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Abstract We report two integrable peakon systems that have weak kink
and kink-peakon interactional solutions. Both peakon systems are guaranteed
integrable through providing their Lax pairs. The peakon and multi-peakon
solutions of both equations are studied. In particular, the two-peakon dynamic
systems are explicitly presented and their collisions are investigated. The weak
kink solution is studied, and more interesting, the kink-peakon interactional
solutions are proposed for the first time.
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1 Introduction

In recent years, the Camassa-Holm (CH) equation [2]

mt − bux + 2mux + mxu = 0, m = u − uxx, (1)

where b is an arbitrary constant, has attracted much attention in the theory of
soliton and integrable system [1,3–6,9,11,13,14,17,21,22]. The most interesting
feature of the CH equation (1) is to admit peaked soliton (peakon) solutions
in the case of b = 0. In addition to the CH equation, other integrable models
with peakon solutions have been found, such as the Degasperis-Procesi equation
[7,8,18,19] and the cubic nonlinear peakon equations [10,12,15,16,20,23–25].

In this paper, we study the following equation with both quadratic and
cubic nonlinearity:

mt = bux +
1
2

k1[m(u2 − u2
x)]x +

1
2

k2(2mux + mxu), m = u − uxx, (2)
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(with k1 and k2 being two arbitrary constants) and its two-component
extension: ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

mt = bux +
1
2

[m(uv − uxvx)]x − 1
2

m(uvx − uxv),

nt = bvx +
1
2

[n(uv − uxvx)]x +
1
2

n(uvx − uxv),

m = u − uxx,

n = v − vxx.

(3)

Equation (2) is actually a linear combination of CH equation (1) and cubic
nonlinear equation

mt = bux + [m(u2 − u2
x)]x, m = u − uxx, (4)

which was derived independently by Fokas [10], Fuchssteiner [12], Olver and
Rosenau [21], and Qiao [23], where the equation was derived from the two-
dimensional Euler system, and Lax pair, the M/W-shape solitons and peakon/
cuspon solutions were presented. Apparently, the two-component system (3) we
propose is reduced to the CH equation (1), the cubic CH equation (4), and the
generalized CH equation (2) as v = 2, v = 2u, and v = k1u + k2, respectively.

Both (2) and (3) are proven integrable through their Lax pairs,
bi-Hamiltonian structures, and infinitely many conservation laws. In the case of
b = 0, we show that systems (2)–(4) admit the single-peakon as well as multi-
peakon solutions. In particular, we explicitly solve the two-peakon dynamic
systems and study their collisions in details. In the case of b �= 0, we find that
(4) and (3) possess the weak kink solutions. More interesting, the kink-peakon
interactional solutions are for the first time proposed for equation (4) in the
case of b �= 0.

2 Lax pair, bi-Hamiltonian structure, and conservation laws

Equation (3) arises as a compatibility condition

Ut − Vx + [U, V ] = 0

of a pair of linear spectral problems(
φ1

φ2

)
x

= U

(
φ1

φ2

)
, U =

1
2

( −α λm

−λn α

)
, (5)

(
φ1

φ2

)
t

= V

(
φ1

φ2

)
, V = −1

2

(
A B

C −A

)
, (6)

where
m = u − uxx, n = v − vxx,
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b is an arbitrary constant, λ is a spectral parameter,

α =
√

1 − λ2b ,

and
A = λ−2α +

α

2
(uv − uxvx) +

1
2

(uvx − uxv),

B = −λ−1(u − αux) − 1
2

λm(uv − uxvx),

C = λ−1(v + αvx) +
1
2

λn(uv − uxvx).

(7)

Since equation (3) is reduced to the generalized CH equation (2) as v = k1u+k2,
we obtain the Lax pair of (2) by substituting v = k1u + k2 into (5) and (6).
Thus, both (2) and (3) are integrable in the sense of Lax pair.

