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Abstract—
In this paper, a filtered adjoint inversion scheme for turntable

inverse synthetic aperture radar (ISAR) data is derived for three
spatial dimensions from a scalar wave equation model. The
proposed data inversion scheme motivates the use of filtered back
projection (FBP) and convolution back projection (CBP) imaging
algorithms. This paper also provides a derivation of a general
imaging filter needed for accurate near-field FBP and CBP
imaging algorithms, which will be shown to reduce to familiar
results found in SWISAR (Spherical-Wave ISAR) imaging.

Index Terms—Inverse Synthetic Aperture Radar, Near-Field
Imaging, Fourier Diffraction Theorem, Turntable Radar, Filtered
Back-Projection, Convolution Back Projection, Radar Tomogra-
phy

I. INTRODUCTION

Inverse Synthetic Aperture Radar (ISAR) is a high-
resolution imaging system that consists of both a real-aperture
radar system and a moving target scene. An ISAR system uses
a set of stationary antennas to emit a sequence of short energy
bursts, and to take scattering measurements in the presence
of a moving target scene. There are many works on the
fundamental principles of ISAR imaging [1], [5], [13], [18], in
which it has been shown that both two-dimensional and three-
dimensional image formation is possible for targets undergoing
either rotational or translational motion. Efficient near-field
algorithms [3], [10], [25] for processing ISAR data have also
been proposed for two and three-dimensional imaging, which
can be derived via the filtered adjoint inversion approach
proposed in this paper.

In this paper the the problem of image formation is primarily
considered in terms of ISAR, but Turntable Radar is different
from many ISAR applications where the physical geometry is
unknow. For this reason it can be usefull to study this problem
in terms of Spotlight-Mode SAR [4], [12].

In section II, the general ISAR received signal for start-
stop turntable setups is first derived from a scalar wave
equation model. The scalar wave model used in the paper
is derived from Maxwell’s equations by using a first-order
Born approximation [2]. A short review of far-field radar
imaging is included beginning with the derivation of the
Fourier diffraction theorem in radar imaging, which relates
the ISAR received signal S to the Fourier transform of the
target reflectivity function V . The Fourier Diffraction theorem
(FDT)[9] provides the basis for most FFT radar imaging
algorithms. The derivation of the FDT is followed by a quick
discussion of the forward model for turntable ISAR data in
two and three dimensions.

In section IV the general ISAR received signal, S, is first
written in terms of a Fourier integral operator (FIO), S = FV ,
in which it will be noted that the ISAR signal in the frequency
domain is a function on the unit cylinder Cm, where m = 2, 3
depending on system configuration. The formal adjoint of the
forward ISAR FIO on L2(Cm) is then derived for both two
and three dimensions on the basis of a filtered back projection
ISAR imaging algorithm via V = F †QFV . In the case of
turntable ISAR, applying the back projection operator does
not result in an exact inversion of the data, which actually
requires evaluating an appropriate data filter Q. The filter Q
is determined by using the stationary phase method.

II. THE FORWARD PROBLEM

In radar imaging applications the received signal is a
recorded measurement of a scattered electromagnetic field.
For this reason, the ideal mathematical model for radar
imaging would be that found in Maxwell’s equations for the
electromagnetic field. We will use the following scalar-wave
equation model for radar imaging which can be deduced from
Maxwell’s equations under a weak-scattering assumption[16]:

(
∇2 + k2

)
U in(f,x) = −J(f,x), (1a)(

∇2 + k2
)
U sc(f,x) = −V (x)U in(f,x), (1b)

where x = (x1, x2, x3) ∈ R3, k = 2πf/c and c is the
speed of light in a vacuum. The scalar quantities U in and
U sc denote the incident and scattered fields, respectively. The
quantity J1denotes the source due to signal transmission, and
V is the complex-valued target reflectivity function. We will
assume that the quantities U in, U sc and J are square-integrable
in the frequency variable, f , so that their corresponding inverse
Fourier transforms, uin, usc and j, exist in the time variable
t. This assumption allows us to refer to the following time
domain version of (1):(

∇2 − 1

c20
∂2t

)
uin(t,x) = −j(t,x), (2a)(

∇2 − 1

c20
∂2t

)
usc(t,x) = −V (x)uin(t,x), (2b)

According to this scalar model the scattered field depends
on the incident field, which depends on the source due to

1The source term J does not directly correspond to the current density
function J, but is related to both J and the charge density function ρ by
[Ji] =

