Integrable peakon systems with weak kink and kink-peakon interactional solutions

Zhijun QIAO ${ }^{1}$, Baoqiang XIA ${ }^{1,2}$
1 Department of Mathematics, University of Texas-Pan American, Edinburg, TX 78541, USA
2 School of Mathematical Sciences, Jiangsu Normal University, Xuzhou 221116, China

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2013

Abstract

We report two integrable peakon systems that have weak kink and kink-peakon interactional solutions. Both peakon systems are guaranteed integrable through providing their Lax pairs. The peakon and multi-peakon solutions of both equations are studied. In particular, the two-peakon dynamic systems are explicitly presented and their collisions are investigated. The weak kink solution is studied, and more interesting, the kink-peakon interactional solutions are proposed for the first time.

Keywords Integrable system, Lax pair, peakon, weak kink, kink-peakon MSC 37K10, 35Q51, 35Q58

1 Introduction

In recent years, the Camassa-Holm (CH) equation [2]

$$
\begin{equation*}
m_{t}-b u_{x}+2 m u_{x}+m_{x} u=0, \quad m=u-u_{x x}, \tag{1}
\end{equation*}
$$

where b is an arbitrary constant, has attracted much attention in the theory of soliton and integrable system [1,3-6,9,11,13,14,17,21,22]. The most interesting feature of the CH equation (1) is to admit peaked soliton (peakon) solutions in the case of $b=0$. In addition to the CH equation, other integrable models with peakon solutions have been found, such as the Degasperis-Procesi equation [7,8,18,19] and the cubic nonlinear peakon equations [10,12,15,16,20,23-25].

In this paper, we study the following equation with both quadratic and cubic nonlinearity:

$$
\begin{equation*}
m_{t}=b u_{x}+\frac{1}{2} k_{1}\left[m\left(u^{2}-u_{x}^{2}\right)\right]_{x}+\frac{1}{2} k_{2}\left(2 m u_{x}+m_{x} u\right), \quad m=u-u_{x x}, \tag{2}
\end{equation*}
$$

[^0](with k_{1} and k_{2} being two arbitrary constants) and its two-component extension:
\[

\left\{$$
\begin{array}{l}
m_{t}=b u_{x}+\frac{1}{2}\left[m\left(u v-u_{x} v_{x}\right)\right]_{x}-\frac{1}{2} m\left(u v_{x}-u_{x} v\right) \tag{3}\\
n_{t}=b v_{x}+\frac{1}{2}\left[n\left(u v-u_{x} v_{x}\right)\right]_{x}+\frac{1}{2} n\left(u v_{x}-u_{x} v\right) \\
m=u-u_{x x} \\
n=v-v_{x x}
\end{array}
$$\right.
\]

Equation (2) is actually a linear combination of CH equation (1) and cubic nonlinear equation

$$
\begin{equation*}
m_{t}=b u_{x}+\left[m\left(u^{2}-u_{x}^{2}\right)\right]_{x}, \quad m=u-u_{x x} \tag{4}
\end{equation*}
$$

which was derived independently by Fokas [10], Fuchssteiner [12], Olver and Rosenau [21], and Qiao [23], where the equation was derived from the twodimensional Euler system, and Lax pair, the M/W-shape solitons and peakon/ cuspon solutions were presented. Apparently, the two-component system (3) we propose is reduced to the CH equation (1), the cubic CH equation (4), and the generalized CH equation (2) as $v=2, v=2 u$, and $v=k_{1} u+k_{2}$, respectively.

Both (2) and (3) are proven integrable through their Lax pairs, bi-Hamiltonian structures, and infinitely many conservation laws. In the case of $b=0$, we show that systems (2)-(4) admit the single-peakon as well as multipeakon solutions. In particular, we explicitly solve the two-peakon dynamic systems and study their collisions in details. In the case of $b \neq 0$, we find that (4) and (3) possess the weak kink solutions. More interesting, the kink-peakon interactional solutions are for the first time proposed for equation (4) in the case of $b \neq 0$.

2 Lax pair, bi-Hamiltonian structure, and conservation laws

Equation (3) arises as a compatibility condition

$$
U_{t}-V_{x}+[U, V]=0
$$

of a pair of linear spectral problems

$$
\begin{align*}
& \binom{\phi_{1}}{\phi_{2}}_{x}=U\binom{\phi_{1}}{\phi_{2}}, \quad U=\frac{1}{2}\left(\begin{array}{cc}
-\alpha & \lambda m \\
-\lambda n & \alpha
\end{array}\right), \tag{5}\\
& \binom{\phi_{1}}{\phi_{2}}_{t}=V\binom{\phi_{1}}{\phi_{2}}, \quad V=-\frac{1}{2}\left(\begin{array}{cc}
A & B \\
C & -A
\end{array}\right), \tag{6}
\end{align*}
$$

