p) (A'%, p) + ~ <A,~_~p, ~), <A,,,_~p, ~) , m = O, 1, 2 , . . . .  

j=l  

(~.,o) 

Let's consider the integrability of systems (3.4) and (3.5). An important fact is given 
in the following. 

The Poisson bracket of the two functions in the symphctic space ( j~N, dp A dq) is 
defined as: 

N 
(F, ~) = ~_, OF o ~  OF OG 

j=t  Oqy Op~ Opj c9q5" 

F and G are called in involution, if (F, G) = 0. Define 

Fk = E ~ aj '  
jffil 

where B~y = Pkqy -- qkPy. 

L e m m a  $ . 2 .  ( r ~ , r , )  = o, ((q,q),r~) = 0, ((p,p),rt) = 0, ( r k , q ~ )  = 4B~, a~,-a~ ql¢ ql, 
( r k , p ~ )  = 4B~, c,~-ac Pk Pl. 

Proof. See [2]. 
L e m m a  3.3. Et,  g-2,"" , EN defined as follows constitute an N-involutive system: 

Proof. (Ek,Er) = 0 is evidently valid for k = l. Suppose that  k # I. Noticing 
1, k = l  

( q h ' q l ) = 0 '  (P~ 'P l )=0 '  (q l "P t )=6s ' l=  O, k • l  and Lemma 3.1, in virtue of Leibnita 

rule, we have 

(~E~, '~,E,) =4dd<q, p) - 4q~p~<q, p) + 4<q, p>q~pkp~ - 4q, p,p~ <q, p) + 4q, p,q~<q, p> 
-4qkPkq~(q,p) + 4Bk,pkpt(q, p) + 4Bktq~qt(q, p) + 4Bm(q, pk + qkPt) = O. 

So {E~, E,) = O. 
Consider a bilinear function Q,(~,~) on R N and its partial fraction expansion and 

Laurant expansion: 

Q ( ~ , , )  = ((~ - A ) - ~ ,  
N OO 

k----i m----O 
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The generating function of Fk is (see [2]) 

Q.(p, q) Q.(p,  p) = . = ;~" 
k=l 

Hence, on the one hand, we have 

N Ek ~ 1 
~=~1 z Z ~ k  =~--o z'T+I k=, a'~Ek; 

and on the other, we have 

N E~ 

Z Z--(~ k 
k----1 

zm+l -- (Am q, p) + (q, p)(Am-Ip, p) + (q, p)(Am-lq, q) 

I (Ai-lq, q) (Ai-lq, p) 
+ 2(q, p)(Am-lq, p) + 

i=I~I (nm-~P, q) (A~-iP, P) 

So we obtain 
Theorem 3.4. The functions defined as follows are in involution in pairs, (Fk, Ft) = 0, 

Fo = - (Aq, p) + ((q,q) + (q,p))((p,p) + (q,p)), (3.11) 

Fm= - (A'n+lq, p) -{- (q,q)(A'r'p, P) + (q,p)(Amp, p) + (q,p)(Arnq, p) 

rn I (AYq' q) (AYq' P) [ (3.12) 
+ (q,p)(A'r'q, q) + Z (Am-Yp , q) (A,n-Yp, p) " 

y=l 

Moreover, F,,-I = ~'~=I c~ nEk, rn = 1, 2,--.. 
Proof. 

Frn-i =- (Amq, p)+ (q, p)(A'n-lp, p) -{- (q, p)(A'n-lq, q) + 2(q, p)(A'n-lq, p) 

+ ~ (Ai-lq, q) <Ai-lp, q) 
i=i (A.,-ip, q) (A..-ip, p) 

thus F,n-1 N = ~k=* a~Ek, and the involutivity of {Ek) implies the involutivity of {F,~). 
Note that the Hamiltonian function/-/of (3.5) is Fo; therefore, {F,n}~=o is a series of 

involutive integrals of motion of (3.5). On the other hand, because c~ ~ ay when i ~ ], the 
Vandermoude determinant of al, a2,--- , aN is not zero. Thus it's not difficult to see that 
there is a region fl _ j~N on which the N 1-forms dFo, dF1,'" , dFN-, are everywhere 
linearly independent. Based upon these facts we obtain the following main theorem. 