1
ε0
∇ρ+ iωµ0J for the field E field and [Ji] = −∇× J for the H

field.
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transmission. Thus, in order to come up with an explicit
expression for the received signal, we can begin by re-
writing the source term j in (2a) in terms of the transmitted
signal p(t). Here we will assume that the transmitter radiates
isotropically and is centered at x0 ∈ R3 so that we can write
j(t,x) = p(t)δ(x − x0). Consequently the received signal,
assuming a mono-static setup, is given by

s(t) ≡ usc(t,x0) =

∫
R3

V (z)
p
(
t− 2|z−x0|

c0

)
(4π)2 |z− x0|2

dz, (3)

or in the frequency domain:

S(f) = P (f)

∫
R3

V (z)
e−i2k|z−x0|

(4π)2 |z− x0|2
dz, (4)

A. The Fourier Diffraction Theorem in ISAR Imaging

Many ISAR imaging systems are set up so that distances to
targets are considerably large. In these cases it is quite useful
to employ some sort of far-field approximation to aid in the
analysis of the imaging problem. Note that the range from the
antenna located at x0 on the transmitter to that target located
at z is given by:

|z− x0| = |x0| − x̂0 · z +O

(
|z|2

|x0|

)
(5)

We find that we can rewrite the integrand of the integral in
(4) as:

V (z)
e−i2k|z−x0|

(4π)2 |z− x0|2
= V (z)

e−i2k|x0|

(4π)2 |x0|2
ei2kx̂0·z

(
1 +O

(
|z|
|x0|

))(
1 +O

(
k |z|2

|x0|

)) (6)

Thus, if we make the assumption that |z| , k |z|2 << |x0|, then
our far-field version of the received signal is given by:

S(f) = P (f)
e−i2k|x0|

(4π)2 |x0|2

∫
R3

V (z)ei2kx̂0·zdz

= P (f)
e−i2k|x0|

(4π)2 |x0|2
F {V } (−2kx̂0) .

(7)

Many radar imaging algorithms employ a matched-filtering
step to recover the set of range profiles, d, whose spectrum,
D, is given by:

D(f) = (4π)2 |x0|2 ei2k|x0|P (f)S(f)

= |P (f)|2 F {V } (−2kx̂0)
(8)

where P denotes the complex conjugate of P . The actual
matched-filtering step is implemented by multiplying each
individual ISAR signal S by P in the frequency domain. In
equation (8), the (4π)2 |x0|2 factor compensates for power
attenuation while the complex exponential compensates for
what is called “range offset”. Equations (7) and equation
(8), alike, are known as the Fourier Diffraction theorem
(FDT) for radar imaging, which states that the radar received
signal scattered from a target scene is proportional to the
three-dimensional Fourier transform of its reflectivity function

evaluated at −2kx̂0. The transmitted signal P is band-limited
with a support band given by the set

{
fc − B

2 , fc + B
2

}
,

where B is the signal bandwidth, and is usually chosen so
that its power spectrum is given by |P (f)|2 ≈ rect

(
f−fc
B

)
.

Thus the FDT reveals that each radar signal gives the three-
dimensional Fourier transform of the target reflectivity eval-
uated on the finite line-segment determined by K = −2kx̂0,
f ∈

[
fc − B

2 , fc + B
2

]
. Consequently, the object in radar

imaging is to populate the wave number domain with as much
data as needed to reconstruct the reflectivity function V .

B. Two-Dimensional Turntable ISAR Imaging

In Synthetic Aperture Radar (SAR) imaging, a stationary
target scene is imaged via numerous radar returns measured
along some sort of flight path. A changing sensor position
corresponds to a changing x̂0, which results in a means of
populating the wave number domain according to the FDT.
In ISAR, a stationary radar sensor measures numerous returns
scattered from a moving target, which is also mathematically
equivalent to a changing sensor location x̂0, if the origin of the
coordinate system is placed at the center of the moving target
scene. In a turntable ISAR imaging setup2 the target scene is
rotated counter-clockwise about the x3-axis by φ radians. If
we were to let q denote a stationary scattering density, then
we have V (x) = q

(
R−11 (φ)x

)
3, where it can be found that

the rotational matrix R1 is given by

R1(φ) =

 cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 . (9)

One can check that for every φ ∈ [0, 2π], R1 is an orthogonal
transformation (i.e. R−11 exists and R−11 = RT1 ). For each
value of φ the data set recorded by the ISAR system is given
by