Proposition 1 Equation (2) has the following bi-Hamiltonian structure:

mt = J
δH1

δm
= K

δH2

δm
, (8)

where

J = k1∂m∂−1m∂ +
1
2
k2(∂m + m∂) + b∂, H1 =

1
2

∫ +∞

−∞
(u2 + u2

x)dx, (9)

K = ∂ − ∂3,
(10)

H2 =
1
8

∫ +∞

−∞

(
k1u

4 + 2k1u
2u2

x − 1
3

k1u
4
x + 2k2u

3 + 2k2uu2
x + 4bu2

)
dx.

Proposition 2 Equation (3) can be rewritten as the following bi-Hamiltonian
form:

(mt, nt)T = J
(δH1

δm
,
δH1

δn

)T
= K

(δH2

δm
,
δH2

δn

)T
, (11)

where

J =
(

∂m∂−1m∂ − m∂−1m ∂m∂−1n∂ + m∂−1n + 2b∂
∂n∂−1m∂ + n∂−1m + 2b∂ ∂n∂−1n∂ − n∂−1n

)
,

H1 =
1
2

∫ +∞

−∞
(uv + uxvx)dx, K =

(
0 ∂2 − 1

1 − ∂2 0

)
,

H2 =
1
4

∫ +∞

−∞
[(u2vx + u2

xvx − 2uuxv)n + 2b(uvx − uxv)]dx.

(12)

Based on a standard treatment, from the Lax pairs (5) and (6), we may
construct the following infinitely many conserved densities and the associated
fluxes of equation (3):
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ρ0 =
√−mn, F0 =

1
2
√−mn (uv − uxvx), ρ1 =

mnx − mxn − 2mn

2mn
,

F1 = −1
2

(uv − uxvx + uvx − uxv) +
1
2

ρ1(uv − uxvx), (13)

ρj = mωj, Fj = (u − ux)ωj−2 +
1
2

ρj(uv − uxvx), j � 2,

where ωj is given by

ω0 =
√

− n

m
, ω1 =

mnx − mxn − 2mn

2m2n
, (14)

and the recursion relation

ωj+1 =
1

mω0

[
ωj − ωj,x − 1

2
m

∑
i+k=j+1, i,k�1

ωiωk

]
, j � 1. (15)

The infinitely many conservation laws of equation (2) may be obtained by
substituting v = k1u + k2 into (13).

3 Peakon solutions in case of b = 0

3.1 Peakon solutions of cubic CH equation (4)

One can directly check that the single-peakon solution of equation (4) with
b = 0 is given by

u = ±
√

3c
2

e−|x+ct|.

In general, we make the ansatz for N -peakons

u(x, t) =
N∑

j=1

pj(t)e−|x−qj(t)|, (16)

which implies

m = 2
N∑

j=1

pjδ(x − qj).

Substituting them into equation (4) yields the following evolution equations for
the peak positions and amplitudes:⎧⎪⎨

⎪⎩
pj,t = 0,

qj,t =
1
3

p2
j −

N∑
i,k=1

pipk(1 − sgn(qj − qi)sgn(qj − qk))e−|qj−qi|−|qj−qk|. (17)
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For N = 2, (17) can be solved with the explicit solutions:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p1(t) = c1, p2(t) = c2,

q1(t) = sgn(t)
3c1c2

| (c2
1 − c2

2) |
(e−|2(c21−c22)t/3| − 1) − 2

3
c2
1t,

q2(t) = sgn(t)
3c1c2

| (c2
1 − c2

2) |
(e−|2(c21−c22)t/3| − 1) − 2

3
c2
2t,

(18)

where c1 and c2 are arbitrary constants. The two-peakon collision occurs at
the moment t = 0, since q1(0) = q2(0) = 0. Without loss of generality, let us
suppose 0 < c1 < c2. From formula (18), we know that for t < 0, the tall and
fast peakon (with the amplitude c2 and peak position q2) chases after the short
and slow peakon (with the amplitude c1 and peak position q1). At the moment
of t = 0, the two-peakon collides and overlaps. After the collision (t > 0), the
two-peakon departs, and the tall and fast peakon surpasses the short and slow
one. See Fig. 1 (a) for the developments of this kind of two-peakon.

Remark 1 Our results show that the collision of two-peakon of equation (4)
is very different from the case of CH equation (1). For the CH equation (1),
the collision happens between peakon and anti-peakon [2]. For the cubic CH
equation (4), the collision of two-peakon occurs in the case that the tall peakon
‘chase’ the short one as described above.