Theorem $.5. The finite-dimensional Hamiltonian system {3.4) possesses a series of 
involutive integrals of motion {F,,}~= 0 of which F0, F1,-. • , FN-I are linearly independent 
(strictly speaking, on some region fl _C R 2N), thus being completely integrable. 
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4. The Involutive Representation of Solutions of 
Evolution Equation Hierarchy in Relation to (1.1) 

Consider the canonical system of the Fro-flow: 

[ aF,, 

~) 1 l ( 0 ION), (4.1) c9 q 8p : [VFm, I : --IN (F~): ~L = _°F-  
\ aq / 

where IN is an N x N unit matrix. Denote the solution operator of its initial value problem 
by gtm'~ ; then its solution can be expressed as 

q{t.)~ ,. (q(0)~ 
{t~)/= 9~ V(0)/ 

Since any two F=, Ft are in involution, (Fk, ~ )  -- 0, we have [1 l 
P r o p o s i t i o n  4.1 .  Any two canonical systems (Fk), (i~) are compatible; the Hamil- 

tonian phase-flows g~', g~I commute.  
Denote the flow variables of (F0) and (F,n) by z = to, and t,n respectively. Define 

(q(x, t~.) ~../q(0, 0} 
,(~,tm)) = 0)) ,o m ~(0, {4.2) 

The commutativity of g~, gtm" implies that it is a smooth function of (z, t,n), which is called 
the involutive solutior~ of the consistent system of equations (Fo), (F,n). 

Theorem 4.2. Let (q(z, tm), p(x,t~)) be an involutive solution of the consistent 
system (Fo), (Fro) defined by (4.2). Let u(z, tin) = (q, q) - (p, p), v(z, t,n) = (q + p, q + p). 
Then 

I) The flow equations (Fo), (F,n) are reduced to the spatial part and the time part 
respectively of the Lax pair for the higher order nonlinear evolution equation in relation to 
(1.1) with u and v as their potentials (c i are independent of z): 

c9 ~ )  --(W,n + c x W m - x + " ' + c m W o )  ~ ) .  (4.4) 
at,n 

2) , ( x ,  tin) = (q, q) - (p, p), v(x, t , , )  = (q + p, q + p> satisfy the higher order nonlinear 
evolution equation: 

#" X 

Otm 

Proof. From expression (3.11) for F0, we have 

{Fo) aFo 
..... = -Aq + vq + (u + v)p, q= = ap 

OFo ("- dq. 
Pz . . . .  Ap - vp + aq 
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Obviously (Fo) implies (4.3). From expression (3.12) for Fro, we have 

OF~n _Arn+lq+2Cq, q)A,np+2Cq, p)Arnp+CAmp, p) q 
(F,, .)  q ' "  = Op = 

m,_]. 

+ (A'q, q)q + 2(A'q, q)p + 2 ~ [(Aiq, q) A~-~p- (A'q,p> A ' - i 4 ,  
.,-'= 1 

a£.., = A m + l  p _ 2Cp, p) A~q - 2Cq, p) A'nq- (Amq, q) P Pt. = Oq 
vn--1 

- (A'~p,p>p- 2(A"p, p)q- 2 ~ [CA% p> A~-;q- (Aiq, p> A'-~p]. 
i=J. 

Through direct calculation (F~) cad be written in the following form 

qt~ = L [ I (CAj-I''p) - CAj-xq'q))= An~-iq + l ((Ai-lP'P)- (AJ-Xq'q))=A'n-JP 
j=l 

- 2(AJ-ZCq+p)iq+p)= Am-ip+ (AY-Z(q+p),q+p) A'n-iq=] + A'nq=i4.6 ) 

Pt,~ ~-~.[-I((AY-lP, P) A y-' l(AY-l(q+ +P)ffiArn-yq = -- ( q, q))= Arn-yq _ p), q 

j=1 

By using Lemma 3.1, (4.6) and (4.7) axe reduced to (co = 1): 

"riG' '' -A'-'. 1( -G'" ' A'-',+GJ.'.',pA'-',] q,... = c, ~ [~ ;_,_,.. . . +  ~ a ~ . ~ , _ l  ; - , - l j .  - -  . 
= y = I  

" -[ 
pt. ~--~C|~--11a~.11, I U (2) ~ A rn-3"* 1G{I) A~-3-J-G(2I ,~A"-;.,I 

t=o ~'=t 2 -- + ~ ' - t - l J =  ~-~ ~ - - t - l , =  -~ v +  ~ ' - t - 1  r j .  

S o  w e  h a v e  

q = CtW,,,-I • 
t ~  I=0 

C4.5) is obtained through direct calculation from (F,n): 

8 t , n  

av 

8tin 

= 2(q, q~.) - 2(p,p~.> 

= 2CAn~(q+p),q+p) (q+p,q+p) - 2(CArn+lq, q) + (Arn+Ip, p)) 

= -O((A'np,  p) - CA'q,  q)), 

- Z<q ++, (q +ph.) 

= 2((q, q) - Cp, p) ) (Am(q + p), q + p) + 2((A'n+lp.p)  - (A'n+lq,  q)) 
= aCA'~(q +.p),  q + p). 
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Hence 

(Amp, p)- (Amq, q) 

arm 

m+l m 

= J X ~  ¢ ,G , , , - ,  = ~ c , X m - , .  
s - - o  a - - o  

Remark 4.8. In the above sense, under the constraints u = (q,q) -- (p,p), v = 

(q + p, q + p), the spatial and the time parts of the Lax pair for the higher order evolution 
equation are nonlinearized to the canonical equations (F0), (Fro) respectively. Both of them 
are completely integrable in Liouville sense. 
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