where

$$
m=u-u_{x x}, \quad n=v-v_{x x}
$$

b is an arbitrary constant, λ is a spectral parameter,

$$
\alpha=\sqrt{1-\lambda^{2} b}
$$

and

$$
\begin{gather*}
A=\lambda^{-2} \alpha+\frac{\alpha}{2}\left(u v-u_{x} v_{x}\right)+\frac{1}{2}\left(u v_{x}-u_{x} v\right) \\
B=-\lambda^{-1}\left(u-\alpha u_{x}\right)-\frac{1}{2} \lambda m\left(u v-u_{x} v_{x}\right) \tag{7}\\
C=\lambda^{-1}\left(v+\alpha v_{x}\right)+\frac{1}{2} \lambda n\left(u v-u_{x} v_{x}\right)
\end{gather*}
$$

Since equation (3) is reduced to the generalized CH equation (2) as $v=k_{1} u+k_{2}$, we obtain the Lax pair of (2) by substituting $v=k_{1} u+k_{2}$ into (5) and (6). Thus, both (2) and (3) are integrable in the sense of Lax pair.
Proposition 1 Equation (2) has the following bi-Hamiltonian structure:

$$
\begin{equation*}
m_{t}=J \frac{\delta H_{1}}{\delta m}=K \frac{\delta H_{2}}{\delta m} \tag{8}
\end{equation*}
$$

where

$$
\begin{gather*}
J=k_{1} \partial m \partial^{-1} m \partial+\frac{1}{2} k_{2}(\partial m+m \partial)+b \partial, \quad H_{1}=\frac{1}{2} \int_{-\infty}^{+\infty}\left(u^{2}+u_{x}^{2}\right) \mathrm{d} x \tag{9}\\
K=\partial-\partial^{3} \\
H_{2}=\frac{1}{8} \int_{-\infty}^{+\infty}\left(k_{1} u^{4}+2 k_{1} u^{2} u_{x}^{2}-\frac{1}{3} k_{1} u_{x}^{4}+2 k_{2} u^{3}+2 k_{2} u u_{x}^{2}+4 b u^{2}\right) \mathrm{d} x \tag{10}
\end{gather*}
$$

Proposition 2 Equation (3) can be rewritten as the following bi-Hamiltonian form:

$$
\begin{equation*}
\left(m_{t}, n_{t}\right)^{\mathrm{T}}=J\left(\frac{\delta H_{1}}{\delta m}, \frac{\delta H_{1}}{\delta n}\right)^{\mathrm{T}}=K\left(\frac{\delta H_{2}}{\delta m}, \frac{\delta H_{2}}{\delta n}\right)^{\mathrm{T}} \tag{11}
\end{equation*}
$$

where

$$
\begin{gather*}
J=\left(\begin{array}{cc}
\partial m \partial^{-1} m \partial-m \partial^{-1} m & \partial m \partial^{-1} n \partial+m \partial^{-1} n+2 b \partial \\
\partial n \partial^{-1} m \partial+n \partial^{-1} m+2 b \partial & \partial n \partial^{-1} n \partial-n \partial^{-1} n
\end{array}\right) \\
H_{1}=\frac{1}{2} \int_{-\infty}^{+\infty}\left(u v+u_{x} v_{x}\right) \mathrm{d} x, \quad K=\left(\begin{array}{cc}
0 & \partial^{2}-1 \\
1-\partial^{2} & 0
\end{array}\right) \tag{12}\\
H_{2}=\frac{1}{4} \int_{-\infty}^{+\infty}\left[\left(u^{2} v_{x}+u_{x}^{2} v_{x}-2 u u_{x} v\right) n+2 b\left(u v_{x}-u_{x} v\right)\right] \mathrm{d} x
\end{gather*}
$$

Based on a standard treatment, from the Lax pairs (5) and (6), we may construct the following infinitely many conserved densities and the associated fluxes of equation (3):

$$
\begin{gather*}
\rho_{0}=\sqrt{-m n}, \quad F_{0}=\frac{1}{2} \sqrt{-m n}\left(u v-u_{x} v_{x}\right), \quad \rho_{1}=\frac{m n_{x}-m_{x} n-2 m n}{2 m n} \\
F_{1}=-\frac{1}{2}\left(u v-u_{x} v_{x}+u v_{x}-u_{x} v\right)+\frac{1}{2} \rho_{1}\left(u v-u_{x} v_{x}\right) \tag{13}\\
\rho_{j}=m \omega_{j}, \quad F_{j}=\left(u-u_{x}\right) \omega_{j-2}+\frac{1}{2} \rho_{j}\left(u v-u_{x} v_{x}\right), \quad j \geqslant 2
\end{gather*}
$$

where ω_{j} is given by

$$
\begin{equation*}
\omega_{0}=\sqrt{-\frac{n}{m}}, \quad \omega_{1}=\frac{m n_{x}-m_{x} n-2 m n}{2 m^{2} n} \tag{14}
\end{equation*}
$$

and the recursion relation

$$
\begin{equation*}
\omega_{j+1}=\frac{1}{m \omega_{0}}\left[\omega_{j}-\omega_{j, x}-\frac{1}{2} m \sum_{i+k=j+1, i, k \geqslant 1} \omega_{i} \omega_{k}\right], \quad j \geqslant 1 \tag{15}
\end{equation*}
$$

The infinitely many conservation laws of equation (2) may be obtained by substituting $v=k_{1} u+k_{2}$ into (13).

