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Abstract

This paper is contributed to explore all possible singlekpsaiton solutions for
the Camassa-Holm (CH) equation+ myu+ 2mu, = 0, m= u— uyy under the bound-
ary conditionu — A (A is a constant) as — +o. Our procedure shows that the CH
equationeither has cusp soliton and smooth soliton solutions only undeiirthe-
mogeneous boundary condition lim..,u = A # 0, or possesses the regular peakon

solutionsce *—¢!l (c is the wave speed) only when lip. u= 0 (see Theorem 4.1).
We also prove that the constructed cusp soliton and smobtbrsare weak solutions
in distribution sense. Moreover we present new cusp sofitehsmooth soliton solu-
tions in an explicit form. Asymptotic analysis and nhumekigiaulations are provided
for smooth solitons and cusp solitons of the CH equation.
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1. Introduction

The Camassa-Holm (CH) equation [4] is written in the following form
M + MU+ 2mu = 0, M= U— 0%Uyy, (1.1)

which has excited much interest in recent years. Hereu(x,t) represents the horizontal
component of the fluid velocity, and = u — a?uyy is the momentum variable with the pa-
rametem > 0 introducing nonlocality. The subscriptg of u denote the partial derivatives
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of the functionu w.r.t. x,t. For exampley; = du/at, Uy = 83u/0°xadt. Similar notations
will be used frequently later in this paper. The existence of the CH equatsrnimplied

by the work of Fokas and Fuchssteiner (1981) on hereditary symmetfipd{came to be
remarkable in the work of Camassa and Holm (1993) where a new typditohssolution

(called peakon), was described [4]. A peakon is a weak solution witksnwoth property
at some points.

As it was shown by Camassa and Holm, equation (1.1) describes the utihiedc
propagation of two dimensional waves in shallow water over a flat bottom. soliry
waves of equation (1.1) regain their shape and speed after interactitigezoly with
other solitary waves. A discussion of the integrability of the CH equation andtloahe
of solution can be found in Camassa and Holm (1993) [4], and more mathahu#tail is
given in Beals et al. (1998) [2]. A further exploration, opening the ¥athe construction
of solutions, is given by Contantin, Echer, and McKean (1998,199%,[3], Alber et al
(2001) [1], Johnson (2002) [13], and Qiao (2003) [15]. ThésraQiao [16] dealt with an
extension version of the CH equation - the DP equation [10].

Because the parametercan be scaled to unity, without any loss of generality, we set
o =1 and consider the standard CH equation

m +myu+2mu =0, m=u— Uy, X € R. (1.2)

In literature, several authors [3, 9, 14] studied the traveling wave sokitdCH equation
decaying at both infinities by using the asymptotic analysis theory. Most saodutiere
given in an implicit form.

The present paper provides an approach to construct explicit solitauy solutions of
the CH equation (1.2) under inhomogeneous boundary condition. Wegiveolutions of
the CH equation through setting the traveling wave solution under the onlybopoondi-
tionu — A (Ais a constant) as — =+co. All possible exact single peak soliton solutions of
the CH equation (1.2) are obtained both in explicit and in implicit form, particutadylar
peakon solutions of the CH equation correspond to the homogeneouddrgwondition
A= 0. For the inhomogeneous boundary conditto# 0 both smooth solitons and cuspons
are obtained in our paper. We will analyze in detail the cases of exatiosapand classify
the cases we obtain an explicit solutions and the cases we obtain implicit sokhimmsg
in numeric graph. Our main results will be summarized in Theorem 4.1 after udirgl
some notations and definitions.

