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Abstract 

This paper suggests an approach to solve the generalized Benjamin-Bona-Mahony (BBM) 
equation. The approach is given through improving the tanh function method based on an 
auxiliary ordinary differential equation, and is used to construct explicit traveling wave 
solutions of nonlinear evolution equations. We will show the efficiency of our method through 
the generalized BBM equation. The results we have got in the present paper indicate that our 
approach not only offers the existing solutions in literature, but also some new solitary wave 
solutions and triangular periodic wave solutions. 
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1. Introduction 

Recently, the following two auxiliary equations 
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were used for solving nonlinear evolution equations [1–3]. Some nonlinear physical models 
are investigated and new traveling wave solutions are explicitly obtained [1–3]. Then, a 
natural question arises here: can we combine the exact solution of Eq. (1) with Eq. (2)’s to 
form a uniform solution for both equations. Furthermore, which equation is more powerful 
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and useful in solving traveling wave solutions for nonlinear evolution equations? The present 
paper is going to address the questions.  

This paper is organized as follows. In section 2, a new auxiliary ordinary differential 
equation is proposed, and uniform of exact solutions of Eqs.(1) and (2) is provided. In section 
3, the procedure of the improved tanh function method is described in details. In section 4, by 
means of the improved tanh function method and the uniform solutions of the auxiliary 
equations, the traveling wave solutions for the generalized BBM equation with any power 
order are presented. Section 5 gives some remarks and conclusions. 

2. Exact Solutions of the Uniform Auxiliary Ordinary Differential 
Equation 

Combining Eq. (1) with Eq. (2), we construct the following uniform of auxiliary ordinary 
differential equation:  

 

 ),()()()( 22
4

2
3

2
2

2 ξϕξϕξϕ
ξ
ϕ ++ ++= pp ccc

d
d

  (3) 

 

where are constant coefficients and 432 ,, ccc L,3,2,1=p . Apparently, Eqs.(1) and (2) are 

two special cases of  and 1=p 2=p  in Eq. (3). In general, it is very difficult to find exact 
solutions of Eq. (3) [4]. In this paper, based on our previous experience [2], we obtain new 
exact solutions of Eq. (3). For brevity, we omit the procedure of solving Eq. (3) and list exact 
solutions of Eq. (3) below: 
 

Case1. When , and makes sense for arbitrary negative number , Eq.(3) 
has the following solution: 
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Case2. When ,  and makes sense for arbitrary negative number , 
Eq.(3) obtains the following solutions: 
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Case3. When ,  and makes sense for arbitrary negative 

number , Eq.(3) admits the following solution: 
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Case4. When , and makes sense for arbitrary negative 

number , Eq.(3) has the following solution: 
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Case5. When ,  and makes sense for arbitrary negative 

number , Eq.(3) obtains the following solutions: 
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Case6. When ,  and makes sense for arbitrary negative number , 
Eq.(3) admits the following solutions:  
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Case7. When  and makes sense for arbitrary negative number , Eq.(3) 
has the following solutions: 

03 =c PD /1)( D

 

 pcpch
c
c 1

2
4

2
19 )cs()( ξξϕ ±= ,  ( , ) (22) 0c2 > 04 >c

 

 pcpch
c
c 1

2
4

2
02 )se()( ξξϕ −±= ,  ( ,0c2 > 04 <c ) (23) 

 

 pcp
c
c 1

2
4

2
12 )csc()( ξξϕ −−±= ,  ( 0c2 < , )  (24) 04 >c

 
Case8. When  and makes sense for arbitrary negative number , Eq.(3) 

obtains the following solutions: 
04 =c PD /1)( D
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Remark: The solutions (4)-(14), (22),(23),(25) and (26) are solitary wave solutions that 

include bell-profile and kink-profile solutions, and the solutions (15)-(21), (24) and (27) are 
triangular periodic wave solutions. The solutions (11), (13) and (15) coincide with the results 
in Refs. [5-8] and others are new, which do not yet appear in literature within our knowledge. 

3. The Improved tanh Function Method 

The procedure of the improved tanh function method is described as follows 
 
Step1.For a given nonlinear evolution equation with physical fields  ),( txu
 
 0),,,( =Lxxxt uuuuH ,  (28) 
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By using the wave transformation  
 
 txutxu λξξ −== ),(),( ,  (29) 

 
where λ  are constant to be determined later. Then Eq.(28) is reduced to nonlinear ordinary 
differential equations (NODE)  

 
 0),,,( =′′′ LuuuH .  (30) 
 
Step2. We take advantage of Eq.(3) and use its solutions to replace tanh function in tanh 

function method [9]. Namely, expand the solution of Eq.(30) in the form 
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derivatives with respect to the variableξ  become the derivatives with respect to the variable 
ϕ  as :  
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Step3. Supposing the order of the highest derivative term and the degree of the nonlinear 

terms in Eq.(30) respectively are m and r , and substituting the expression (31) into Eq.(30) 
and balancing the highest derivative term with the nonlinear terms in Eq.(30) by making use 
of the expressions (32) and (33), we can obtain the expression  
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For simpler and more powerful solving nonlinear evolution equations, we take p as 

minimum. 
Again, for , we obtain  1≥n
 
 1+≤ mpr .  (35) 
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If we take Eq.(1) or Eq.(2) as an auxiliary equation, we can not solve the nonlinear 
evolution equations with the order of nonlinear terms more than 1+m or .Therefore, 
reducing the order of nonlinear terms in nonlinear evolution equations by proper function 
transformation, we can make use of Eq.(1) or Eq.(2) or other auxiliary equation ( ) 
to solve the nonlinear evolution equations with nonlinear terms of any order. 