3 Peakon solutions in case of $b=0$

3.1 Peakon solutions of cubic CH equation (4)

One can directly check that the single-peakon solution of equation (4) with $b=0$ is given by

$$
u= \pm \sqrt{\frac{3 c}{2}} \mathrm{e}^{-|x+c t|}
$$

In general, we make the ansatz for N-peakons

$$
\begin{equation*}
u(x, t)=\sum_{j=1}^{N} p_{j}(t) \mathrm{e}^{-\left|x-q_{j}(t)\right|} \tag{16}
\end{equation*}
$$

which implies

$$
m=2 \sum_{j=1}^{N} p_{j} \delta\left(x-q_{j}\right)
$$

Substituting them into equation (4) yields the following evolution equations for the peak positions and amplitudes:

$$
\left\{\begin{array}{l}
p_{j, t}=0 \tag{17}\\
q_{j, t}=\frac{1}{3} p_{j}^{2}-\sum_{i, k=1}^{N} p_{i} p_{k}\left(1-\operatorname{sgn}\left(q_{j}-q_{i}\right) \operatorname{sgn}\left(q_{j}-q_{k}\right)\right) \mathrm{e}^{-\left|q_{j}-q_{i}\right|-\left|q_{j}-q_{k}\right|}
\end{array}\right.
$$

For $N=2$, (17) can be solved with the explicit solutions:

$$
\left\{\begin{array}{l}
p_{1}(t)=c_{1}, \quad p_{2}(t)=c_{2}, \tag{18}\\
q_{1}(t)=\operatorname{sgn}(t) \frac{3 c_{1} c_{2}}{\left|\left(c_{1}^{2}-c_{2}^{2}\right)\right|}\left(\mathrm{e}^{-\left|2\left(c_{1}^{2}-c_{2}^{2}\right) t / 3\right|}-1\right)-\frac{2}{3} c_{1}^{2} t, \\
q_{2}(t)=\operatorname{sgn}(t) \frac{3 c_{1} c_{2}}{\left|\left(c_{1}^{2}-c_{2}^{2}\right)\right|}\left(\mathrm{e}^{-\left|2\left(c_{1}^{2}-c_{2}^{2}\right) t / 3\right|}-1\right)-\frac{2}{3} c_{2}^{2} t,
\end{array}\right.
$$

where c_{1} and c_{2} are arbitrary constants. The two-peakon collision occurs at the moment $t=0$, since $q_{1}(0)=q_{2}(0)=0$. Without loss of generality, let us suppose $0<c_{1}<c_{2}$. From formula (18), we know that for $t<0$, the tall and fast peakon (with the amplitude c_{2} and peak position q_{2}) chases after the short and slow peakon (with the amplitude c_{1} and peak position q_{1}). At the moment of $t=0$, the two-peakon collides and overlaps. After the collision $(t>0)$, the two-peakon departs, and the tall and fast peakon surpasses the short and slow one. See Fig. 1 (a) for the developments of this kind of two-peakon.
Remark 1 Our results show that the collision of two-peakon of equation (4) is very different from the case of CH equation (1). For the CH equation (1), the collision happens between peakon and anti-peakon [2]. For the cubic CH equation (4), the collision of two-peakon occurs in the case that the tall peakon 'chase' the short one as described above.

3.2 Peakon solutions of generalized CH system (2)

It is easy to verify that the single-peakon solution of equation (2) with $b=0$ take the form of

$$
\begin{equation*}
u=C \mathrm{e}^{-|x-c t|}, \tag{19}
\end{equation*}
$$

where C is determined by

$$
\begin{equation*}
\frac{1}{3} k_{1} C^{2}+\frac{1}{2} k_{2} C+c=0 \tag{20}
\end{equation*}
$$

If $k_{1}=0, k_{2}=-2$, then $C=c$. Thus, we recover the single-peakon solution $u=c \mathrm{e}^{-|x-c t|}$ of the CH equation (1) with $b=0$. For $k_{1}=2$ and $k_{2}=0$, we reduce to the single-peakon solution of the cubic nonlinear CH equation (4) with $b=0$. In general, for $k_{1} \neq 0$, we may obtain

$$
\begin{equation*}
C=\frac{-3\left(\sqrt{3} k_{2} \pm \sqrt{3 k_{2}^{2}-16 k_{1} c}\right)}{4 \sqrt{3} k_{1}} \tag{21}
\end{equation*}
$$

If $3 k_{2}^{2}-16 k_{1} c \geqslant 0$, then C is a real number. If $3 k_{2}^{2}-16 k_{1} c<0$, then C is a complex number. This means that we may have a peakon solution with complex coefficient.

