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THE r-MATRIX AND AN ALGEBRAIC-GEOMETRIC SOLUTION OF

THE AKNS SYSTEM

Zhijun Qiao1

We construct an approach to finite-dimensional integrable systems with nonlinear evolution equations

from the standpoint of the r-matrix and an algebraic-geometric solution, illustrating the method with

the well-known AKNS equation. We present the r-matrix of the constrained AKNS flow and obtain the

algebraic-geometric solution of the AKNS equation.

1. Introduction

The ideal aim for soliton equations or nonlinear evolution equations (NLEEs) is to obtain their explicit
solutions. The Ablowitz–Kaup–Newell–Segur (AKNS) equations are a very important hierarchy of NLEEs
in soliton theory [1]. It can yield the KdV, MKdV, NLS, sine-Gordon, sinh-Gordon equations, etc. All these
equations are solvable by the inverse scattering transform (IST) [2] and usually have N -soliton solutions [3].
One of the research branches in this field is the periodic boundary value problem associated with those
special NLEEs. Some of the early studies on this problem were done by Lax [4] and Dubrovin, Krichever,
and Novikov [5]. They used the Bloch eigenfuctions and some analysis tools on a Riemann surface and
successfully obtained the algebraic-geometric solutions (or finite-gap solutions) of some well-known nonlinear
equations such as the KdV and Toda equations. But algebraic-geometric solutions of the AKNS equations
were not given. In the present paper, we resolve this problem from the standpoint of the r-matrix and a
constraint connecting finite-dimensional integrable systems with NLEEs.

We present notation used here: dp ∧ dq denotes the standard symplectic structure in the Euclidean
space R2N = {(p, q) : p = (p1, . . . , pN), q = (q1, . . . , qN )}, N > 1; 〈 · , · 〉 is the standard inner product in
RN ; [ · , · ] is the usual commutator; ⊗ is the tensor between two matrices; I is the 2×2 unit matrix; and
C∞(R) is the set of all C∞-functions on the real field R. In (R2N , dp ∧ dq), the Poisson bracket of two
Hamilton functions F and G is defined by

{F,G} =
N∑

i=1

(
∂F

∂qi

∂G

∂pi
− ∂F

∂pi

∂G

∂qi

)
=
〈
∂F

∂q
,
∂G

∂p

〉
−
〈
∂F

∂p
,
∂G

∂q

〉
;

λ1, . . . , λN are N arbitrarily given distinct constants; λ and µ are two different spectral parameters; Λ =
diag(λ1, . . . , λN ); and

Γj =
N∑

k=1,k �=j

(pjqk − pkqj)2

λj − λk
, j = 1, 2, . . . , N.
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2. The constrained AKNS flow

We consider the traceless 2×2 matrix

L = L(λ) =

(
1 0

0 −1

)
+

N∑
j=1

1
λ− λj

(
pjqj −q2

j

p2
j −pjqj

)
, (1)

which is called the Lax matrix. We then have

1
2
λ2 TrL2(λ) = λ2 + 2λ〈p, q〉+ 〈p, q〉2 + 2H +

N∑
j=1

λ2
jEj

λ− λj
, (2)

where

H = 〈Λp, q〉 − 1
2
〈q, q〉〈p, p〉,

Ej = 2pjqj − Γj , j = 1, . . . , N.

The finite-dimensional Hamiltonian system generated by the above Hamilton function H is

(H) :


qx =

∂H

∂p
= −〈q, q〉p+ Λq,

px = −∂H

∂q
= 〈p, p〉q − Λp.

(3)

It can be easily seen that (H) is just the well-known Zakharov–Shabat–AKNS spectral problem [6]

yx =

(
λ u

v −λ

)
y (4)

with the constraints

u = −〈q, q〉, v = 〈p, p〉,

λ = λj , and y = (qj , pj)T. We therefore call the Hamiltonian system (H) the constrained AKNS (c-AKNS)
flow, which coincides with the nonlinearized AKNS system via the Lax-pair nonlinearization method [7].