2. Traveling Wave Setting

Let us consider the traveling wave solution of the CH equation (1.2) thraugéneric
settingu(x,t) = U (x— ct), wherec is the wave speed. Lét= x— ct, thenu(x,t) = U ().
Substituting it into the CH equation (1.2) yields

(U—c)(U-U"y+20"(U—-U")=0, (2.1)

whereU’ = UE’ Uu” = UEE’ u” = UEEE'

If U—U" =0, then equation (2.1) has general solutiont¢%) = ¢,€* + c,e~% with
any real constants;, c,. Of course, they are the solutions of the CH equation (1.2). This
result is not so interesting to us.
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On the other hand, the CH equation has the peakon solution(fi) = U(§) =
ce X—¢t=%l (£, = xo — cto) with the following properties

U(&) =c, U(4o) =0, U'(&—) =c, U'(&o+) = —c, (2.2)

whereU’(§o—) andU’(§o+) represent the left-derivative and the right-derivativel @t
respectively.

Let us now assume thht is neither a constant function nor satisfies-U” = 0. Then
equation (2.1) can be changed to

(U-u"y U’
U—0" — o U (2.3)
Taking the integration on both sides we obtain
2C;
u2=u?2 C 2.4
+ c—U +Ca, ( )

whereC;,C, € R are two integration constants. Let us solve equation (2.4) with the follow-
ing boundary condition

lim U=A, (2.5)

E*}ioo
thus the ODE (2.4) becomes

,U—c+2A

U?2=(U-A T

(2.6)

The fact that both sides of (2.6) are nonnegative implies

U-—-c+2A

>0. 2.7
U_¢c =Y (2.7)

Since we only care about the ca&eZ 0 andA # ¢, we introduce the ratiot = c/A.
After applying the boundary condition (2.5), we obtain the following lemma.

Lemma 2.1. Let U be a solution of2.6) with boundary conditiorf2.5), then

a<l or a>3

3. Smooth Solution and Weak Solution

From now on we focus on seeking single soliton solutions for CH equati@ (1etC*(Q)
denote the set of ak times continuously differentiable functions on the open(etwe
denoteL} (R) be the set of all functions whose restriction on any compact subét is
integrable HL.(R) = {ue L2 (R) : U € L3 (R)}.

loc loc



108 Guoping Zhang, Zhijun Qiao and Fengshan Liu

Definition 3.1. A function ux,t) = U (x—ct) is said to be a single peak soliton solution for
CH equation (1.2) if U satisfies the following conditions

(C1) U(&) is continuous orR and has a unique peak point, denotedday where Ug)
attains its local maximum or minimum value;

(C2) U(§) is C3(R — {&o}) and satisfies the equatidB.1)onR — {&o};

(C3) U(§) satisfies the boundary conditi@B.5).

Without losing the generality we assume tBat= 0.

Lemma 3.2. If u(x,t) = U (x—ct) is a single peak soliton solution for CH equation (1.2)
with the only peak poind, then U(0) = ¢ or U(0) = c— 2A. Moreover, we have

(i) ifU (0) =c—2A, thenU&) € C*(R), in this case u is said to be a smooth soliton solution
for (CH) equation (1.2);

(i) if U (0) = c, then U has the following asymptotic behavior

U(E)—c=A22+0(E"3), &—0;
U'(E) = A& 1040, £ 0;

where = (Y&A)13, Thus UE) € HL(R).

loc

Proof. If U(0) # c, by virtue of (2.6) we knowJ’(0) exists. ThudJ)’(0) = 0 since O is a
peak point. By (2.6) again we obtdih(0) = c— 2A sinceU (0) = A contradicts the fact that
0 is the unique peak point.

(i) If U(0) = c— 2A, thenU (&) # c for any& € R sinceU (§) € C3(R — {0}). By differen-
tiating both sides of (2.6) we conclude thht C*(R).

(ii) It follows from the standard asymptotic analysis. We refer readers4p For readers’
convenience we give the simple proof here.

By (2.6) and phase analysis, we know that

U—-c+2A

U’ = —sign&) (U — A}y =

(3.1)

SinceU (0) = cis the local maximum or minimum value, we distinguish two cases.