D(f) = |P (f)|2
∫
R3

q
(
R−11 z

)
ei2kx̂0·zdz

= |P (f)|2
∫
R3

q (y) ei2kx̂0·R1ydy

= |P (f)|2
∫
R3

q (y) ei2kR
−1
1 x̂0·ydy

= |P (f)|2 F3 {q} (K),

(10)

where K = −2kR−11 x̂0. To understand what is happening in
the wave number domain, we assume that the target scene is
to be rotated clock-wise, and take x̂0 = (1, 0, 0)T. Thus, if
k̃ = −2k, then K = (K1,K2,K3)T = (k̃ cosφ, k̃ sinφ, 0)T,
and the signal in the (f, φ) space is determined by:

D̃(f, φ) = |P (f)|2 F2 {q̃}
(
k̃µ
)
, (11)

2Many turntable radar setups have a bi-static configuration. That is the
transmitter and the receiver are generally located at two different positions
in the system geometry. It is usually the case that system configuration
can be modified so that the antenna range to any target on the turntable
is approximately the same for both the transmitter and receiver.

3Note that the use of R−1
1 , rather than R1, corresponds to counter

clockwise turntable rotation.
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(b) 3-D Turntable Geometry.

Fig. 1.

where F2 {h} (Ω) denotes the two-dimensional Fourier trans-
form of h evaluated at the point Ω in 2D Fourier space,
q̃(y1, y2) =

∫
q(y1, y2, y3)dy3 is the projection of q onto the

x1 − x2 axis, and µ = (cosφ, sinφ)T. Note that the vector µ
is an element of the unit circle S1 (the set of all unit vectors
in R2). The data D̃ can be sampled over a two-dimensional
Cartesian grid, allowing us to form a 2D image via an inverse
2D spatial Fourier transform:

I(x) =
1

(2π)2

∫
E(K1,K2)eiK1x1eiK2x2dK1dK2, (12)

where E is the wave number data sampled over a Cartesian
data grid.

For many SAR applications, Polar Formatting can be used
to produce an image. In this case, the received data is sample
at a variety of different angles. This data is used to populate
a polar raster in the Wave Number Domain. Next, this data is
interpolated onto a two dimensional rectangular grid. Finally,
a 2-D IFFT is applied to the interpolated data in order to
produce the final image.

C. Three-Dimensional Turntable ISAR Imaging

If in the previous turntable setup we also rotate the radar
antenna about the x2 axis by θ radians, we have that the new
antenna position is given by R2(θ)x0, where:

R2(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 . (13)

This implies that the data set recorded by the ISAR system is
then determined by

D(f) = |P (f)|2
∫
R3

q
(
R−11 (φ)z

)
ei2kR̂2(θ)x0·zdz

= |P (f)|2 F3 {q} (K),

(14)

where K = −2kO(φ, θ)x̂0, and O(φ, θ) =
(
R−11 R2

)
(φ, θ).

If we let x̂0 = (0, 0, 1)T (that is the initial antenna position is

located on the x3 axis) we see that

K =

 K1

K2

K3

 =

 k̃ cosφ sin θ

k̃ sinφ sin θ

k̃ cos θ

 = k̃µ, (15)

where µ = (cosφ sin θ, sinφ sin θ, cos θ)T is an element of
the unit sphere S2 (the set of all unit vectors in R3). Thus the
K-domain data takes up a three-dimensional space, allowing
us to form a 3D image via an inverse 3D Fourier transform:

I(x) =
1

(2π)3

∫
E(K)eiK·xdK. (16)

III. FILTERED-ADJOINT IMAGING

The framework for a filtered back projection ISAR imaging
algorithm is given in this section. Recall that the received
ISAR signal, S, is a function of both frequency, f , and angle,
µ. We will further assume that S is a member of L2(Cm),
the space of square-integrable functions on the unit cylinder
Cm = R × Sm−1. Here m = 2 or m = 3, corresponding
to the number of imaging dimensions. In either case we can
write the reflectivity function in terms of a rotating scattering
density function:

V (x) = q (Omx) . (17)

When m = 2, we have Om = R−11 , and when m = 3, we have
Om = R−11 R2, where R1 and R2 are the orthogonal linear
transformations given in the previous section. According to
equation (4), this implies that the ISAR signal is given by:

S(f) = P (f)

∫
R3

q(y)
e−i2k|y−Omx0|

(4π)2 |y −Omx0|2
dy (18)

