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Abstract

This paper is contributed to explore all possible single peak soliton solutions for
the Camassa-Holm (CH) equationmt +mxu+2mux = 0, m= u−uxx under the bound-
ary conditionu→ A (A is a constant) asx→±∞. Our procedure shows that the CH
equationeither has cusp soliton and smooth soliton solutions only under theinho-
mogeneous boundary condition lim|x|→∞ u = A 6= 0, or possesses the regular peakon

solutionsce−|x−ct| (c is the wave speed) only when lim|x|→∞ u = 0 (see Theorem 4.1).
We also prove that the constructed cusp soliton and smooth soliton are weak solutions
in distribution sense. Moreover we present new cusp solitonand smooth soliton solu-
tions in an explicit form. Asymptotic analysis and numerical simulations are provided
for smooth solitons and cusp solitons of the CH equation.
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1. Introduction

The Camassa-Holm (CH) equation [4] is written in the following form

mt +mxu+2mux = 0, m= u−α2uxx, (1.1)

which has excited much interest in recent years. Hereu = u(x, t) represents the horizontal
component of the fluid velocity, andm= u−α2uxx is the momentum variable with the pa-
rameterα > 0 introducing nonlocality. The subscriptsx, t of u denote the partial derivatives
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of the functionu w.r.t. x, t. For example,ut = ∂u/∂t, uxxt = ∂3u/∂2x∂t. Similar notations
will be used frequently later in this paper. The existence of the CH equation was implied
by the work of Fokas and Fuchssteiner (1981) on hereditary symmetries [11]. It came to be
remarkable in the work of Camassa and Holm (1993) where a new type of soliton solution
(called peakon), was described [4]. A peakon is a weak solution with non-smooth property
at some points.

As it was shown by Camassa and Holm, equation (1.1) describes the unidirectional
propagation of two dimensional waves in shallow water over a flat bottom. Thesolitary
waves of equation (1.1) regain their shape and speed after interacting nonlinearly with
other solitary waves. A discussion of the integrability of the CH equation and a method
of solution can be found in Camassa and Holm (1993) [4], and more mathematical detail is
given in Beals et al. (1998) [2]. A further exploration, opening the wayto the construction
of solutions, is given by Contantin, Echer, and McKean (1998,1999) [5, 6, 7], Alber et al
(2001) [1], Johnson (2002) [13], and Qiao (2003) [15]. Thereafter, Qiao [16] dealt with an
extension version of the CH equation - the DP equation [10].

Because the parameterα can be scaled to unity, without any loss of generality, we set
α = 1 and consider the standard CH equation

mt +mxu+2mux = 0, m= u−uxx, x∈ R. (1.2)

In literature, several authors [3, 9, 14] studied the traveling wave solutions of CH equation
decaying at both infinities by using the asymptotic analysis theory. Most solutions were
given in an implicit form.

The present paper provides an approach to construct explicit solitarywave solutions of
the CH equation (1.2) under inhomogeneous boundary condition. We givenew solutions of
the CH equation through setting the traveling wave solution under the only boundary condi-
tion u→ A (A is a constant) asx→±∞. All possible exact single peak soliton solutions of
the CH equation (1.2) are obtained both in explicit and in implicit form, particularlyregular
peakon solutions of the CH equation correspond to the homogeneous boundary condition
A= 0. For the inhomogeneous boundary conditionA 6= 0 both smooth solitons and cuspons
are obtained in our paper. We will analyze in detail the cases of exact solutions, and classify
the cases we obtain an explicit solutions and the cases we obtain implicit solutionsshowing
in numeric graph. Our main results will be summarized in Theorem 4.1 after introducing
some notations and definitions.