3.2 Peakon solutions of generalized CH system (2)

It is easy to verify that the single-peakon solution of equation (2) with b = 0
take the form of

u = Ce−|x−ct|, (19)

where C is determined by

1
3

k1C
2 +

1
2

k2C + c = 0. (20)

If k1 = 0, k2 = −2, then C = c. Thus, we recover the single-peakon solution
u = ce−|x−ct| of the CH equation (1) with b = 0. For k1 = 2 and k2 = 0, we
reduce to the single-peakon solution of the cubic nonlinear CH equation (4)
with b = 0. In general, for k1 �= 0, we may obtain

C =
−3

(√
3 k2 ±

√
3k2

2 − 16k1c
)

4
√

3 k1

. (21)

If 3k2
2 − 16k1c � 0, then C is a real number. If 3k2

2 − 16k1c < 0, then C is a
complex number. This means that we may have a peakon solution with complex
coefficient.

Let us assume that the N -peakons are the same form as (16). Then we
obtain the following N -peakon dynamic system:

pj,t = −1
2

k2pj

N∑
k=1

pksgn(qj − qk)e−|qj−qk|,
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qj,t = −1
2

k2

N∑
k=1

pke−|qj−qk| +
1
2

k1

(
1
3

p2
j (22)

−
N∑

i,k=1

pipk(1 − sgn(qj − qi)sgn(qj − qk))e−|qj−qi|−|qj−qk|
)

.

For N = 2, selecting k1 = k2 = −2 may yield the following special solution:

p1(t) = coth t, q1(t) =
8

3(e2t − 1)
+ log(e2t + 1) − 1

3
t − log 2,

p2(t) = − coth t, q2(t) =
8

3(e2t − 1)
− log(e2t + 1) +

5
3

t + log 2.
(23)

Thus, we arrive at the following peakon-antipeakon solution:

u(x, t) = coth t(e−|x−q1(t)| − e−|x−q2(t)|), (24)

where q1(t) and q2(t) are shown in (23). In spite of

lim
t→0

p1(t) = − lim
t→0

p2(t) = ∞, lim
t→0

q1(t) = lim
t→0

q2(t) = ∞, (25)

from (24), we still have

lim
t→0

u(x, t) = 0, ∀ x ∈ R, (26)

which indicates that the peakon and the antipeakon vanish when they
overlap. Guided by the above results, we may describe the dynamics of peakon-
antipeakon solution (24) as follows. For t < 0, the peak is at q2(t) and the trough
is at q1(t). The peak and the trough approach each other as t goes to 0. At the
moment of t = 0, the peakon and the antipeakon collide and vanish. After their
collision (t > 0), they separate and reemerge with the trough at q2(t) and the
peak at q1(t). Fig. 1 (b) shows the peakon-antipeakon interactional dynamics.

Remark 2 The amplitudes p1(t) and p2(t) in formula (23) are the same as
those of the CH equation [2], but the peak positions q1(t) and q2(t) are different.
In the CH equation, only p1(t) and p2(t) become infinite at the instant of
collision [2,3]. In the new equation (2), both (p1(t),p2(t)) and (q1(t),q2(t))
become infinite at the instant of collision. However, in both cases, the peakon-
antipeakon vanishes when the overlap occurs.

3.3 Peakon solutions of two-component system (3)

By a direct calculation, we find the single peakon solutions of (3) with b = 0
take the form of

u = c1e−|x+ 1
3

c1c2t|, v = c2e−|x+ 1
3

c1c2t|, (27)
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where c1 and c2 are two arbitrary constants. In general, N -peakon solution is
cast in the following form:

u(x, t) =
N∑

j=1

pj(t)e−|x−qj(t)|, v(x, t) =
N∑

j=1

rj(t)e−|x−qj(t)|. (28)

Substituting (28) into (3) with b = 0, we are able to obtain the following
N -peakon dynamic system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pj,t =
1
2

pj

N∑
i,k=1

pirk (sgn(qj − qk) − sgn(qj − qi)) e−|qj−qk|−|qj−qi|,

qj,t =
1
6

pjrj − 1
2

N∑
i,k=1

pirk (1 − sgn(qj − qi)sgn(qj − qk)) e−|qj−qi|−|qj−qk|,

rj,t = −1
2

rj

N∑
i,k=1

pirk (sgn(qj − qk) − sgn(qj − qi)) e−|qj−qk|−|qj−qi|.