A. The ISAR Back Projection Operator

If we let ra denote the distance of the radar sensor to the
scene center, then for m = 2 we let x0 = (ra, 0, 0)T. Thus we
can write Omx0 = raµ, where µ ∈ S1. Likewise, for m = 3
we let x0 = (0, 0, ra)T so that we can write Omx0 = Raµ,
where µ ∈ S2. In either case equation (18) can be written as:

S(f,µ) = Fm {q} (f,µ), (19)
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where

Fm {q} (f,µ) =

∫
R3

q(y)e−i2kRm(y,µ)Am(f,µ,y)dy,

(20)

Rm(z,µ) =

{
z−Ra(µ, 0)T, if m = 2
z−Raµ, if m = 3,

(21)

Am(f,µ,y) =
P (f)

(4π)2 (Rm(y,µ))
2 , (22)

and Rm(z,µ) = |Rm(z,µ)|. Note that we have used the sym-
bol F to denote the forward ISAR Fourier Integral Operator
(FIO). A derivation of the formal adjoint of this FIO is now in
order. For functions G,H ∈ L2(Cm), define the inner product
(G,H), by:

(G,H)m =

∫
Sm−1

∫
R
G(f,µ)H(f,µ)dfdµ, (23)

and recall the Hermitian inner product on L2(R3):

〈g, h〉 =

∫
R3

g(x)h(x)dx, g, h ∈ L2(R3) (24)

Define the operator Bm on L2(Cm), by:

Bm {H} (x) =

∫
Sm−1

∫
R
H(f,µ)Am(f,µ,x)ei2kRm(x,µ)dfdµ.

(25)
A quick application of Fubini’s theorem shows that Bm = F †m
on L2(Cm). That is for g ∈ L2(R3) and H ∈ L2(Cm), then
(Fmg,H)m = 〈g,BmH〉, thus making Bm our ISAR back
projection operator. We now seek to form an image I via:

I(x) = (BmQm) {S} (x) =∫
Sm−1

∫ ∞
0

S(f,µ)Qm(f,µ,x)Am(f,µ,x)ei2kRm(x,µ)dfdµ,

(26)

where Qm is a filter acting on S. The goal of the next two
sections is to evaluate this filter using the method of Stationary
Phase.

B. Point Spread Function Analysis using the Stationary Phase
Method

In order to lighten the processing load of an imaging
algorithm most radar systems make use of quadrature sampling
which has the useful property of converting a real signal into
a complex signal. Since the carrier frequency of a radar signal
is usually chosen to be larger than half of the transmitted
signal bandwidth, the signal’s support band is a subset of the
positive half plane. This means that we can assume that the
ISAR system is operating on only positive frequencies. Then,
substituting the expression for the received signal (19) into
equation (26) provides yields the following expression for the
image:

I(x) =

∫
R3

q(y)K(x,y)dy, (27)

where the point spread function (PSF), K is given by:

K(x,y) =

∫
Sm−1

∫ ∞
0

eiϕ(f,µ,x,y)a(f,µ,x,y)dfdµ, (28)

where ϕ(f,µ,x,y) = 2k [Rm(x,µ)−Rm(y,µ)] and
a(f,µ,x,y) = (AmQmAm)(f,µ,x,y). In order to obtain
an exact inversion formula, we must have:

K(x,y) = δ(x− y) =
1

(2π)m

∫
Rm

ei(x−y)·ξdξ (29)

Note that this would require the phase function ϕ to have
a single non-degenerate critical point at y = x. That is,
∇mϕ(f,µ,x,y)|y=x = 0 such that the Hessian matrix D2

mϕ
is nonsingular, according to the stationary phase theorem[22].
Here, the gradient operator in polar/spherical coordinates is
given by ∇m = ∂

∂f f̂ + ∂m
∂µ , and

∂

∂µ
=

{
1
f
∂
∂φ φ̂, if m = 2

1
f
∂m
∂θ θ̂ + 1

f sin θ
∂
∂φ φ̂, if m = 3

(30)

We first make a change of variables, f = βf ′, where β > 0:

K(x,y) = β

∫
Sm−1

∫ ∞
0

eiβϕ
′(f ′,µ,x,y)a′(f ′,µ,x,y)df ′dµ,

(31)
where ϕ′(f ′,µ,x,y) = 4πf ′

c [Rm(x,µ)−Rm(y,µ)] and
a′(f ′,µ,x,y) = a(βf ′,µ,x,y). We then apply the modified
gradient operator, ∇m = ∂

∂f ′ f̂
′+ ∂m

∂µ , to the phase ϕ. In either
case for m, we have that the major contribution for large β
comes from the critical points described by