2. Traveling Wave Setting

Let us consider the traveling wave solution of the CH equation (1.2) througha generic
settingu(x, t) = U(x−ct), wherec is the wave speed. Letξ = x−ct, thenu(x, t) = U(ξ).
Substituting it into the CH equation (1.2) yields

(U −c)(U −U ′′)′ +2U ′(U −U ′′) = 0, (2.1)

whereU ′ = Uξ, U ′′ = Uξξ, U ′′′ = Uξξξ.
If U −U ′′ = 0, then equation (2.1) has general solutions ofU(ξ) = c1eξ + c2e−ξ with

any real constantsc1, c2. Of course, they are the solutions of the CH equation (1.2). This
result is not so interesting to us.
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On the other hand, the CH equation has the peakon solution [4]u(x, t) = U(ξ) =
ce−|x−ct−ξ0| (ξ0 = x0−ct0) with the following properties

U(ξ0) = c, U(±∞) = 0, U ′(ξ0−) = c, U ′(ξ0+) = −c, (2.2)

whereU ′(ξ0−) andU ′(ξ0+) represent the left-derivative and the right-derivative atξ0,
respectively.

Let us now assume thatU is neither a constant function nor satisfiesU −U ′′ = 0. Then
equation (2.1) can be changed to

(U −U ′′)′

U −U ′′ =
2U ′

c−U
. (2.3)

Taking the integration on both sides we obtain

U ′2 = U2 +
2C2

c−U
+C1, (2.4)

whereC1,C2 ∈ R are two integration constants. Let us solve equation (2.4) with the follow-
ing boundary condition

lim
ξ→±∞

U = A, (2.5)

thus the ODE (2.4) becomes

U ′2 = (U −A)2U −c+2A
U −c

. (2.6)

The fact that both sides of (2.6) are nonnegative implies

U −c+2A
U −c

≥ 0. (2.7)

Since we only care about the caseA 6= 0 andA 6= c, we introduce the ratioα = c/A.
After applying the boundary condition (2.5), we obtain the following lemma.

Lemma 2.1. Let U be a solution of(2.6)with boundary condition(2.5), then

α < 1 or α ≥ 3.

3. Smooth Solution and Weak Solution

From now on we focus on seeking single soliton solutions for CH equation (1.2). LetCk(Ω)
denote the set of allk times continuously differentiable functions on the open setΩ. We
denoteLp

loc(R) be the set of all functions whose restriction on any compact subset isLp

integrable.H1
loc(R) = {u∈ L2

loc(R) : u′ ∈ L2
loc(R)}.
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Definition 3.1. A function u(x, t) =U(x−ct) is said to be a single peak soliton solution for
CH equation (1.2) if U satisfies the following conditions
(C1) U(ξ) is continuous onR and has a unique peak point, denoted byξ0, where U(ξ)
attains its local maximum or minimum value;
(C2) U(ξ) is C3(R−{ξ0}) and satisfies the equation(2.1)onR−{ξ0};
(C3) U(ξ) satisfies the boundary condition(2.5).

Without losing the generality we assume thatξ0 = 0.

Lemma 3.2. If u(x, t) = U(x− ct) is a single peak soliton solution for CH equation (1.2)
with the only peak point0, then U(0) = c or U(0) = c−2A. Moreover, we have
(i) if U (0) = c−2A, then U(ξ)∈C∞(R), in this case u is said to be a smooth soliton solution
for (CH) equation (1.2);
(ii) if U (0) = c, then U has the following asymptotic behavior

U(ξ)−c = λξ2/3 +O(ξ4/3), ξ → 0;

U ′(ξ) =
2
3

λξ−1/3 +O(ξ1/3), ξ → 0;

whereλ = (9(c−A)2A
2 )1/3. Thus U(ξ) ∈ H1

loc(R).

Proof. If U(0) 6= c, by virtue of (2.6) we knowU ′(0) exists. ThusU ′(0) = 0 since 0 is a
peak point. By (2.6) again we obtainU(0) = c−2A sinceU(0) = A contradicts the fact that
0 is the unique peak point.
(i) If U(0) = c−2A, thenU(ξ) 6= c for anyξ ∈ R sinceU(ξ) ∈C3(R−{0}). By differen-
tiating both sides of (2.6) we conclude thatU ∈C∞(R).
(ii) It follows from the standard asymptotic analysis. We refer readers to [14]. For readers’
convenience we give the simple proof here.
By (2.6) and phase analysis, we know that

U ′ = −sign(ξ)(U −A)

√

U −c+2A
U −c

(3.1)

SinceU(0) = c is the local maximum or minimum value, we distinguish two cases.
(1) c is minimum value, thus asξ → 0, U(ξ) > c. Let h(U) = 1