(29)
For N = 2, we have the following explicit solution of (29):

p1(t) = Be
3(A2D2−A1)
2D(A1−A2)

e−|(A1−A2)t|/3

, p2(t) =
p1

D
,

r1(t) =
A1

p1
, r2(t) =

A2

p2
,

q1(t) = −1
3

A1t +
3(A2D

2 + A1)
2D(A1 − A2)

sgn[(A1 − A2)t](e−|(A1−A2)t|/3 − 1),

q2(t) = −1
3

A2t +
3(A2D

2 + A1)
2D(A1 − A2)

sgn[(A1 − A2)t](e−|(A1−A2)t|/3 − 1),

(30)

where A1, A2, B, and D are integration constants. Choosing special

A1 = 1, A2 = 4, B = 1, D = 1

leads to ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1(t) = p2(t) = e−3e−|t|/2,

r1(t) = e3e−|t|/2, r2(t) = 4e3e−|t|/2,

q1(t) = −1
3

t +
5
2

sgn(t)(e−|t| − 1),

q2(t) = −4
3

t +
5
2

sgn(t)(e−|t| − 1),

(31)

which generate the following two-peakon solution of (3):{
u(x, t) = e−3e−|t|/2(e−|x+ 1

3
t− 5

2
sgn(t)(e−|t|−1)| + e−|x+ 4

3
t− 5

2
sgn(t)(e−|t|−1)|),

v(x, t) = e3e−|t|/2(e−|x+ 1
3
t− 5

2
sgn(t)(e−|t|−1)| + 4e−|x+ 4

3
t− 5

2
sgn(t)(e−|t|−1)|).

(32)
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Fig. 1 (a) Two-peakon solution determined by (18) with c1 = 1, c2 = 2. Black line:
t = −4; red line: t = −1; brown line: t = 0 (collision); blue line: t = 1; green line: t = 4.

(b) Peakon-antipeakon solution (24). Pink: peakon (and antipeakon) with peak (and

trough) position q2; green: antipeakon (and peakon) with trough (and peak) position q1.

Apparently, the two-peakon solution of u(x, t) possesses the same amplitude
e−3e−|t|/2, which reaches the minimum value at the moment of collision (t = 0).
Fig. 2 (a) shows the profile of the two-peakon dynamics for u(x, t). The two-
peakon solution of v(x, t) with the amplitudes e3e−|t|/2 and 4e3e−|t|/2 also collides
at t = 0. At this moment, the amplitudes attain the maximum value and the
two-peakon overlaps into one peakon 5e3/2e−|x|, which is much higher than other
moments. See Fig. 2 (b) for a 3-dimensional graph of the two-peakon dynamics
for v(x, t).

Fig. 2 (a) Two-peakon solution u(x, t) in (32). Red line: t = −5; blue line: t = −1;
brown line: t = 0 (collision); green line: t = 1; black line: t = 5.

(b) 3-dimensional graph for two-peakon solution v(x, t) in (32).
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4 Weak kink solutions of systems (4) and (3) in case of b �= 0

Let us seek the kink solution of equation (4) in the form of

u = Csgn(x − ct)(e−|x−ct| − 1), (33)

where the wave speed c and the constant C are to be determined. The first
order partial derivatives of (33) read

ux = −Ce−|x−ct|, ut = cCe−|x−ct|. (34)

The second order partial derivatives of (33) do not exist at x = ct. Therefore,
like the case of peakon solutions, the kink solution in the form of (33) should
also be understood in the distribution sense. (33) is called a weak kink solution
of equation (4). Substituting (33) and (34) into (4) yields

c = −1
2

b, C = ±
√

−b

2
. (35)

See Fig. 3 (a) for the profile of this weak kink wave solution with b = −2.
Similarly, the two-component system (3) with b �= 0 admits the following

weak kink solution:

u = C1sgn
(
x+

1
2

bt
)
(e−|x+ 1

2
bt|−1), v = C2sgn

(
x+

1
2

bt
)
(e−|x+ 1

2
bt|−1), (36)

where C1C2 = −b.