(1) cis minimum value, thus a&— 0,U (§) > c. Leth(U) = WA, thenh(c) =
(A_cl)\/ﬁ and (3.1) becomes
/ h(U)vU —cdU — / Sign(€)de. (3.2)
Insertingh(U) = h(c) +O(U —c) into (3.2) and using the initial conditid(0) = c we
obtain
Zh(EU —c2(1+0(U —0)) = ¢ 33)
thus
U—c= (50 PPRE3(14+0(U — ) 3= (-5 2323(1+0(U —c)  (3.4)

2h(c)
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which impliesU — ¢ = O(£%/3). Therefore we obtain

3

U—c=(57)7%3+ 0% = Ne° + 0(8*?). (3.5)
2h(c)
(2) cis maximum value, thus &— 0,U (§) < c. Leth(U) = Mﬁ, thenh(c) =
m and (3.1) becomes
/ h(U)ve—UdU — / Sign(&)de. (3.6)
By a completely similar analysis we obtain
U-c= —<2H(i>>2/322/3 +O(EY3) =23+ 0(8*3). (3.7)

By the equation (3.1) we may obtain the asymptotic estimat¥ faasily.

U € HL (R) follows from the asymptotic estimatas.

Proposition 3.3. If u(x,t) = U(x— ct) is a single peak soliton solution for (CH) equation
(1.2), then U must be a weak solution in the distributional sense of the egyati). In
this sense we say u is a weak solution for (CH) equation (1.2).

Proof. If U(0) = c— 2A, by Lemma 3.2 we know thdl is a smooth solution, thus it is a
weak solution in the distributional sense.

If U(0) = ¢, thenU € HY_ which impliesU’? € L , thus the left hand side of (2.6) does
make sense. Notice thétis bounded, we know that the right hand side of (2.6) is also in
LL . due to the asymptotic estimateldfin Lemma 3.2. Thus we may define the distribution
function L(U) = U2 — (U — A)2Y&22 By the definition condition (C2)we know that
suppl(U) c {0}. ThusL(U) must be a linear combination of Dirac functid(§) and its
derivatives. However the previous analysis shows tiidt) € LL (R). Therefore we must

loc
haveL(U) =0.1

For a traveling wavei(x,t) = U (x—ct), Lenells rewrote (2.1) into the following equa-
tion
U?+30%2-2cU=(U—-c)®"+a (3.8)

wherea is integration constant. By using (3.8) Lenells defined thas a traveling wave
of the CH equation (1.2) i) satisfies (3.8) in distribution sense (see definition 1 in [14]).

Proposition 3.4. If u(x,t) = U (x— ct) is a single peak soliton solution for (CH) equation
(1.2), then U must be a a weak solutior{(®8)in distribution sense and thus itis a traveling
wave of CH equation according to Lenells’ definition in [14].
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Proof. By virtue of Lemma 3.2 we know that € H&JC, the both sides of the equation (3.8)
make sense and belongltf . By the definition of single peak soliton, the equation (3.8)
is satisfied for any nonzero point. By a similar argument with the proof of thpgsition
Proposition 3.3 we can conclude thats a weak solution of (3.8) in distribution serge.

In [8] Constantin and Strauss considered the following equation
My + Myl + 2Mdy + 2kdy = 0, M= 0— Uxx, X € R. (3.9)

It is easy to check that the solutiart;X) of (3.9) with the homogeneous boundary
condition limy_,, u = 0 corresponds to the solutiarit, x) of the solution of (1.2) with the
inhomogeneous boundary condition }im., u = k under the following tranformation

a(t,x) = u(t,x+kt) — k; m(t,x) = m(t,x+kt) —k.

Constantin and Strauss recast equation (3.9) in the following nonlocs¢oation law
form

ut+uux+ax(l—6)2()‘1(u2+%u§) =0 (3.10)

and defined that(x,t) = U (x—ct) with U € HL. is a traveling wave of CH equation (1.2)
if U satisfies (3.10) in distribution sense (see the definition 1 in [8], the othelitamrs in
this definition are satisfied automatically for traveling wave).