Let us assume that the N-peakons are the same form as (16). Then we obtain the following N-peakon dynamic system:

$$
p_{j, t}=-\frac{1}{2} k_{2} p_{j} \sum_{k=1}^{N} p_{k} \operatorname{sgn}\left(q_{j}-q_{k}\right) \mathrm{e}^{-\left|q_{j}-q_{k}\right|}
$$

$$
\begin{align*}
q_{j, t}= & -\frac{1}{2} k_{2} \sum_{k=1}^{N} p_{k} \mathrm{e}^{-\left|q_{j}-q_{k}\right|}+\frac{1}{2} k_{1}\left(\frac{1}{3} p_{j}^{2}\right. \tag{22}\\
& \left.-\sum_{i, k=1}^{N} p_{i} p_{k}\left(1-\operatorname{sgn}\left(q_{j}-q_{i}\right) \operatorname{sgn}\left(q_{j}-q_{k}\right)\right) \mathrm{e}^{-\left|q_{j}-q_{i}\right|-\left|q_{j}-q_{k}\right|}\right)
\end{align*}
$$

For $N=2$, selecting $k_{1}=k_{2}=-2$ may yield the following special solution:

$$
\begin{gather*}
p_{1}(t)=\operatorname{coth} t, \quad q_{1}(t)=\frac{8}{3\left(\mathrm{e}^{2 t}-1\right)}+\log \left(\mathrm{e}^{2 t}+1\right)-\frac{1}{3} t-\log 2 \\
p_{2}(t)=-\operatorname{coth} t, \quad q_{2}(t)=\frac{8}{3\left(\mathrm{e}^{2 t}-1\right)}-\log \left(\mathrm{e}^{2 t}+1\right)+\frac{5}{3} t+\log 2 \tag{23}
\end{gather*}
$$

Thus, we arrive at the following peakon-antipeakon solution:

$$
\begin{equation*}
u(x, t)=\operatorname{coth} t\left(\mathrm{e}^{-\left|x-q_{1}(t)\right|}-\mathrm{e}^{-\left|x-q_{2}(t)\right|}\right) \tag{24}
\end{equation*}
$$

where $q_{1}(t)$ and $q_{2}(t)$ are shown in (23). In spite of

$$
\begin{equation*}
\lim _{t \rightarrow 0} p_{1}(t)=-\lim _{t \rightarrow 0} p_{2}(t)=\infty, \quad \lim _{t \rightarrow 0} q_{1}(t)=\lim _{t \rightarrow 0} q_{2}(t)=\infty \tag{25}
\end{equation*}
$$

from (24), we still have

$$
\begin{equation*}
\lim _{t \rightarrow 0} u(x, t)=0, \quad \forall x \in \mathbb{R} \tag{26}
\end{equation*}
$$

which indicates that the peakon and the antipeakon vanish when they overlap. Guided by the above results, we may describe the dynamics of peakonantipeakon solution (24) as follows. For $t<0$, the peak is at $q_{2}(t)$ and the trough is at $q_{1}(t)$. The peak and the trough approach each other as t goes to 0 . At the moment of $t=0$, the peakon and the antipeakon collide and vanish. After their collision $(t>0)$, they separate and reemerge with the trough at $q_{2}(t)$ and the peak at $q_{1}(t)$. Fig. $1(\mathrm{~b})$ shows the peakon-antipeakon interactional dynamics.
Remark 2 The amplitudes $p_{1}(t)$ and $p_{2}(t)$ in formula (23) are the same as those of the CH equation [2], but the peak positions $q_{1}(t)$ and $q_{2}(t)$ are different. In the CH equation, only $p_{1}(t)$ and $p_{2}(t)$ become infinite at the instant of collision $[2,3]$. In the new equation (2), both $\left(p_{1}(t), p_{2}(t)\right)$ and $\left(q_{1}(t), q_{2}(t)\right)$ become infinite at the instant of collision. However, in both cases, the peakonantipeakon vanishes when the overlap occurs.