(A−U)
√

U−c+2A
, thenh(c) =

1
(A−c)

√
2A

and (3.1) becomes

�
h(U)

√
U −cdU =

�
sign(ξ)dξ. (3.2)

Insertingh(U) = h(c)+O(U −c) into (3.2) and using the initial conditionU(0) = c we
obtain

2
3

h(c)(U −c)3/2(1+O(U −c)) = |ξ| (3.3)

thus

U −c = (
3

2h(c)
)2/3ξ2/3(1+O(U −c))−2/3 = (

3
2h(c)

)2/3ξ2/3(1+O(U −c)) (3.4)
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which impliesU −c = O(ξ2/3). Therefore we obtain

U −c = (
3

2h(c)
)2/3ξ2/3 +O(ξ4/3) = λξ2/3 +O(ξ4/3). (3.5)

(2) c is maximum value, thus asξ → 0,U(ξ) < c. Let h(U) = 1
(A−U)

√
c−2A−U

, thenh(c) =
1

(A−c)
√
−2A

and (3.1) becomes

�
h(U)

√
c−UdU =

�
sign(ξ)dξ. (3.6)

By a completely similar analysis we obtain

U −c = −(
−3

2h(c)
)2/3ξ2/3 +O(ξ4/3) = λξ2/3 +O(ξ4/3). (3.7)

By the equation (3.1) we may obtain the asymptotic estimate forU ′ easily.
U ∈ H1

loc(R) follows from the asymptotic estimates.

Proposition 3.3. If u(x, t) = U(x− ct) is a single peak soliton solution for (CH) equation
(1.2), then U must be a weak solution in the distributional sense of the equation (2.6). In
this sense we say u is a weak solution for (CH) equation (1.2).

Proof. If U(0) = c−2A, by Lemma 3.2 we know thatU is a smooth solution, thus it is a
weak solution in the distributional sense.
If U(0) = c, thenU ∈ H1

loc which impliesU ′2 ∈ L1
loc, thus the left hand side of (2.6) does

make sense. Notice thatU is bounded, we know that the right hand side of (2.6) is also in
L1

loc due to the asymptotic estimate ofU in Lemma 3.2. Thus we may define the distribution
function L(U) = U ′2 − (U −A)2U−c+2A

U−c . By the definition condition (C2)we know that
suppL(U) ⊂ {0}. ThusL(U) must be a linear combination of Dirac functionδ(ξ) and its
derivatives. However the previous analysis shows thatL(U) ∈ L1

loc(R). Therefore we must
haveL(U) = 0.

For a traveling waveu(x, t) = U(x−ct), Lenells rewrote (2.1) into the following equa-
tion

U ′2 +3U2−2cU = ((U −c)2)′′ +a (3.8)

wherea is integration constant. By using (3.8) Lenells defined thatU is a traveling wave
of the CH equation (1.2) ifU satisfies (3.8) in distribution sense (see definition 1 in [14]).

Proposition 3.4. If u(x, t) = U(x− ct) is a single peak soliton solution for (CH) equation
(1.2), then U must be a a weak solution of(3.8)in distribution sense and thus it is a traveling
wave of CH equation according to Lenells’ definition in [14].
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Proof. By virtue of Lemma 3.2 we know thatU ∈ H1
loc, the both sides of the equation (3.8)

make sense and belong toL1
loc. By the definition of single peak soliton, the equation (3.8)

is satisfied for any nonzero point. By a similar argument with the proof of the proposition
Proposition 3.3 we can conclude thatU is a weak solution of (3.8) in distribution sense.

In [8] Constantin and Strauss considered the following equation

m̃t + m̃xũ+2m̃ũx +2kũx = 0, m̃= ũ− ũxx, x∈ R. (3.9)

It is easy to check that the solution ˜u(t,x) of (3.9) with the homogeneous boundary
condition lim|x|→∞ u = 0 corresponds to the solutionu(t,x) of the solution of (1.2) with the
inhomogeneous boundary condition lim|x|→∞ u = k under the following tranformation

ũ(t,x) = u(t,x+kt)−k; m̃(t,x) = m(t,x+kt)−k.

