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PACS. 02.30.Ik – Integrable systems.

PACS. 05.45.Yv – Solitons.

PACS. 03.75.Lm – Tunneling, Josephson effect, Bose-Einstein condensates in periodic poten-
tials, solitons, vortices, and topological excitations.

Abstract. – This letter presents all possible explicit single soliton solutions for the Camassa-
Holm (CH) equation mt +mxu+2mux = 0, m = u− uxx. This equation is studied under the
boundary condition u → A (A is a constant) as x → ±∞. Regular peakon solutions correspond
to the case of A = 0. For the case of A �= 0, both new peaked solitons and new type of smooth
solitons, which are expressed in terms of trigonometric and hyperbolic functions, are tremen-
dously given through investigating a Newton equation with a new potential. Mathematical anal-
ysis and numeric graphs are provided for those smooth soliton and new peaked soliton solutions.

Both the Camassa-Holm (CH) equation [1]

mt +mxu+ 2mux = 0, m = u − α2uxx, x ∈ R (1)

and the unidirectional shallow-water wave equation [2]

m̃t + m̃xũ+ 2m̃ũx = −c0ũx + γũxxx, m̃ = ũ − α2ũxx, x ∈ R (2)

have excited much attraction in recent years. The CH equation was implied by the work of
Fokas and Fuchssteiner (1981) on hereditary symmetries [3]. It came to be remarkable in the
work of Camassa and Holm (1993) where the peakon was described [1]. A peakon is a weak
solution with non-smooth property at some points. A discussion of mathematical details is
given in several literatures: by Beals et al. (1998) [4]; Contantin, Escher, and McKean (1998,
1999) [5–7], Alber et al. (2001) [8], Johnson (2002) [9], Qiao (2003) [10], and Gesztesy and
Holden (2003) [11].
Both equations are integrable and have peaked solitons and infinite number of conservation

laws [1,2]. Moreover, the two wave equations are transformable one into the other by a simple
transformation, namely

m̃(x, t) = m

(
x − t

2
(3γ − c0), t

)
+
1
2
(γ − c0), ũ(x, t) = u

(
x − t

2
(3γ − c0), t

)
+
1
2
(γ − c0).
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Because the parameter α can be rescaled to unity, without any loss of generality, we set α = 1
and consider a cleaned CH equation

mt +mxu+ 2mux = 0, m = u − uxx, x ∈ R. (3)

Parker [12] studied the bilinear form for the CH equation and gave solitary-wave solutions,
regular peaked solitons and some solution given in an implicit form. Dullin, Gottwald and
Holm [13] dealt with the traveling-wave solutions of a generalized version of the CH equation
and gave solutions also in an implicit form. The present letter provides an approach to obtain
all possible explicit single soliton solutions for the CH equation (3). Our strategy is to use the
discontinuity of the first-order derivative and the Dirac distribution skills for the CH equation
(see eq. (11) and Theorem 1). In the letter we find new explicit solutions of the CH equation
through setting the traveling-wave solution under the boundary condition u → A (A is a
constant) as x → ±∞. In particular, regular peakon solutions of the CH equation correspond
to the case of A = 0. The most interesting case is A �= 0, where smooth soliton solutions and
new peaked soliton solutions are tremendously obtained in this letter.
Let us consider the traveling-wave solution of the CH equation (3) through the setting

u(x, t) = U(x−ct), where c is the wave speed. Let ξ = x−ct, then u(x, t) = U(ξ). Substituting
it into the CH equation (3) yields

(U − c)(U − U ′′)′ + 2U ′(U − U ′′) = 0, (4)

where U ′ = Uξ, U ′′ = Uξξ, U ′′′ = Uξξξ.
The CH equation has the peakon solution [1] u(x, t) = U(ξ) = ce−|x−ct−ξ0| (ξ0 = x0 − ct0)

with the following properties:

U(ξ0) = c, U(±∞) = 0, U ′(ξ0−) = c, U ′(ξ0+) = −c, (5)

where U ′(ξ0−) and U ′(ξ0+) represent the left-derivative and the right-derivative at ξ0, respec-
tively.