In [14] Lenells indicated that the equations (3.8) and (3.10) are equivaletmaveling

waveu(x,t) = U (x— ct) with U € HZ_. Therefore we obtain

Proposition 3.5. If u(x,t) = U (x— ct) is a single peak soliton solution for (CH) equation
(1.2), then U must be a a weak solution(8f10) in distribution sense and thus it is a
traveling wave solution of CH equation according to Constantin and Stralefgiition in

[8].
4. Construction of Single Peak Soliton Solutions
Now we construct the single peak soliton solutions for (2.6). We rewritg é3.6

U' = —(U —A); /%Asign(z). (4.1)

By virtue of Lemma 3.2 we only need to seek the single peak soliton solution sagisfy
the initial condition

U0)=c, or U(0)=c—2A (4.2)
Let us assume tha&t # 0 (if A= 0, the traveling wave solutions are peakon solutions,
which were already dealt with by Camassa and Holm [4]). X et Uﬁ’ci‘f% then
2A
= —2A)+—— 4,
du = P ax, (4.4)

(o172
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and equation (4.1) is converted to

4AX?
(X2 D)[(BA- X2~ (A—0)]

dX = d&sign(). (4.5)
By virtue of Lemma 2.1 we only need to discuss the following three cases.

Casela<1(i.e.A>0,c<AorA<0,c>A)
1. IfA>0,c <A then by (2.7), we havd > cand 0< X < 1. Let

A—cC
3A-c’

a—=

then O< a< 1, and equation (4.5) is changed to

4A a?x?
(A—c) (X2-1)(X2—a?)

f(X)dX = dX = dEsign(é). (4.6)

Integrating this equation we obtain the following implicit solutions

X+a 1+X

F(X) =aln || —In 75 = [ +K, K=F(X(0)). (4.7)
SinceF’ (X) = f(X), we know that~ (X) strictly increases on the interval0X < a
with F(0) = 0,F (a—) = o, and strictly decreases on the intergat X < 1 with F(1—) =
—, F(a+) = .
Let a+X 1+X
F1(X) =Fl(0q(X) =aln X In X (4.8)
and X+a 1+X
FZ(X):F](&l)(X):aInX_a—In 1% (4.9)

ThenFy(X), F(X) are two strictly monotone functions, hence their inverses exist on
the interval(0,a) and(a, 1), respectively. So the equation (4.7) can be solved uniquely for
X on the interval0,a) and(a,1). Therefore, we can define their inverses as

X1(8) = Fy YE|+Ke), and Xa(&) = F, (& +Ka),

which generate the following candidate solutions

2A
=(c—2A 0; .10
U= (=Mt s K2 (4.10)
Uz(§) = (c—2A) + 2A ) Kz € R. (4.11)

1-(F, (& +Ke))?
It is easy to check:

e Uyj(0)=(c—2A)+ sz(m)z €[c,A), Uj(fw)=A, andU; strictly increases on

[0,00) and strictly decreases @r-o,0;
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e Uy(0) = (c—2A) + ﬁzﬁmz))z € (A,), Uy(+o) = A, andU, strictly decreases

on [0, ) and strictly increases -, 0].
By virtue of Lemma 3.2 we know the only possible single peak soliton solutior2fay (
isU1(&) with U1(0) = ¢ (correspondinglyK; = 0), defined by

A
1 (F (&)
2. If A<0,c> A then by (2.7), we havll < ¢, 0 < X < 1 anda< 1. This case is
completely similar to the case & > 0,c < A. Thus we can conclude that the function
U1(&), defined by equation (4.12), is the uinque single peak soliton solution gff¢2.the
case ofA < 0,c> A

U1(§) = (c—2A) + (4.12)

Casell:a>3(.e.c>3A>00rc<3A<0)
1. If c> 3A> 0, then by (2.7) we know that

U<c-2A X>1 a>1

On the intervabh < X < o, U > A and equation (2.6) is equivalent to

1 c—-U .
¥ —A” oAU dU = —sign(§)dg. (4.13)

In a similar way, we can obtain the implicit solution of the ODE (2.6)
X+a X+1
I 7 = [El+ K, Ka=Fs(X(0)). (4.14)

By F3(X) = f(X), we know that=;(X) is strictly decreasing on the intenak X < o
with Fz(a+) = o0, F3(0) = 0.
On the interval k< X < a,U < A and equation (2.6) is equivalent to