12 +m

L,4,3=p

 
Step4. Substituting the expansion (31) into Eq.(30) and setting the coefficients of all 
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we will get a system of nonlinear algebraic equations with respect to 
and ,then solve the system of algebraic equations with the aid 

of the Mathematica to obtain and . 
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Step5.Substituting the constants into Eq.(3), its all the possible solutions are obtained. 

By means of obtained in Step4 and solutions of Eq.(3), we can obtain the solution of 
Eq.(28).  

jc

ia

4. The Traveling Wave Solutions of the Generalized Benjamin-
Bona-Mahony (BBM) Equation 

The well-known generalized BBM equation with nonlinear terms of any order power [5] 
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with constants γδ ,,,ba , has been used in the surface waves of long wavelength in liquids, 
hydromagnetic waves in cold plasma, acoustic waves in anharmonic crystals, and acoustic 
gravity waves in compressible fluids [10]. When ,0,1 === ba γ  Eq. (3) becomes the 
BBM equation. We perform the following transformation: 
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where λ  is a constant. Substituting the expression (37) into Eq.(36) and integrating it with 
respect to ξ  and then taking the integration constant as zero yield an NODE 

 

 0)(
)12(

)(
)1(

)(1)( 121 =
+

+
+

+−′′ ++ ξ
γδλ

ξ
γδλ

ξ
δ

ξ γγ ubuauu .  (38) 

 



Xian-Lin Yang, Jia-Shi Tang and Zhijun Qiao 106 

By means of the expression (35), we obtained p≤γ ( L,3,2,1=p ).Evidently, we can 
not directly solve Eq.(38) with auxiliary equation (3).Thus by using the function 
transformation: 
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Eq.(38) becomes: 
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In Eq.(40), by means of the expression (34), we obtain pn = . For simpler and more 

powerful solving Eq.(40), we take 1== pn . Thus the solution of Eq.(40) can be taken as  
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where variable )(ξϕ satisfies Eq.(1)(the case of 1=p in Eq.(3)). Substituting the expression 
(41) into Eq.(40) along with Eq.(1) leads to the following system of algebraic equations: 
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By use of the Mathematica, solving the over-determined algebraic equations, we have the 

following results:  
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Case2:  
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Substituting the expression (42) with the expressions (4)-(27), respectively, into the 

expressions (41) and (39), we obtain the following solitary wave solutions and triangular 
periodic wave solutions to Eq.(36): 
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where 0>δ , 0<λb , tx λξ −= ; 
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where 0<δ , 0>λb , tx λξ −= ; 
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where 0<δ , 0>λb , tx λξ −= . 
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Remark: In above expressions, 0,0 ≠≠ ba and makes sense for arbitrary 
negative number

γ/1)(D
D .The solutions (55) and (57) coincide with the results in Ref. [5], and 

others are new. 
We can also obtain the solitary wave solutions and the triangular periodic wave solutions 

to Eq. (36) in the case of the expressions (43) - (47). 

5. Conclusions 

In this paper, we improve the tanh function method and apply it to the uniform auxiliary 
ordinary differential equation. The proposed method is adopted to solve the nonlinear 
evolution equations with nonlinear terms of any order power under some suitable function 
transformation. As an example, the generalized BBM equation is investigated and exact 
traveling wave solutions are obtained, including new solitary wave solutions and triangular 
periodic wave solutions. In addition to the generalized BBM equation considered in this paper, 
the proposed method is also available to other nonlinear evolution equations, including the 
compound KdV-type equation, the generalized modified Boussinesq equation without 
dissipative term, the generalized one–dimensional Klein-Gordon equation, the generalized 
Zakharov equations, the generalized (2+1) dimensional Klein-Gordon equation, the 
Rangwala-Rao (RR) equation, the Ablowitz (A) equation and the Gerdjikov-Ivanov 
(GI)equation [5]. Tracking our procedure, the exact solutions of a given nonlinear evolution 
equation depend on the explicit solvability of Eq.(3) and the system of nonlinear algebraic 
equations with respect to  and .Thus in order to solve nonlinear evolution equations in a 

simpler procedure, we always take 
ia jc

p in Eq. (3) and n  in the expression (31) as minimum. 
Recently, we also studied the peaked soliton equations, including the Camassa-Holm 
hierarchy [13,18], the Degasperis-Procesi hierarchy [12,16,17], and new cusp and M/W-shape 
peak soliton equations [11,14,15,]. How do we apply our improved tanh function method to 
those cusp and peaked soliton equations? We will think about them in near future. 
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