Constantin and Strauss recast equation (3.9) in the following nonlocal conservation law
form

ut +uux +∂x(1−∂2
x)

−1(u2 +
1
2

u2
x) = 0 (3.10)

and defined thatu(x, t) = U(x−ct) with U ∈ H1
loc is a traveling wave of CH equation (1.2)

if U satisfies (3.10) in distribution sense (see the definition 1 in [8], the other conditions in
this definition are satisfied automatically for traveling wave).

In [14] Lenells indicated that the equations (3.8) and (3.10) are equivalent for traveling
waveu(x, t) = U(x−ct) with U ∈ H1

loc. Therefore we obtain

Proposition 3.5. If u(x, t) = U(x− ct) is a single peak soliton solution for (CH) equation
(1.2), then U must be a a weak solution of(3.10) in distribution sense and thus it is a
traveling wave solution of CH equation according to Constantin and Strauss’definition in
[8].

4. Construction of Single Peak Soliton Solutions

Now we construct the single peak soliton solutions for (2.6). We rewrite (2.6) as

U ′ = −(U −A)

√

U −c+2A
U −c

sign(ξ). (4.1)

By virtue of Lemma 3.2 we only need to seek the single peak soliton solution satisfying
the initial condition

U(0) = c, or U(0) = c−2A. (4.2)

Let us assume thatA 6= 0 (if A = 0, the traveling wave solutions are peakon solutions,

which were already dealt with by Camassa and Holm [4]). LetX =
√

U−c
U−c+2A, then

U = (c−2A)+
2A

1−X2 , (4.3)

dU =
4AX

(X2−1)2dX, (4.4)
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and equation (4.1) is converted to

4AX2

(X2−1)[(3A−c)X2− (A−c)]
dX = dξsign(ξ). (4.5)

By virtue of Lemma 2.1 we only need to discuss the following three cases.

Case I: α < 1 (i.e. A > 0,c < A or A < 0,c > A)
1. If A > 0,c < A, then by (2.7), we haveU > c and 0< X < 1. Let

a =

√

A−c
3A−c

,

then 0< a < 1, and equation (4.5) is changed to

f (X)dX ≡ 4A
(A−c)

a2X2

(X2−1)(X2−a2)
dX = dξsign(ξ). (4.6)

Integrating this equation we obtain the following implicit solutions

F(X) ≡ a ln
∣

∣

∣

X +a
X−a

∣

∣

∣
− ln

1+X
1−X

= |ξ|+K, K = F(X(0)). (4.7)

SinceF ′(X) = f (X), we know thatF(X) strictly increases on the interval 0< X < a
with F(0) = 0,F(a−) = ∞, and strictly decreases on the intervala < X < 1 with F(1−) =
−∞,F(a+) = ∞.

Let

F1(X) = F |(0,a)(X) = a ln
a+X
a−X

− ln
1+X
1−X

, (4.8)

and

F2(X) = F |(a,1)(X) = a ln
X +a
X−a

− ln
1+X
1−X

. (4.9)

ThenF1(X), F2(X) are two strictly monotone functions, hence their inverses exist on
the interval(0,a) and(a,1), respectively. So the equation (4.7) can be solved uniquely for
X on the interval(0,a) and(a,1). Therefore, we can define their inverses as

X1(ξ) = F−1
1 (|ξ|+K1), and X2(ξ) = F−1

2 (|ξ|+K2),

which generate the following candidate solutions

U1(ξ) = (c−2A)+
2A

1− (F−1
1 (|ξ|+K1))2

, K1 ≥ 0; (4.10)

U2(ξ) = (c−2A)+
2A

1− (F−1
2 (|ξ|+K2))2

, K2 ∈ R. (4.11)

It is easy to check:

• U1(0) = (c−2A)+ 2A
1−(F−1

1 (K1))2 ∈ [c,A), U1(±∞) = A, andU1 strictly increases on

[0,∞) and strictly decreases on(−∞,0];
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• U2(0) = (c−2A)+ 2A
1−(F−1

2 (K2))2 ∈ (A,∞), U2(±∞) = A, andU2 strictly decreases

on [0,∞) and strictly increases on(−∞,0].