1 c—U .
VX / — A dU = —sign(€)de. (4.15)

In this case the implicit solution of the ODE (2.6) is

F(X)=aln

a+X X+1
F4(X) =al —1 = Ka, Kgq=F4(X(0))). 4.16
a(X) =aln =2 —In =7 = €]+ Ka, Ka=Fa(X(0)) (4.16)
By F;(X) = f(X), we know thatF4(X) is strictly increasing on the intervald X < a
with F4(a—) = o0, F(1+) = —oo.
Therefore F3(X), F4(X) have inverses on intervats< X < o, and 1< X < a, respec-
tively. By a similar analysis we obtain the following candidate solutions

2A
. Ks>O: 4.17
TSI 17

Us(&) = (c—2A) +
and
2A

, R; 4.18
e kaE € *19)

It is easy to check:
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e U3(0) = (c—2A) + sz\(@)z € (A,c—2A], Us(+w) = A, andUs strictly de-

creases oif0, ) and strictly increases -, 0J;

e Uy(0)=(c—2A)+ ﬁ € (—,A), Uy(£wo) = A, andU, strictly increases
—\4
on [0, ) and strictly decreases @r-, 0].
By virtue of Lemma 3.2 we know the only possible single peak soliton solutior2fty (

isU3(&) with U3(0) = c— 2A (correspondinglyKs = 0), defined by
2A

1-(Fy (&)

2. If c<3A < 0,then by (2.7), we havel > c—2A, X > 1 anda > 1. This case is

completely analogous to the casefof 0,c > 3A. Thus we can conclude that the function

Us(§), defined by equation (4.19), is the uinque single peak soliton solution 9ff(2.the
case ofA < 0,c < 3A.

Us(€) = (c—2A) + (4.19)

Caselll: a =3(i.e.c=3A)
1. If c=3A > 0, then equations (4.3) and (4.5) become

2A
U=A+ 1x2 (4.20)
and

21X — sign(®)de (4.21)

219X = g . :

Taking the integration, we have
X+1

Fs(X)=2X —In | S| = [€]+Ks, K5 =Fs(X(0)). (4.22)

Noticing thatX = /3= andA > 0 imply

U<A X>1
and arctanty = %In %‘;, (0 < y< 1), therefore, we can reduce (4.22) to the following
implicit solution

Fs(X) =2X — 2arctanh>3( =1&| +Ks, §=x—3At. (4.23)

Thus we obtain the following candidate solution
2A

U A R (e ke

Ks € R; (4.24)

It is easy to check that
Us(0) = (c—2A) + ﬁ% € (—»,A), Us(d+w) = A, andUs strictly increases on
5
[0,00) and strictly decreases dr-,0]. Since neithec nor c — 2A belong to the range of
Us, by virtue of Lemma 3.2 we know there is no single peak soliton solution for tisis.ca

2. If c=3A < 0, similarly we can conclude that there is no single peak soliton solution.

Therefore we get our main theorem.
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2D graphic of explicit solutions for =1, a=1/2 (A=3c) 2D graphic of explicit solutions for =1, a=1/2 (A=3c)

Figure 1. 2D graphics for single peak soliton solutions waith 1/2.

Theorem 4.1. Assume that the single peak soliton solutigr,ti = U (x — ct) (0 be the
unique peak point of U) of the CH equation (1.2) satisfies the boundanglition (2.5).
Then we have

1. if A=0, the only single peak soliton solutiorixt) is the following peakon solution
u(x,t) =U (x—ct) = ce ¥,
with the properties:
U(0) =c, U(£e) =0, U'(0+) = —c, U'(0-) =g;
Leta =c/Aif A#0.
2. if 1< a < 3, there is no single peak soliton solution for the CH equation (1.2) ;

3. if a < 1, the only single peak soliton solution (see Figures 1, 2 and 3) of the CH
equation (1.2) can be expressed as
2A

u(xt) =U(x—ct) = (c— 2A) + 1= (F, Y(|x—ct)))?’
1

with the properties:
U(0) =c, U(e) = A, U’(0+) = sign(A)eo, U'(0—) = —sign(A)eo,
where F is defined by equatiof#.8); This is a cusp soliton solution.