Remark 3 In formula (35), c = −b/2 means that the kink wave speed is
exactly −b/2. This is very different from the single-peakon solution whose wave
speed is usually taken as an arbitrary constant c. The multi-peakon solutions
take the form of superpositions of single-peakon solutions. However, by direct
calculations, we find that the two systems (4) and (3) with b �= 0 do not allow
the multi-kink solution in the form of the superpositions of single-kink solutions.

5 Weak kink-peakon interactional solutions of equation (4)

Let us make the following ansatz of solution to equation (4):

u = p1(t)sgn(x − q1(t))(e−|x−q1(t)| − 1) + p2(t)e−|x−q2(t)|, (37)

which actually describes a new phenomena of weak kink-peakon interactional
dynamics in soliton theory. Substituting (37) into (4) and integrating in the
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distribution sense, we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1 = ±
√

−b

2
,

p2,t = 2p2
1p2sgn(q2 − q1)e−|q1−q2|,

q1,t = −1
2

b − 2p1p2sgn(q2 − q1)e−|q1−q2|,

q2,t = −2
3

p2
2 − p2

1 + 2(p2
1 − p1p2sgn(q2 − q1))e−|q1−q2| + 2sgn(q2 − q1)p1p2.

(38)
Let us choose b = −2 and p1 = 1. To solve the above system, let us make an
assumption q1 < q2. After integrating equation (38), we obtain⎧⎪⎪⎪⎨

⎪⎪⎪⎩

q1 = t − p2 + A1,

q2 = t − p2 − log
∣∣∣1
9

p2
2 −

1
2

p2 + 1 +
A2

2p2

∣∣∣ + A1,

p2,t =
2
9

p3
2 − p2

2 + 2p2 + A2,

(39)

where A1 and A2 are integration constants. Letting A2 = 0, we may solve the
third equation of (39) for p2 with the following implicit form:

log |p2| − 1
2

log
(
p2
2 −

9
2

p2 + 9
)

+
3
√

7
7

arctan
4p2 − 9
3
√

7
= 2t + A3. (40)

See Fig. 3 (b) for the profile of the weak kink-peakon interactional solution with
A1 = A2 = A3 = 0.

Fig. 3 (a) Weak kink solution given by (33) and (35) at t = 0.

(b) Weak kink-peakon interactional solution.

In general, we may assume the following ansatz of the solution to equation
(4):

u = p0(t)sgn(x − q0(t))(e−|x−q0(t)| − 1) +
N∑

j=1

pj(t)e−|x−qj(t)|, (41)
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which can be viewed as the interaction of single weak kink and N -peakon
solutions. Through a very lengthy calculation, we are able to arrive at the
following interactional dynamical system of single weak kink and N -peakon:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p0 = ±
√
− b

2
,

q0,t = p2
0 + 2p0

N∑
i=1

pisgn(q0 − qi)e−|q0−qi|

+
N∑

i,k=1

pipksgn(qi − qk)(sgn(qk − q0) − sgn(qi − q0))e−|qi−qk|,

pj,t = 2p2
0pjsgn(qj − q0)e−|q0−qj |

+ 2p0pj

N∑
i=1

pisgn(qj − qi)sgn(qj − q0)e−|qj−qi|,

qj,t =
1
3

p2
j − p2

0(1 − 2e−|q0−qj |)

−
N∑

i,k=1

pipk(1 − sgn(qj − qi)sgn(qj − qk))e−|qj−qi|−|qj−qk|

− 2p0

N∑
i=1

pi(sgn(qj − q0)(e−|q0−qj | − 1)e−|qi−qj |

− sgn(qj − qi)e−|q0−qj |−|qi−qj|).

(42)

The above system is not presented in the canonical Hamiltonian system. We
still do not know whether this system is integrable for N � 2 under a Poisson
structure.
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