∂

∂f ′
ϕ′(f ′,µ,x,y) =

4π

c
[Rm(x,µ)−Rm(y,µ)] = 0 (32)

∂m
∂µ

ϕ′(f ′,µ,x,y) =
4πf ′

c

[
R̂m(x,µ)− R̂m(y,µ)

]
· ∂m
∂µ

(Omx0) = 0

(33)

The first equation tells us that the distance from the antenna
to the target located at x must be the same as the distance to
the target located at y. The second equation tells us that the
range rate (giving rise to a Doppler shift) must be the same for
x and y. Thus we have the familiar idea of locating a target
from its range and Doppler shift[7].

C. Evaluating the Filter Q
In Cartesian coordinates (i.e. making the change of vari-

ables: η = fµ), we have that equation (28):

K(x,y) =

∫
Rm

eiϕ
′′(η,x,y)a′′(η,x,y)dη, (34)

where ϕ′′(η,x,y) = ϕ(η, η̂,x,y) and a′′(η,x,y) =
η1−ma(η, η̂,x,y), where η = |η| and η̂ = η

η . Note that:

ϕ′′(η,x,y) =
4πη

c

∫ 1

0

d

dλ
Rm(x, η̂)|x=y+λ(x−y) dλ

= (x− y) · Ξ(η,x,y),

Ξ(η,x,y) =
4πη

c

∫ 1

0

∇x Rm(x, η̂)|x=y+λ(x−y) dλ

(35)

Introducing the change of variables, ξ = Ξ(η,x,y), then we
have:

K(x,y) =

∫
Rm

ei(x−y)·ξa′′(η(ξ),x,y)

∣∣∣∣∂η∂ξ
∣∣∣∣ dξ, (36)
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where
∣∣∣∂η∂ξ ∣∣∣ is the Jacobian determinant resulting from the

change of variables. If we note that

a′′(η(ξ),x,y) = (η(ξ))1−m(AmQmAm)(f(ξ),µ(ξ),x,y),
(37)

we see that we can approximate the PSF for exact inversion
in equation (29) by letting

Qm(f,µ,x) =
(4π)4(Rm(x,µ))4fm−1

|P (f)|2
∣∣∣(∂η∂ξ) (f,µ)

∣∣∣ χ(f,µ), (38)

where χ(x, fµ) is a smooth cutoff function that prevents
from dividing by zero. Given the ISAR data set S(f,µ), note
that applying the proposed FBP operation to the data set is
mathematically equivalent to the following imaging operation:

I(x) =

∫
Sm−1

∫ ∞
0

S(f,µ)Ψ(f,µ,x)dfdµ, (39)

where

Ψ(f,µ,x) =
(4π)2(Rm(x,µ))2fm−1

P (f)
∣∣∣(∂η∂ξ) (f,µ)

∣∣∣ χ(f,µ)ei2kRm(x,µ)

(40)
takes on the form of a general “focusing” operator for Spher-
ical Wave ISAR (SWISAR)[3], [10], [25]. Thus, the proposed
inversion scheme has immediate applications for near-field
configurations. The (P (f))−1 term in equation (41) refers to
what is known as a source deconvolution operation for the
range imaging problem[20], and can be replaced by P (f) for
imaging systems that make use of matched filtering. Under
these assumptions, the focusing operator becomes

Ψ(f,µ,x) = (4π)2(Rm(x,µ))2fm−1P (f)ei2kRm(x,µ).
(41)

IV. THE FBP AND CBP ALGORITHMS

In general, filtered back projection (FBP) imaging schemes
are commonly used for forming images from radar data. FBP
algorithms were originally used in back projection tomogra-
phy. The mathematical basis of these algorithms is Radon
transform inversion, where the measured returns are related to
the projection/path integral of the object reflectivity function.
Back projection in synthetic aperture radar is often consid-
erably less efficient than other common inversion algorithms,
such as the Polar Format Algorithm.

Assume that a set of turntable radar data is already given as
a series of range profiles. For simplicity, the focusing operator
approach can be applied to form an image, as is indicated
by equation (41). Now, when m = 3, it can be assumed that
µ = µ(θ, φ). Then, the integral in equation (39) can be written
in three dimensional spherical coordinates as follows.