3.3 Peakon solutions of two-component system (3)

By a direct calculation, we find the single peakon solutions of (3) with $b=0$ take the form of

$$
\begin{equation*}
u=c_{1} \mathrm{e}^{-\left|x+\frac{1}{3} c_{1} c_{2} t\right|}, \quad v=c_{2} \mathrm{e}^{-\left|x+\frac{1}{3} c_{1} c_{2} t\right|} \tag{27}
\end{equation*}
$$

where c_{1} and c_{2} are two arbitrary constants. In general, N-peakon solution is cast in the following form:

$$
\begin{equation*}
u(x, t)=\sum_{j=1}^{N} p_{j}(t) \mathrm{e}^{-\left|x-q_{j}(t)\right|}, \quad v(x, t)=\sum_{j=1}^{N} r_{j}(t) \mathrm{e}^{-\left|x-q_{j}(t)\right|} \tag{28}
\end{equation*}
$$

Substituting (28) into (3) with $b=0$, we are able to obtain the following N-peakon dynamic system:

$$
\left\{\begin{align*}
p_{j, t} & =\frac{1}{2} p_{j} \sum_{i, k=1}^{N} p_{i} r_{k}\left(\operatorname{sgn}\left(q_{j}-q_{k}\right)-\operatorname{sgn}\left(q_{j}-q_{i}\right)\right) \mathrm{e}^{-\left|q_{j}-q_{k}\right|-\left|q_{j}-q_{i}\right|} \tag{29}\\
q_{j, t} & =\frac{1}{6} p_{j} r_{j}-\frac{1}{2} \sum_{i, k=1}^{N} p_{i} r_{k}\left(1-\operatorname{sgn}\left(q_{j}-q_{i}\right) \operatorname{sgn}\left(q_{j}-q_{k}\right)\right) \mathrm{e}^{-\left|q_{j}-q_{i}\right|-\left|q_{j}-q_{k}\right|} \\
r_{j, t} & =-\frac{1}{2} r_{j} \sum_{i, k=1}^{N} p_{i} r_{k}\left(\operatorname{sgn}\left(q_{j}-q_{k}\right)-\operatorname{sgn}\left(q_{j}-q_{i}\right)\right) \mathrm{e}^{-\left|q_{j}-q_{k}\right|-\left|q_{j}-q_{i}\right|}
\end{align*}\right.
$$

For $N=2$, we have the following explicit solution of (29):

$$
\begin{gather*}
p_{1}(t)=B \mathrm{e}^{\frac{3\left(A_{2} D^{2}-A_{1}\right)}{2 D\left(A_{1}-A_{2}\right)} \mathrm{e}^{-\left|\left(A_{1}-A_{2}\right) t\right| / 3}}, \quad p_{2}(t)=\frac{p_{1}}{D} \\
r_{1}(t)=\frac{A_{1}}{p_{1}}, \quad r_{2}(t)=\frac{A_{2}}{p_{2}} \\
q_{1}(t)=-\frac{1}{3} A_{1} t+\frac{3\left(A_{2} D^{2}+A_{1}\right)}{2 D\left(A_{1}-A_{2}\right)} \operatorname{sgn}\left[\left(A_{1}-A_{2}\right) t\right]\left(\mathrm{e}^{-\left|\left(A_{1}-A_{2}\right) t\right| / 3}-1\right) \tag{30}\\
q_{2}(t)=-\frac{1}{3} A_{2} t+\frac{3\left(A_{2} D^{2}+A_{1}\right)}{2 D\left(A_{1}-A_{2}\right)} \operatorname{sgn}\left[\left(A_{1}-A_{2}\right) t\right]\left(\mathrm{e}^{-\left|\left(A_{1}-A_{2}\right) t\right| / 3}-1\right)
\end{gather*}
$$

where A_{1}, A_{2}, B, and D are integration constants. Choosing special

$$
A_{1}=1, \quad A_{2}=4, \quad B=1, \quad D=1
$$

leads to

$$
\left\{\begin{array}{l}
p_{1}(t)=p_{2}(t)=\mathrm{e}^{-3 \mathrm{e}^{-|t|} / 2} \tag{31}\\
r_{1}(t)=\mathrm{e}^{3 \mathrm{e}^{-|t|} / 2}, \quad r_{2}(t)=4 \mathrm{e}^{3 \mathrm{e}^{-|t|} / 2} \\
q_{1}(t)=-\frac{1}{3} t+\frac{5}{2} \operatorname{sgn}(t)\left(\mathrm{e}^{-|t|}-1\right) \\
q_{2}(t)=-\frac{4}{3} t+\frac{5}{2} \operatorname{sgn}(t)\left(\mathrm{e}^{-|t|}-1\right)
\end{array}\right.
$$

which generate the following two-peakon solution of (3):

$$
\left\{\begin{array}{l}
u(x, t)=\mathrm{e}^{-3 \mathrm{e}^{-|t|} / 2}\left(\mathrm{e}^{-\left|x+\frac{1}{3} t-\frac{5}{2} \operatorname{sgn}(t)\left(\mathrm{e}^{-|t|}-1\right)\right|}+\mathrm{e}^{-\left|x+\frac{4}{3} t-\frac{5}{2} \operatorname{sgn}(t)\left(\mathrm{e}^{-|t|}-1\right)\right|}\right) \tag{32}\\
v(x, t)=\mathrm{e}^{3 \mathrm{e}^{-|t|} / 2}\left(\mathrm{e}^{-\left|x+\frac{1}{3} t-\frac{5}{2} \operatorname{sgn}(t)\left(\mathrm{e}^{-|t|}-1\right)\right|}+4 \mathrm{e}^{-\left|x+\frac{4}{3} t-\frac{5}{2} \operatorname{sgn}(t)\left(\mathrm{e}^{-|t|}-1\right)\right|}\right)
\end{array}\right.
$$