4. if a > 3, the only single peak soliton solution of the CH equation (1.2) is of the
following form (see Figures 4, 5 and 6)

2A
1— (Fy () —ct)))?

u(x,t) =U(x—ct) = (c—2A)+

with the properties:
U(0)=c—2A, U (£o) = A, u’(0) =0,

where R is defined by equatiof@.14) This is a smooth soliton solution.
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2D graphic of solution for a=1, a=1/3 (A=4c/3)

ar — e, =

2D graphic of solution for a=1, a=1/3 (A=4c/3)

solution U
N
Iy
solution U
9
o

Figure 2. 2D graphics for single peak soliton solutions waith 1/3.

3D graphic of the implicit solitary solution for A=3, c=1 ( 8=1/2) 3D graphic of the implicit solitary solution for A=4, ¢=3 ( a=1/3)

solution

35

o

time (1) 3,

space (9 time (t)

Figure 3. 3D images for the implicit single peak soliton solutions with1/2 and /3.

5. Explicit Single Peak Soliton Solutions

In this section, we discuss the exact single peak soliton solutions of the Citieu (1.2).
However,Fl‘1 andFs‘1 are given in an implicit form (see Theorem 4.1). In general, we can
not get an explicit form frorrFf1 and F3*1 because of an arbitrary constanfo < a < 1)
involved. But, for some specia's, we do have explicit solutions, which are discussed
below.

Let us work on the inverse functions Bf andFs. F(X) = || implies that

1+X a—

In aln =
1—XJr a+X

—&; 0<X<a

Taking the exponential operation on both sides gives
1+ X ra=Xya
1-X <a+ x> e

Generally, this equation is hard to solve. However, if we select some spewifstants
c, A, we are able to expres&in terms of¢. Let us list these cases below.
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2D graphic of explicit solutions for =1, a=2 (A=3c/11) s 2D graphic of explicit solutions for a=1, a=2 (A=3c/11)
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Figure 4. 2D graphics for single peak soliton solutions vaith 2.

2D graphic of solution for u=1, a=3 (A=4c/13) 2D graphic of solution for «=1, a=3 (A=4¢/13)
5 //,« \\; 3.4
7 %
a8} /y/ \ 361
46 /"/ \ 38 -
44 s \\ 4 s ’
g 42 /// % S é 4.2 o /’/ B
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\ 7 =11
36| ) e k e 48+ t\\y //"/
e il ‘ ‘ ‘ . ‘ P ) ) N / . . ,
A5 -10 -5 0 5 10 18 -15 -10 -5 0 5 10 15
| | &
Figure 5. 2D graphics for single peak soliton solutions wsith 3.
CaseA = 3c.
; _ A—c _ 1
In this case, we havé= |/ ;- = 5 and
<1+X)21—2X o e_z‘al
1-X/ 142X ’
which can be reduced to
X3+3bX2—b=0, (5.1)

whereb = $tanhg|.

— 142\ V1—4p2\1/
X:—b+b<1+\/$)l3 b(%)”’.

Substitutingo = 3tanh(|€|) into the above equation and computing it, we obtain a sim-
plified form of X

X (&) = %tanhﬂ [tanr?/3|22|+cotr?/3’;| —1}, (5.2)
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3D graphic of the impliicit solitary solution for A=4, c=13 (a=3)

3D graphic of the implicit solitary solution for A=3, c=11 (a=2)

O space (9

time (t) time (t)

Figure 6. 3D images for the implicit single peak soliton solutions &ith 2 anda = 3.