I(x) =

∫ 2π

0

∫ π

0

∫ ∞
0

S(f, θ, φ)Ψ(f, θ, φ,x) sin θdfdθdφ

(42)
Here the focusing operater in Ψ given in equation (41) can be
rewritten as

Ψ(f, φ,x) = (4π)2(R(x, θ, φ))2f2P (f)ei2kR(x,θ,φ) (43)

Now, the received signal in equation (42) can be combined
with the matched filtering factor P (f) to form a pulse
compressed version of the signal given by D(f, θ, φ) =
(4π)2P (f)S(f, θ, φ).

I(x) =

∫ ∞
0

∫ π

0

∫ 2π

0

f2D(f, θ, φ)(R(x, θ, φ))2 ×

ei2kR(x,θ,φ) sin θdφdθdf

(44)

Given that x = (x1, x2, x3)T , the range variable R(x, θ, φ)
can be reperented in acordance with equation (21).

R(x, θ, φ) =

x1 −Rasinθcosφx2 −Rasinθ sinφ
x3 −Racosθ)

 (45)

In polar coordinates, the range for a given value of x =
|x|(sinθ̃cosφ̃, sin θ̃ sin φ̃, cos φ̃)T is given in terms of the
following vector.

R(x, θ, φ) =

|x|sinθ̃cosφ̃−Rasinθcosφ|x|sinθ̃sinφ̃−Rasinθsinφ
|x|cosθ̃ −Racosθ

 (46)

Evaluating the norm of the vector, given in the equation above,
gives

R(x, θ, φ) =
√
|x|2 +R2

a −Rax · µ, µ = µ(θ, φ),

x · µ = |x| cos θ̃ cos θ − |x| sin θ̃ sin θ cos(φ̃− φ)
(47)

After replacing φ̃ with ψ, the inner integral becomes a circular
convolution.

I(x) =

∫ ∞
0

f2
∫ π

0

Q(f,x, θ, ψ) sin θdθdf, (48)

where

Q(x, θ, ψ) = (D ∗φ T )(x, θ, ψ),

(D ∗φ T )(x, θ, ψ) =

∫ 2π

0

D(f, θ, ψ − φ)T (f,x, θ, φ)dφ,

(49)

and
T (f,x, θ, φ) = (R(x, θ, φ))2e

4πif
c0

R(x,θ,φ) (50)

The convolution in the equation above can be computed
using the identity f∗g = F−1{F{f}F{g}}. In the case where
a discrete data set is given in place of a continious function,
the Fourier Transform and the Inverse Fourier Transform can
be replaced with the FFT and the IFFT respectively. Thus, in
the discrete case, Q is given by:

Q(f,x, θ, ψ) = IFFTφ{FFTφ{D} · FFTφ{T}}(f,x, θ, ψ)
(51)

The FFT is applied over Np sample points. Now, let Nf
denote the number of samples of the frequency variable f .
Then, assuming that θ can be sampled over Ns sample points,
the descrete versions of f and θ can be denoted by:

fj = fmin + j∆f where j = 1, 2, . . . Nf

θk = θmin + k∆θ where k = 1, 2, . . . Ns
(52)
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Then, the discrete version of the image function given in
equation (48) can be found using weighted sums in terms of
fj and θk.

I(x) =
1

NfNp

Nf∑
j=1

Np∑
k=1

f2jQ(x, j, k) sin θk (53)

The formulations in this paper provides a Mathematical
framework that can be used to developed a 3-dimensional
turntable imaging algorithm. Future work will center on devel-
oping a working CBP algorithm for 3-dimensional turntable
SAR. This algorithm will operate on a set of SAR data in the
form of range profiles. Once pulse compression is applied to
the received data, a circular convolution and weighted sums
will be applied. There are several other steps that need to be
included in this algorithm, including an interpolation step and
range compensation.

V. CONCLUSIONS

In this paper, we have provided a filtered back projection
inversion method for mono-static ISAR radar imaging. In
order to achieve this we have derived a forward integral
operator model for the forward ISAR problem, and evaluated
its formal adjoint (back projection operator) in the signal
function space. Applying the stationary phase method to our
inversion procedure, we have shown that the filtered back
projection data approximates the desired target reflectivity
function with large system bandwidth. One of the advantages
in the filtered back projection approach is that there is no
need of employing a far-field approximation for the radar data.
Thus our approach makes this filtered back projection method
ideal for near-field imaging. Although no numerical results are
provided in the paper to demonstrate this, it is shown that the
FBP scheme reduces to similar results for near-field turntable
radar imaging which have been proven to be efficient in ISAR
image formation. We will realize numerical results in both 2D
and 3D very soon.
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