Fig. 1 (a) Two-peakon solution determined by (18) with $c_{1}=1, c_{2}=2$. Black line: $t=-4$; red line: $t=-1$; brown line: $t=0$ (collision); blue line: $t=1$; green line: $t=4$.
(b) Peakon-antipeakon solution (24). Pink: peakon (and antipeakon) with peak (and trough) position q_{2}; green: antipeakon (and peakon) with trough (and peak) position q_{1}.

Apparently, the two-peakon solution of $u(x, t)$ possesses the same amplitude $\mathrm{e}^{-3 \mathrm{e}^{-|t|} / 2}$, which reaches the minimum value at the moment of collision $(t=0)$. Fig. 2 (a) shows the profile of the two-peakon dynamics for $u(x, t)$. The twopeakon solution of $v(x, t)$ with the amplitudes $\mathrm{e}^{3 \mathrm{e}^{-|t|} / 2}$ and $4 \mathrm{e}^{3 \mathrm{e}^{-|t|} / 2}$ also collides at $t=0$. At this moment, the amplitudes attain the maximum value and the two-peakon overlaps into one peakon $5 \mathrm{e}^{3 / 2} \mathrm{e}^{-|x|}$, which is much higher than other moments. See Fig. 2 (b) for a 3-dimensional graph of the two-peakon dynamics for $v(x, t)$.

Fig. 2 (a) Two-peakon solution $u(x, t)$ in (32). Red line: $t=-5$; blue line: $t=-1$; brown line: $t=0$ (collision); green line: $t=1$; black line: $t=5$.
(b) 3-dimensional graph for two-peakon solution $v(x, t)$ in (32).

4 Weak kink solutions of systems (4) and (3) in case of $b \neq 0$

Let us seek the kink solution of equation (4) in the form of

$$
\begin{equation*}
u=C \operatorname{sgn}(x-c t)\left(\mathrm{e}^{-|x-c t|}-1\right), \tag{33}
\end{equation*}
$$

where the wave speed c and the constant C are to be determined. The first order partial derivatives of (33) read

$$
\begin{equation*}
u_{x}=-C \mathrm{e}^{-|x-c t|}, \quad u_{t}=c C \mathrm{e}^{-|x-c t|} \tag{34}
\end{equation*}
$$

The second order partial derivatives of (33) do not exist at $x=c t$. Therefore, like the case of peakon solutions, the kink solution in the form of (33) should also be understood in the distribution sense. (33) is called a weak kink solution of equation (4). Substituting (33) and (34) into (4) yields

$$
\begin{equation*}
c=-\frac{1}{2} b, \quad C= \pm \sqrt{\frac{-b}{2}} . \tag{35}
\end{equation*}
$$

See Fig. 3 (a) for the profile of this weak kink wave solution with $b=-2$.
Similarly, the two-component system (3) with $b \neq 0$ admits the following weak kink solution:

$$
\begin{equation*}
u=C_{1} \operatorname{sgn}\left(x+\frac{1}{2} b t\right)\left(\mathrm{e}^{-\left|x+\frac{1}{2} b t\right|}-1\right), \quad v=C_{2} \operatorname{sgn}\left(x+\frac{1}{2} b t\right)\left(\mathrm{e}^{-\left|x+\frac{1}{2} b t\right|}-1\right), \tag{36}
\end{equation*}
$$

where $C_{1} C_{2}=-b$.
Remark 3 In formula (35), $c=-b / 2$ means that the kink wave speed is exactly $-b / 2$. This is very different from the single-peakon solution whose wave speed is usually taken as an arbitrary constant c. The multi-peakon solutions take the form of superpositions of single-peakon solutions. However, by direct calculations, we find that the two systems (4) and (3) with $b \neq 0$ do not allow the multi-kink solution in the form of the superpositions of single-kink solutions.