3D graphic of the explicit solitary solution for A=3, c=1 (a=1/2)
3D graphic of the explicit solitary solution for A=-3, c=-1 (a=1/2)

solution
solution

3 time ()

time ()

Figure 7. 3D images for the explicit single peak soliton solution with1/2.

which gives a family of explicit solutions of equation (2.6)

6c

ToX(ER cVa(8), (5.3)

U(§) =-5c+

wherec is a wave speed being an arbitrary nonzero constant, and

2
[tanr?/ 3%' +coth?/ 3&2' - 1}

Vi(§) =1+6 5
4cott? | — [tanl'?/s@ +cott?/3El - 1}

is the solution corresponding to= 1 (See Figure 7).

CaseA = 3c/11.
In this casea = 2, and from

Fs(X) = [El,
we obtain X1 /X 2\ 2
ATH(ATEN a8
x-1(x+2> €
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which is able to be simplified to
X3 —3bX?+4b=0, (5.4)

whereb = coth%'.
An analogous procedure is applied to solve equation (5.4). On the in{@val, we
obtain the unique real root of equation (5.4)

vV1-b%— 1)1/3+b(\/1—b2—|—1>1/3
V1-02+1 V1-b2— '
By the substitution ob = coth@ into the above formulaX is simplified as follows

2/3} .

xzb+b(

X&) = COtrM[l+2Re(S€Cl'l»+|tan EI)
(5.5)

Noticing the identity tanf(x) + secif(x) = 1, we have the existence 8() such that
sec%ﬂtan & _ gowm 0<8(8) <12,
which implies that
& i tann 2
Re(secf% +itan > cosge(E) > 0.
Therefore we can rewrite equation (5.5) as

1 2
X&) = SinB(E) [l+2co&39(2)}

= cotku [1 +2 cos( ; arccos sec%') ] . (5.6)

Apparently X (§) > sme( 7> 2. Thus we obtain a family of explicit solutions of equation
(2.6)

5¢c 6¢ 1
R TR TE (L

. cC 0(€)
= 1—1<5—6tanﬁ7>
cVa(§), (5.7)

where the wave speatican be an arbitrary nonzero constaxts,) is defined by equation
(5.6), and

cos( arccossec%) i

Va(§) =

cos<§ arccos sec%) +1

is the solution of equation (2.6) correspondingte 11 (See Figure 8).

The case ofa = 3 (A = 4¢/13) is complicated, but we can also obtain the explicit
solutions through repeating the above procedures. Here, we ign@aitedecomputations,
but give their graphs (See Figure 9).
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3D graphic of the expiicit solitary solution of CH eqautionfor A=3, ¢=11 (a=2)

3D graphic of the expiicit solitary solution for A=-3, ¢=-11 (a=2)

time (t)

Figure 8. 3D images for the explicit single peak soliton solution aith 2.

3D graphic of the implicit solitary solution for A=4, c=13 ( a=3) 3D graphic of the explici

44

2 N /4'// ‘
g 0 ‘\%\\\\\\\\\\\\\\/////////ffﬂ// |
:,5~\: . iy ’ ) < “\ ‘

time (t) time (t)

Figure 9. 3D images for the implicit single peak soliton solution aith 3.

6. Conclusions

In this paper we provide an approach to obtain explicit solutions of the Gatdslm (CH)
equationm, + myu+ 2muy, = 0, m = u— Uy under the inhomogeneous boundary condition
u— A(Ais a constant) as— +. Actually, this approach can be also applied to other types
of nonlinear PDEs. What we are interested in is to find new solutions of re@mlgguations
regardless of integrability. We are applying this methob-eguation:m, + myu+bmy, =
0, m=u— uy and already got some new solutions, which we will do this in near future.
Another aspect of this method is compare with regular peakon solutions d@khe
equation. Regular peakon solutions are continuous, but not smoothdecledt derivative
equals 1 and right derivative equald at peak points. The cusp soliton solutions we get in
this paper are different from the regular peakons since booth lafiatige and right deriva-
tive do not exist at peak points (see Theorem 4.1). In addition, unddéntitomogeneous
boundary conditiorA = 0, we obtain smooth soliton solutions for the CH equation (1.2) as
well as new cusp soliton solutions in our paper. Mathematical analysis aneritugraphs
are also provided for those smooth soliton and peakon solutions.
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