Proposition 1. The CH equation (3) has the following weak traveling-wave solution:

u(x, t) = −a sinh(|x − ct − ξ0|) + ce−|x−ct−ξ0|, (6)

where a ∈ R is an arbitrary constant, c is the wave speed, and ξ0 = x0 − ct0 is an arbitrarily
real constant.

In particular, if we take a = 0 in this theorem, then (6) exactly gives the regular peakon
solution u(x, t) = ce−|x−ct−ξ0| which was described by Camassa and Holm [1].
Let us assume that U is neither a constant function nor satisfies U −U ′′ = 0. Then eq. (4)

can be changed to
(U − U ′′)′

U − U ′′ =
2U ′

c − U
. (7)

Let us find all possible soliton solutions of eq. (3) with the boundary condition

lim
ξ→±∞

U = A. (8)

where A is a non-zero constant. After taking double integrations on both sides of eq. (7), we
obtain

U ′2 = U2 +
2A(A − c)2

U − c
+A(2c − 3A) = (U − A)2

U − c+ 2A
U − c

. (9)
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This equation has a physical meaning and coincides with the Newton equation of a particle
in the potential V (U) = U2 + 2A (A−c)2

U−c . Actually, it is U ′2 = V (U) − V (A). The fact that
both sides of eq. (9) are non-negative implies U−c+2A

U−c ≥ 0.
We consider the single soliton solutions, namely, the solution satisfies the boundary condi-

tion (8) and has only one peak point where the discontinuity of the first derivative probably
appears. Assume that ξ0 is the unique peak point, then eq. (9) can be selected as

U ′ = −sign(ξ − ξ0)(U − A)

√
U − c+ 2A

U − c
. (10)

Because of the translation invariance of the differential equation (4), without any loss of
generality, we choose the peak point ξ0 as vanishing, ξ0 = 0. Thus, eq. (10) reads:

U ′ = −sign(ξ)(U − A)

√
U − c+ 2A

U − c
. (11)

Let us assume that A �= 0 (if A = 0, the traveling-wave solutions are regular peakons [1]).

Let X =
√

U−c
U−c+2A , then U = (c−2A)+ 2A

1−X2 , dU = 4AX
(X2−1)2 dX, and eq. (11) is converted to

f(X)dX ≡ 4AX2

(X2 − 1)[(3A − c)X2 − (A − c)]
dX = sign(ξ)dξ. (12)

Since lim
ξ→±∞

U = A, we know that there is no solution for eq. (9) if A falls in the gap between

c − 2A and c, that is,

Proposition 2. If 0 < A ≤ c < 3A or 3A < c ≤ A < 0, then there is no solution for eq. (9)
satisfying the boundary condition (8).

Case I: A > 0, c < A or A < 0, c > A.
1) If A > 0, c < A, then U > c and 0 < X < 1. Let a =

√
A−c
3A−c , then 0 < a < 1. Integrating

eq. (12) on the interval [0, ξ] (or [ξ, 0]) leads to the following implicit solutions:

F (X) ≡ a ln
∣∣∣X + a

X − a

∣∣∣ − ln 1 +X

1− X
= |ξ|. (13)

Since F ′(X) = f(X), we know that F (X) strictly increases on the interval 0 < X < a with
F (0) = 0, F (a−) =∞. Denote

F1(X) = F |(0,a)(X) = a ln
a+X

a − X
− ln 1 +X

1− X
= a arctanh

X

a
− arctanh X. (14)

Then F1(X) has the inverse on the interval (0, a). So, eq. (13) can be solved uniquely for X
on the interval (0, a). Therefore, we define F1(X)’s inverse as X1(ξ) = F−1

1 (|ξ|).
2) If A < 0, c > A, then we have U < c, 0 < X < 1 and a < 1. This case is completely similar
to the case of A > 0, c < A.