5 Weak kink-peakon interactional solutions of equation (4)

Let us make the following ansatz of solution to equation (4):

$$
\begin{equation*}
u=p_{1}(t) \operatorname{sgn}\left(x-q_{1}(t)\right)\left(\mathrm{e}^{-\left|x-q_{1}(t)\right|}-1\right)+p_{2}(t) \mathrm{e}^{-\left|x-q_{2}(t)\right|}, \tag{37}
\end{equation*}
$$

which actually describes a new phenomena of weak kink-peakon interactional dynamics in soliton theory. Substituting (37) into (4) and integrating in the
distribution sense, we obtain

$$
\left\{\begin{array}{l}
p_{1}= \pm \sqrt{\frac{-b}{2}} \tag{38}\\
p_{2, t}=2 p_{1}^{2} p_{2} \operatorname{sgn}\left(q_{2}-q_{1}\right) \mathrm{e}^{-\left|q_{1}-q_{2}\right|}, \\
q_{1, t}=-\frac{1}{2} b-2 p_{1} p_{2} \operatorname{sgn}\left(q_{2}-q_{1}\right) \mathrm{e}^{-\left|q_{1}-q_{2}\right|} \\
q_{2, t}=-\frac{2}{3} p_{2}^{2}-p_{1}^{2}+2\left(p_{1}^{2}-p_{1} p_{2} \operatorname{sgn}\left(q_{2}-q_{1}\right)\right) \mathrm{e}^{-\left|q_{1}-q_{2}\right|}+2 \operatorname{sgn}\left(q_{2}-q_{1}\right) p_{1} p_{2}
\end{array}\right.
$$

Let us choose $b=-2$ and $p_{1}=1$. To solve the above system, let us make an assumption $q_{1}<q_{2}$. After integrating equation (38), we obtain

$$
\left\{\begin{array}{l}
q_{1}=t-p_{2}+A_{1} \tag{39}\\
q_{2}=t-p_{2}-\log \left|\frac{1}{9} p_{2}^{2}-\frac{1}{2} p_{2}+1+\frac{A_{2}}{2 p_{2}}\right|+A_{1} \\
p_{2, t}=\frac{2}{9} p_{2}^{3}-p_{2}^{2}+2 p_{2}+A_{2}
\end{array}\right.
$$

where A_{1} and A_{2} are integration constants. Letting $A_{2}=0$, we may solve the third equation of (39) for p_{2} with the following implicit form:

$$
\begin{equation*}
\log \left|p_{2}\right|-\frac{1}{2} \log \left(p_{2}^{2}-\frac{9}{2} p_{2}+9\right)+\frac{3 \sqrt{7}}{7} \arctan \frac{4 p_{2}-9}{3 \sqrt{7}}=2 t+A_{3} \tag{40}
\end{equation*}
$$

See Fig. 3 (b) for the profile of the weak kink-peakon interactional solution with $A_{1}=A_{2}=A_{3}=0$.

Fig. 3 (a) Weak kink solution given by (33) and (35) at $t=0$.
(b) Weak kink-peakon interactional solution.

In general, we may assume the following ansatz of the solution to equation (4):

$$
\begin{equation*}
u=p_{0}(t) \operatorname{sgn}\left(x-q_{0}(t)\right)\left(\mathrm{e}^{-\left|x-q_{0}(t)\right|}-1\right)+\sum_{j=1}^{N} p_{j}(t) \mathrm{e}^{-\left|x-q_{j}(t)\right|} \tag{41}
\end{equation*}
$$

which can be viewed as the interaction of single weak kink and N-peakon solutions. Through a very lengthy calculation, we are able to arrive at the following interactional dynamical system of single weak kink and N-peakon:

$$
\left\{\begin{align*}
p_{0}= & \pm \sqrt{-\frac{b}{2}} \tag{42}\\
q_{0, t}= & p_{0}^{2}+2 p_{0} \sum_{i=1}^{N} p_{i} \operatorname{sgn}\left(q_{0}-q_{i}\right) \mathrm{e}^{-\left|q_{0}-q_{i}\right|} \\
& +\sum_{i, k=1}^{N} p_{i} p_{k} \operatorname{sgn}\left(q_{i}-q_{k}\right)\left(\operatorname{sgn}\left(q_{k}-q_{0}\right)-\operatorname{sgn}\left(q_{i}-q_{0}\right)\right) \mathrm{e}^{-\left|q_{i}-q_{k}\right|}, \\
p_{j, t}= & 2 p_{0}^{2} p_{j} \operatorname{sgn}\left(q_{j}-q_{0}\right) \mathrm{e}^{-\left|q_{0}-q_{j}\right|} \\
& +2 p_{0} p_{j} \sum_{i=1}^{N} p_{i} \operatorname{sgn}\left(q_{j}-q_{i}\right) \operatorname{sgn}\left(q_{j}-q_{0}\right) \mathrm{e}^{-\left|q_{j}-q_{i}\right|}, \\
q_{j, t}= & \frac{1}{3} p_{j}^{2}-p_{0}^{2}\left(1-2 \mathrm{e}^{-\left|q_{0}-q_{j}\right|}\right) \\
& -\sum_{i, k=1}^{N} p_{i} p_{k}\left(1-\operatorname{sgn}\left(q_{j}-q_{i}\right) \operatorname{sgn}\left(q_{j}-q_{k}\right)\right) \mathrm{e}^{-\left|q_{j}-q_{i}\right|-\left|q_{j}-q_{k}\right|} \\
& -2 p_{0} \sum_{i=1}^{N} p_{i}\left(\operatorname{sgn}\left(q_{j}-q_{0}\right)\left(\mathrm{e}^{-\left|q_{0}-q_{j}\right|}-1\right) \mathrm{e}^{-\left|q_{i}-q_{j}\right|}\right. \\
& \left.-\operatorname{sgn}\left(q_{j}-q_{i}\right) \mathrm{e}^{-\left|q_{0}-q_{j}\right|-\left|q_{i}-q_{j}\right|}\right) .
\end{align*}\right.
$$

The above system is not presented in the canonical Hamiltonian system. We still do not know whether this system is integrable for $N \geqslant 2$ under a Poisson structure.