3. The r-matrix and integrability

Let L1(λ) = L(λ)⊗ I and L2(µ) = I ⊗ L(µ). Then the following theorem holds.

Theorem 1. The Lax matrix L(λ) defined by Eq. (1) satisfies the fundamental Poisson bracket

{L(λ)⊗, L(µ)} = [r12(λ, µ), L1(λ)] − [r21(µ, λ), L2(µ)], (5)

where r12(λ, µ) and r21(µ, λ) are the standard r-matrices

r12(λ, µ) =
2

µ− λ
P, r21(µ, λ) = Pr12(µ, λ)P (6)
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with

P =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 .

Proof. The fundamental Poisson bracket {L(λ)⊗, L(µ)} is a 4×4 matrix [8] whose entrices are given
by

{L(λ)⊗, L(µ)}kl,mn = {L(λ)km, L(µ)ln}.
A direct calculation therefore leads to (5). Equation (6) is called an r-matrix because it satisfies the
Yang–Baxter equation

[rij , rik] + [rij , rjk] + [rkj , rik] = 0, i, j, k = 1, 2, 3,

which completes the proof.

Remark 1. In fact, because r-matrix relation (5) is concerned only with the commutator, the r-matrix
r12(λ, µ) can be also chosen as

r12(λ, µ) =
2

µ− λ
P + I ⊗ S̃, S̃ =

(
a b

c d

)
,

where the elements a, b, c, and d can be arbitrary functions a(λ, µ, p, q), b(λ, µ, p, q), c(λ, µ, p, q), and
d(λ, µ, p, q) in C∞(R) with respect to the spectral parameters λ and µ and the dynamic variables p and
q. This shows that for a given Lax matrix, the associated r-matrix is not uniquely defined. Here, we give
the simplest case: a = b = c = d = 0, i.e., the c-AKNS flow has standard r-matrix (6), which is obviously
nondynamic.

An immediate consequence of Eq. (5) is

{L2(λ)⊗, L2(µ)} = [r̄12(λ, µ), L1(λ)] − [r̄21(µ, λ), L2(µ)], (7)

where

r̄ij(λ, µ) =
1∑

k=0

1∑
l=0

L1−k
1 (λ)L1−l

2 (µ) · rij(λ, µ) · Lk
1(λ)L

l
2(µ), ij = 12, 21.

Thus, Eq. (7) leads to

4{TrL2(λ),TrL2(µ)} = Tr{L2(λ)⊗, L2(µ)} = Tr{L2
1(λ)⊗, L

2
2(µ)} = 0,

which guarantees the involutivity of those integrals of motion obtained in Eq. (2). Therefore, we have

{Ei, Ej} = {H,Ej} = {Fs, Ej} = 0, i, j = 1, 2, . . . , N, s = 0, 1, 2, . . . ,

where

Fs =
N∑

j=1

λs
jEj = 2〈Λsp, q〉 −

∑
j+k=s−1

(〈Λjp, p〉〈Λkq, q〉 − 〈Λjp, q〉〈Λkq, p〉). (8)

In addition, E1, E2, . . . , EN are functionally independent on a certain region of R2N ; hence, we obtain the
following theorem.

Theorem 2. The c-AKNS flow given by (3) is completely integrable in the Liouville sense.

Remark 2. Here, the c-AKNS flow is proved to be integrable from the standpoint of the r-matrix
and Lax matrix and not the Lax pair.
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4. The AKNS hierarchy and its involutive solution

This section deals with the AKNS hierarchy of NLEEs. We connect the ZS spectral problem [6] and
the AKNS hierarchy [2] with the finite-dimensional Hamiltonian systems (H) and (Fs), s = 0, 1, . . . . We
start from ZS spectral problem (4), where λ is an eigenvalue, y = (y1, y2)T is the corresponding vector
eigenfunction, and u and v are two potentials that either decay at infinity or have periodic boundary
conditions. Then the AKNS hierarchy of NLEEs associated with (4) is derived as follows:

(
u

v

)
ts

= JGs, s = 0, 1, 2, . . . , (9)

where {Gs = J−1KGs−1}∞s=0 is the Lenard sequence with G−1 = (0, 0)T and G0 = (v, u)T, the two
symmetric operators K and J are

K =

(
2u∂−1u ∂ − 2u∂−1v

∂ − 2v∂−1u −2v∂−1v

)
, J = 2

(
0 −1
1 0

)
(10)

(∂ = ∂/∂x and ∂∂−1 = ∂−1∂ = 1). A representative equation (s = 2) of (9) is

ut = −1
2
uxx + u2v, vt =

1
2
vxx − v2u, t = t2. (11)

We consider the Hamilton functions Fs defined by (8). The Poisson bracket {Fs, H} = 0, s = 0, 1, . . . ,
implies that all the canonical Hamiltonian systems (Fs) and (H) are completely integrable in the Liouville
sense. Therefore, their Hamilton flows commute with each other.

Let (p(x, ts), q(x, ts))T be a solution of the consistent canonical Hamilton equations (H) and (Fs),
called the involutive solution [9]. We then have the following theorem.

Theorem 3. Higher-order AKNS equations (9) are satisfied by

u = −〈q(x, ts), q(x, ts)〉, v = 〈p(x, ts), p(x, ts)〉, s = 0, 1, . . . .

In particular, Eq. (11) is satisfied by the solution

u = −〈q(x, t2), q(x, t2)〉, v = 〈p(x, t2), p(x, t2)〉, (12)

where (p(x, t2), q(x, t2))T is the involutive solution of the consistent Hamiltonian systems (H) and (F2).

Proof. Taking Eq. (3), qts = ∂Fs/∂p, pts = −∂Fs/∂q, and the key equality

K

(
〈p(x, ts), p(x, ts)〉

−〈q(x, ts), q(x, ts)〉

)
= J

(
〈Λp(x, ts), p(x, ts)〉

−〈Λq(x, ts), q(x, ts)〉

)
,

where the operators K and J are defined by (10), into account, we can verify that higher-order AKNS
equations (9) are satisfied by

u = −〈q(x, ts), q(x, ts)〉, v = 〈p(x, ts), p(x, ts)〉, s = 0, 1, . . . .
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5. Algebraic-geometric solution

In the following procedure, we obtain an explicit expression for Eq. (12), i.e., we derive an algebraic-
geometric solution of AKNS equation (11). For this, we rewrite Lax matrix (1) as

L =

(
A(λ) B(λ)

C(λ) −A(λ)

)
,

where

A(λ) = 1 +
N∑

j=1

1
λ− λj

pjqj , B(λ) = −
N∑

j=1

1
λ− λj

q2
j , C(λ) =

N∑
j=1

1
λ− λj

p2
j .

We can substitute the following fractional forms for B(λ) and C(λ):

B(λ) ≡ −〈q, q〉QB(λ)
K(λ)

, C(λ) ≡ 〈p, p〉QC(λ)
K(λ)

,

where

〈q, q〉QB(λ) =
N∑

j=1

q2
j

N∏
k=1,k �=j

(λ− λk),

〈p, p〉QC(λ) =
N∑

j=1

p2
j

N∏
k=1,k �=j

(λ− λk), K(λ) =
N∏

j=1

(λ− λj).