By virtue of Lemma 3.2 we know the only possible single peak soliton solution for (2.1)
is U1(ξ) with U1(0) = c (correspondingly,K1 = 0), defined by

U1(ξ) = (c−2A)+
2A

1− (F−1
1 (|ξ|))2

. (4.12)

2. If A < 0,c > A, then by (2.7), we haveU < c, 0 < X < 1 anda < 1. This case is
completely similar to the case ofA > 0,c < A. Thus we can conclude that the function
U1(ξ), defined by equation (4.12), is the uinque single peak soliton solution of (2.1) for the
case ofA < 0,c > A.

Case II: α > 3 (i.e. c > 3A > 0 or c < 3A < 0)
1. If c > 3A > 0, then by (2.7) we know that

U < c−2A, X > 1, a > 1.

On the intervala < X < ∞, U > A and equation (2.6) is equivalent to

1
U −A

√

c−U
c−2A−U

dU = −sign(ξ)dξ. (4.13)

In a similar way, we can obtain the implicit solution of the ODE (2.6)

F3(X) ≡ a ln
X +a
X−a

− ln
X +1
X−1

= |ξ|+K3, K3 = F3(X(0))). (4.14)

By F ′
3(X) = f (X), we know thatF3(X) is strictly decreasing on the intervala < X < ∞

with F3(a+) = ∞,F3(∞) = 0.
On the interval 1< X < a, U < A and equation (2.6) is equivalent to

1
U −A

√

c−U
c−2A−U

dU = −sign(ξ)dξ. (4.15)

In this case the implicit solution of the ODE (2.6) is

F4(X) ≡ a ln
a+X
a−X

− ln
X +1
X−1

= |ξ|+K4, K4 = F4(X(0))). (4.16)

By F ′
4(X) = f (X), we know thatF4(X) is strictly increasing on the interval 1< X < a

with F4(a−) = ∞,F(1+) = −∞.
Therefore,F3(X),F4(X) have inverses on intervalsa < X < ∞, and 1< X < a, respec-

tively. By a similar analysis we obtain the following candidate solutions

U3(ξ) = (c−2A)+
2A

1− (F−1
3 (|ξ|+K3))2

, K3 ≥ 0; (4.17)

and

U4(ξ) = (c−2A)+
2A

1− (F−1
4 (|ξ|+K4))2

, K4 ∈ R; (4.18)

It is easy to check:
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• U3(0) = (c− 2A) + 2A
1−(F−1

3 (K3))2 ∈ (A,c− 2A], U3(±∞) = A, andU3 strictly de-

creases on[0,∞) and strictly increases on(−∞,0];

• U4(0) = (c−2A)+ 2A
1−(F−1

4 (K4))2 ∈ (−∞,A), U4(±∞) = A, andU4 strictly increases

on [0,∞) and strictly decreases on(−∞,0].

By virtue of Lemma 3.2 we know the only possible single peak soliton solution for (2.1)
is U3(ξ) with U3(0) = c−2A (correspondingly,K3 = 0), defined by

U3(ξ) = (c−2A)+
2A

1− (F−1
3 (|ξ|))2

. (4.19)

2. If c < 3A < 0,then by (2.7), we haveU > c− 2A, X > 1 anda > 1. This case is
completely analogous to the case ofA > 0,c > 3A. Thus we can conclude that the function
U3(ξ), defined by equation (4.19), is the uinque single peak soliton solution of (2.1) for the
case ofA < 0,c < 3A.

Case III: α = 3 (i.e. c = 3A)
1. If c = 3A > 0, then equations (4.3) and (4.5) become

U = A+
2A

1−X2 (4.20)

and
2X2

X2−1
dX = sign(ξ)dξ. (4.21)

Taking the integration, we have

F5(X) ≡ 2X− ln
∣

∣

∣

X +1
X−1

∣

∣

∣
= |ξ|+K5, K5 = F5(X(0)). (4.22)

Noticing thatX =
√

3A−U
A−U andA > 0 imply

U < A, X > 1,

and arctanhy = 1
2 ln 1+y

1−y, (0 < y < 1), therefore, we can reduce (4.22) to the following
implicit solution

F5(X) = 2X−2arctanh
1
X

= |ξ|+K5, ξ = x−3At. (4.23)

Thus we obtain the following candidate solution

U5(ξ) = A+
2A

1− (F−1
5 (|ξ|+K5))2

, K5 ∈ R; (4.24)

It is easy to check that
U5(0) = (c− 2A) + 2A

1−(F−1
5 (K5))2 ∈ (−∞,A), U5(±∞) = A, andU5 strictly increases on

[0,∞) and strictly decreases on(−∞,0]. Since neitherc nor c−2A belong to the range of
U5, by virtue of Lemma 3.2 we know there is no single peak soliton solution for this case.
2. If c = 3A < 0, similarly we can conclude that there is no single peak soliton solution.