Acknowledgements This work was partially supported by the U. S. Army Research Office (Contract/Grant No. W911NF-08-1-0511) and the Texas Norman Hackerman Advanced Research Program (Grant No. 003599-0001-2009).

References

1. Beals R, Sattinger D, Szmigielski J. Acoustic scattering and the extended Korteweg de Vries hierarchy. Adv Math, 1998, 140: 190-206
2. Camassa R, Holm D D. An integrable shallow water equation with peaked solitons. Phys Rev Lett, 1993, 71: 1661-1664
3. Camassa R, Holm D D, Hyman J M. A new integrable shallow water equation. Adv Appl Mech, 1994, 31: 1-33
4. Constantin A. On the inverse spectral problem for the Camassa-Holm equation. J Funct Anal, 1998, 155: 352-363
5. Constantin A, Gerdjikov V S, Ivanov R I. Inverse scattering transform for the CamassaHolm equation. Inverse Problems, 2006, 22: 2197-2207
6. Constantin A, Strauss W A. Stability of peakons. Comm Pure Appl Math, 2000, 53: 603-610
7. Degasperis A, Holm D D, Hone A N W. A new integrable equation with peakon solutions. Theoret Math Phys, 2002, 133: 1463-1474
8. Degasperis A, Procesi M. Asymptotic Integrability. In: Degasperis A, Gaeta G, eds. Symmetry and Perturbation Theory. Singapore: World Scientific, 1999, 23-37
9. Dullin H R, Gottwald G A, Holm D D. An integrable shallow water equation with linear and nonlinear dispersion. Phys Rev Lett, 2001, 87: 194501
10. Fokas A S. On a class of physically important integrable equations. Physica D, 1995, 87: 145-150
11. Fokas A S, Liu Q M. Asymptotic integrability of water waves. Phys Rev Lett, 1996, 77: 2347-2351
12. Fuchssteiner B. Some tricks from the symmetry-toolbox for nonlinear equations: Generalizations of the Camassa-Holm equation. Physica D, 1996, 95: 229-243
13. Fuchssteiner B, Fokas A S. Symplectic structures, their Baecklund transformations and hereditary symmetries. Physica D, 1981, 4: 47-66
14. Gesztesy F, Holden H. Algebro-geometric solutions of the Camassa-Holm hierarch. Rev Mat Iberoam, 2003, 19: 73-142
15. Gui G L, Liu Y, Olver P J, Qu C Z. Wave-breaking and peakons for a modified CamassaHolm equation. Comm Math Phys, 2013, 319: 731-759
16. Hone A N W, Wang J P. Integrable peakon equations with cubic nonlinearity. J Phys A: Math Theor, 2008, 41: 372002
17. Lorenzoni P, Pedroni M. On the bi-Hamiltonian structures of the Camassa-Holm and Harry Dym equations. Int Math Res Not, 2004, 75: 4019-4029
18. Lundmark H. Formation and dynamics of shock waves in the Degasperis-Procesi equation. J Nonlinear Sci, 2007, 17: 169-198
19. Lundmark H, Szmigielski J. Multi-peakon solutions of the Degasperis-Procesi equation. Inverse Problems, 2003, 19: 1241-1245
20. Novikov V. Generalizations of the Camassa-Holm equation. J Phys A: Math Theor, 2009, 42: 342002
21. Olver P J, Rosenau P. Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support. Phys Rev E, 1996, 53: 1900-1906
22. Qiao Z J. The Camassa-Holm hierarchy, N-dimensional integrable systems, and algebrogeometric solution on a symplectic submanifold. Comm Math Phys, 2003, 239: 309-341
23. Qiao Z J. A new integrable equation with cuspons and W/M-shape-peaks solitons. J Math Phys, 2006, 47: 112701
24. Qiao Z J. New integrable hierarchy, parametric solutions, cuspons, one-peak solitons, and M/W-shape peak solutions. J Math Phys, 2007, 48: 082701
25. Qiao Z J, Li X Q. An integrable equation with nonsmooth solitons. Theoret Math Phys, 2011, 167: 584-589

[^0]: Received April 18, 2013; accepted June 3, 2013
 Corresponding author: Zhijun QIAO, E-mail: qiao@utpa.edu