Case II: c > 3A > 0 or c < 3A < 0.
1) If c > 3A > 0, then U < c − 2A, X > 1, a > 1. On the interval a < X < ∞, U > A and
eq. (9) is equivalent to

1
U − A

√
c − U

c − 2A − U
dU = −sign(ξ)dξ. (15)

Solving this equation yields the following implicit solution of eq. (9):

F2(X) ≡ a ln
X + a

X − a
− ln X + 1

X − 1 = |ξ|. (16)
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By F ′
2(X) = f(X), we know that F2(X) strictly decreases on the interval a < X < ∞ with

F2(a+) = ∞, F2(∞) = 0, which implies that F2(X) is invertible on the interval (a,∞).
Denote the inverse by X2(ξ) = F−1

2 (|ξ|).
2) If c < 3A < 0, then U > c − 2A, X > 1 and a > 1. This case is completely analogous to
the case of A > 0, c > 3A. Let

Uj = (c − 2A) + 2A
1− (F−1

j (|ξ|))2 , j = 1, 2; (17)

and we denote the left-hand side of eq. (4) by

L(U) ≡ (U − c)(U − U ′′)′ + 2U ′(U − U ′′). (18)

A direct calculation leads to the following Dirac distribution theorem.

Theorem 1. Let U be either U1 or U2, then

L(U) = 2(U(0)− A)(U(0)− c)

√
U(0)− c+ 2A

U(0)− c
δ′(ξ), (19)

where δ(ξ) is the delta function, and U is a weak solution of eq. (4) iff

U(0) = A or U(0) = c or U(0) = c − 2A. (20)

Notice that U(0) = A corresponds to the trivial solution U ≡ A. What we are interested
in is the other two cases: U(0) = c or U(0) = c − 2A. Here is our main result.
Theorem 2. Assume that the single soliton solution u(x, t) = U(x − ct) (0 is the unique peak
point of U) of the CH equation (3) satisfies the boundary condition (8). Then we have

1) if A = 0, the only single soliton solution u(x, t) is the following peakon:

u(x, t) = U(x − ct) = ce−|x−ct|,

with the properties

U(0) = c, U(±∞) = 0, U ′(0+) = −c, U ′(0−) = c;

2) if A > 0, A ≤ c ≤ 3A or A < 0, 3A ≤ c ≤ A, there is no solitary-wave solution U(x−ct)
for the CH equation (3);

3) if A > 0, c < A or A < 0, c > A, the solitary-wave solutions of the CH equation (3) have
peak points (see figs. 1) and can be expressed as

u(x, t) = U(x − ct) = (c − 2A) + 2A
1− (F−1

1 (|x − ct|))2 ,

with the properties

U(0) = c, U(±∞) = A, U ′(0+) = sign(A)∞, U ′(0−) = −sign(A)∞,

where F1 is defined by eq. (14);
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Fig. 1 – 2D graphics for peaked soliton solutions with a = 1/2.

4) if 0 < 3A < c or c < 3A < 0, the solitary-wave solution of the CH equation (3) is smooth
with the following form (see figs. 2):

u(x, t) = U(x − ct) = (c − 2A) + 2A
1− (F−1

2 (|x − ct|))2
with the properties

U(0) = c − 2A, U(±∞) = A, U ′(0) = 0,

where F2 is defined by eq. (16).

As shown above, we provide the exact traveling-wave solutions of the CH equation (3).
However, because of the implicit form of F−1

1 and F−1
2 (see Theorem 2), in general, we cannot

get an explicit form from F−1
1 and F−1

2 . But, for some special a’s, we do have explicit solutions.
Let us work on the inverse functions of F1 and F2.