Therefore we get our main theorem.



114 Guoping Zhang, Zhijun Qiao and Fengshan Liu

Figure 1. 2D graphics for single peak soliton solutions witha = 1/2.

Theorem 4.1. Assume that the single peak soliton solution u(x, t) = U(x− ct) (0 be the
unique peak point of U) of the CH equation (1.2) satisfies the boundary condition (2.5).
Then we have

1. if A= 0, the only single peak soliton solution u(x, t) is the following peakon solution

u(x, t) = U(x−ct) = ce−|x−ct|,

with the properties:

U(0) = c, U(±∞) = 0, U ′(0+) = −c, U ′(0−) = c;

Let α = c/A if A 6= 0.

2. if 1≤ α ≤ 3, there is no single peak soliton solution for the CH equation (1.2) ;

3. if α < 1, the only single peak soliton solution (see Figures 1, 2 and 3) of the CH
equation (1.2) can be expressed as

u(x, t) = U(x−ct) = (c−2A)+
2A

1− (F−1
1 (|x−ct|))2

,

with the properties:

U(0) = c, U(±∞) = A, U ′(0+) = sign(A)∞, U ′(0−) = −sign(A)∞,

where F1 is defined by equation(4.8); This is a cusp soliton solution.

4. if α > 3, the only single peak soliton solution of the CH equation (1.2) is of the
following form (see Figures 4, 5 and 6)

u(x, t) = U(x−ct) = (c−2A)+
2A

1− (F−1
3 (|x−ct|))2

with the properties:

U(0) = c−2A, U(±∞) = A, U ′(0) = 0,

where F3 is defined by equation(4.14). This is a smooth soliton solution.
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Figure 2. 2D graphics for single peak soliton solutions witha = 1/3.

Figure 3. 3D images for the implicit single peak soliton solutions witha = 1/2 and 1/3.

5. Explicit Single Peak Soliton Solutions

In this section, we discuss the exact single peak soliton solutions of the CH equation (1.2).
However,F−1

1 andF−1
3 are given in an implicit form (see Theorem 4.1). In general, we can

not get an explicit form fromF−1
1 andF−1

3 because of an arbitrary constanta (0 < a < 1)
involved. But, for some speciala’s, we do have explicit solutions, which are discussed
below.

Let us work on the inverse functions ofF1 andF3. F1(X) = |ξ| implies that

ln
1+X
1−X

+a ln
a−X
a+X

= −|ξ|; 0 < X < a.

Taking the exponential operation on both sides gives

1+X
1−X

(a−X
a+X

)a
= e−|ξ|.

Generally, this equation is hard to solve. However, if we select some specific constants
c, A, we are able to expressX in terms ofξ. Let us list these cases below.
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Figure 4. 2D graphics for single peak soliton solutions witha = 2.

Figure 5. 2D graphics for single peak soliton solutions witha = 3.

CaseA = 3c.
In this case, we havea =

√

A−c
3A−c = 1

2 and

(1+X
1−X

)21−2X
1+2X

= e−2|ξ|,

which can be reduced to
X3 +3bX2−b = 0, (5.1)

whereb = 1
2tanh|ξ|.

X = −b+b
(1−

√
1−4b2

1+
√

1−4b2

)1/3
+b

(1+
√

1−4b2

1−
√

1−4b2

)1/3
.

Substitutingb = 1
2tanh(|ξ|) into the above equation and computing it, we obtain a sim-

plified form ofX

X(ξ) =
1
2

tanh|ξ|
[

tanh2/3 |ξ|
2

+coth2/3 |ξ|
2

−1
]

, (5.2)
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Figure 6. 3D images for the implicit single peak soliton solutions witha = 2 anda = 3.

Figure 7. 3D images for the explicit single peak soliton solution witha = 1/2.

which gives a family of explicit solutions of equation (2.6)

U(ξ) = −5c+
6c

1−X(ξ)2 = cV1(ξ), (5.3)

wherec is a wave speed being an arbitrary nonzero constant, and

V1(ξ) = 1+6

[

tanh2/3 |ξ|
2 +coth2/3 |ξ|

2 −1
]2

4coth2 |ξ|−
[

tanh2/3 |ξ|
2 +coth2/3 |ξ|

2 −1
]2

is the solution corresponding toc = 1 (See Figure 7).
CaseA = 3c/11.
In this casea = 2, and from

F3(X) = |ξ|,
we obtain

X +1
X−1

(X−2
X +2

)2
= e−|ξ|
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which is able to be simplified to

X3−3bX2 +4b = 0, (5.4)

whereb = coth|ξ|2 .
An analogous procedure is applied to solve equation (5.4). On the interval(2,∞), we

obtain the unique real root of equation (5.4)

X = b+b
(

√
1−b2−1√
1−b2 +1

)1/3
+b

(

√
1−b2 +1√
1−b2−1

)1/3
.

By the substitution ofb = coth|ξ|2 into the above formula,X is simplified as follows

X(ξ) = coth
|ξ|
2

[

1+2Re
(

sech
|ξ|
2

+ i tanh
|ξ|
2

)2/3]

.

(5.5)

Noticing the identity tanh2(x)+sech2(x) = 1, we have the existence ofθ(ξ) such that

sech
|ξ|
2

+ i tanh
|ξ|
2

= ei θ(ξ), 0 < θ(ξ) < π/2,

which implies that

Re
(

sech
|ξ|
2

+ i tanh
|ξ|
2

)2/3
= cos

2
3

θ(ξ) > 0.

Therefore we can rewrite equation (5.5) as

X(ξ) =
1

sinθ(ξ)

[

1+2cos
2
3

θ(ξ)
]

= coth
|ξ|
2

[

1+2cos
(2

3
arccossech

|ξ|
2

)]

. (5.6)

Apparently,X(ξ) > 2
sinθ(ξ)

> 2. Thus we obtain a family of explicit solutions of equation
(2.6)

U(ξ) =
5c
11

+
6c
11

1
1−X(ξ)2

=
c

11

(

5−6tanh2
θ(ξ)

3

)

≡ cV2(ξ), (5.7)

where the wave speedc can be an arbitrary nonzero constant,X(ξ) is defined by equation
(5.6), and

V2(ξ) =
cos

(

2
3 arccossech|ξ|2

)

− 1
11

cos
(

2
3 arccossech|ξ|2

)

+1

is the solution of equation (2.6) corresponding toc = 11 (See Figure 8).
The case ofa = 3 (A = 4c/13) is complicated, but we can also obtain the explicit

solutions through repeating the above procedures. Here, we ignore detailed computations,
but give their graphs (See Figure 9).
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Figure 8. 3D images for the explicit single peak soliton solution witha = 2.

Figure 9. 3D images for the implicit single peak soliton solution witha = 3.

6. Conclusions

In this paper we provide an approach to obtain explicit solutions of the Camassa-Holm (CH)
equationmt +mxu+2mux = 0, m= u−uxx under the inhomogeneous boundary condition
u→A (A is a constant) asx→±∞. Actually, this approach can be also applied to other types
of nonlinear PDEs. What we are interested in is to find new solutions of nonlinear equations
regardless of integrability. We are applying this method tob-equation:mt +mxu+bmux =
0, m= u−uxx and already got some new solutions, which we will do this in near future.

Another aspect of this method is compare with regular peakon solutions of theCH
equation. Regular peakon solutions are continuous, but not smooth because left derivative
equals 1 and right derivative equals−1 at peak points. The cusp soliton solutions we get in
this paper are different from the regular peakons since booth left derivative and right deriva-
tive do not exist at peak points (see Theorem 4.1). In addition, under the inhomogeneous
boundary conditionA 6= 0, we obtain smooth soliton solutions for the CH equation (1.2) as
well as new cusp soliton solutions in our paper. Mathematical analysis and numeric graphs
are also provided for those smooth soliton and peakon solutions.
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