F1(X) = |ξ| implies that
ln
1 +X

1− X
+ a ln

a − X

a+X
= −|ξ|, 0 < X < a,

which is equivalent to
1 +X

1− X

(a − X

a+X

)a

= e−|ξ|.

Let us discuss some special cases below.

Case A = 3c.
In this case, we have a =

√
A−c
3A−c =

1
2 and(1 +X

1− X

)2 1− 2X
1 + 2X

= e−2|ξ|,

Fig. 2 – 2D graphics for smooth soliton solutions with a = 2.
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Fig. 3 – 3D pictures for the explicit peaked soliton solutions with a = 1/2.

which can be reduced to X3 + 3bX2 − b = 0 where b = 1
2 tanh|ξ|. Solving this equation gives

us X(ξ) = 1
2 tanh|ξ|

[
tanh2/3 |ξ|

2 + coth
2/3 |ξ|

2 − 1
]
. So, we obtain a family of explicit peaked

soliton solutions of the CH equation (3),

U(ξ) = c+ 6c

[
tanh2/3 |ξ|

2 + coth
2/3 |ξ|

2 − 1
]2

4 coth2 |ξ| −
[
tanh2/3 |ξ|

2 + coth
2/3 |ξ|

2 − 1
]2 ≡ cV1(ξ), (21)

where the wave speed c is an arbitrary nonzero constant, and

V1(ξ) = 1 + 6

[
tanh2/3 |ξ|

2 + coth
2/3 |ξ|

2 − 1
]2

4 coth2 |ξ|
α −

[
tanh2/3 |ξ|

2 + coth
2/3 |ξ|

2 − 1
]2

is the bounded peaked soliton solution corresponding to c = 1 (see fig. 3).

Case A = 3c/11.

In this case a = 2, and from F2(X) = |ξ|, we obtain X+1
X−1

(
X−2
X+2

)2

= e−|ξ| which gives

the following explicit form of X in terms of ξ: X(ξ) = coth |ξ|
2

[
1 + 2 cos

(
2
3 arccos sech

|ξ|
2

)]
.

Apparently, X(ξ) = 1

sin
θ(ξ)
3

> 2. Thus we obtain a family of explicit smooth soliton solutions

of the CH equation (3),

U(ξ) =
c

11

11 cos
(

2
3 arccos sech

|ξ|
2

)
− 1

cos
(

2
3 arccos sech

|ξ|
2

)
+ 1

≡ c

11
V2(ξ), (22)

Fig. 4 – 3D pictures for the explicit smooth soliton solutions with a = 2.
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where the wave speed c is an arbitrary nonzero constant, and

V2(ξ) =
11 cos

(
2
3 arccos sech

|ξ|
2

)
− 1

cos
(

2
3 arccos sech

|ξ|
2

)
+ 1

is the smooth soliton solution corresponding to c = 11 (see fig. 4).
In this letter we provide an approach to obtain all possible explicit solutions of the

Camassa-Holm (CH) equation mt + mxu + 2mux = 0, m = u − uxx under the boundary
condition u → A (A is a constant) as x → ±∞. In particular, for the first time we have got
new peaked solitons and new type of smooth solitons, which are expressed in terms of trigono-
metric and hyperbolic functions (see eqs. (21) and (22)), for the CH equation. Consequently,
we solve the Newton equation U ′2 = V (U)−V (A) with a new potential V (U) (see eq. (9)) for
all possible single soliton solutions on the base of the mathematical skills and proof since this
equation is generated from the CH equation. This is very helpful for us to deal with physical
equations. New peaked solitons and new type of smooth soliton solutions are expected to
apply in nonlinear shallow-water wave theory and Newton motion theory because they have
a very close relation to the Newton equation (9).
Actually, this approach can be also applied to other types of nonlinear PDEs. What we

are interested in is to find new solutions of nonlinear equations regardless of integrability. We
are applying this method to all b-equations: mt+mxu+ bmux = 0, m = u−uxx and already
get some new solutions, which we will report in another paper.
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