Respectively choosing N−1 distinct real zero points µB
1 , . . . , µ

B
N−1 and µ

C
1 , . . . , µ

C
N−1 of QB(λ) and QC(λ)

leads to

QB(λ) =
N−1∏
j=1

(λ− µB
j ), QC(λ) =

N−1∏
j=1

(λ − µC
j ),

〈Λq, q〉
〈q, q〉 = A1 −

N−1∑
k=1

µB
k , (13)

〈Λp, p〉
〈p, p〉 = A1 −

N−1∑
k=1

µC
k , (14)

〈Λ2q, q〉
〈q, q〉 = A1

〈Λq, q〉
〈q, q〉 −A2 +

N−1∑
k,j=1,j<k

µB
j µ

B
k , (15)

〈Λ2p, p〉
〈p, p〉 = A1

〈Λp, p〉
〈p, p〉 −A2 +

N−1∑
k,j=1,j<k

µC
j µ

C
k , (16)

where the two constants are

A1 =
N∑

j=1

λj , A2 =
N∑

k,j=1,j<k

λjλk.
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Evidently, (13), (14), (15), (16) are equivalent to

N−1∑
k=1

µB
k = A1 −

〈Λq, q〉
〈q, q〉 ,

N−1∑
k=1

µC
k = A1 −

〈Λp, p〉
〈p, p〉 ,

(
A1 −

N−1∑
k=1

µB
k

)2

−
N−1∑
k=1

(
µB

k

)2
= 2A2 −A2

1 + 2
〈Λ2q, q〉
〈q, q〉 ,

(
A1 −

N−1∑
k=1

µC
k

)2

−
N−1∑
k=1

(
µC

k

)2
= 2A2 −A2

1 + 2
〈Λ2p, p〉
〈p, p〉 .

(17)

On one hand, ux = −2〈q, qx〉 = −2〈q, ∂H/∂p〉 = −2〈Λq, q〉 − 2uc0(t), where the function c0(t) is only
dependent on t. From Eq. (13), we thus obtain

∂

∂x
log u = 2A1 − 2

N−1∑
k=1

µB
k − 2c0(t).

On the other hand, ut2 = −2〈q, qt2〉 = −2〈q, ∂F2/∂p〉 = −2〈Λ2q, q〉. Combined with Eq. (17), this
gives the equality

∂

∂t2
log u =

(
A1 −

N−1∑
k=1

µB
k

)2

−
N−1∑
k=1

(µB
k )

2 − 2A2 +A2
1.

We thus obtain

u(x, t) = u(x0, t0) exp

(∫ t

t0

[(
A1 −

N−1∑
k=1

µB
k

)2

−
N−1∑
k=1

(
µB

k

)2 − 2A2 +A2
1

]
dt+

+
∫ x

x0

[
2A1 − 2

N−1∑
k=1

µB
k − 2c0(t)

]
dx

)
, t = t2, (18)

where x0 and t0 are two fixed initial values. Similarly, v(x, t) has the representation

v(x, t) = v(x0, t0) exp

(
−
∫ t

t0

[(
A1 −

N−1∑
k=1

µC
k

)2

−
N−1∑
k=1

(
µC

k

)2 − 2A2 +A2
1

]
dt−

−
∫ x

x0

[
2A1 − 2

N−1∑
k=1

µC
k − 2c0(t)

]
dx

)
, t = t2. (19)

Because Eqs. (18) and (19) solve nonlinear soliton equation (11), we only need to calculate the four key
expressions

∑N−1
j=1 (µ

J
j )

k, J = B,C and k = 1, 2, to obtain their explicit form. For this, we follow the
approach in the case of the Toda lattice equation [10, 11]. For the two sets of Darboux coordinates µJ

j ,
J = B,C and j = 1, . . . , N − 1, we then have the key equalities

N−1∑
j=1

(µJ
j )

k = Ck(Γ)−
2∑

s=1

Res
λ=∞s

λkd logΘ(A(P )− φ−KJ), J = B,C, k = 1, . . . , N − 1,
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where Ck(Γ) is a constant [10, 12] only determined by the compact Riemann surface Γ of genus N − 1,
µ2 = P (λ)K(λ),

P (λ) = K(λ) +
N∑

j=1

Ej

N∏
k �=j,k=1

(λ− λk)

∞1 = (0,
√
P (z−1)K(z−1)|z=0),

∞2 = (0,−
√
P (z−1)K(z−1)|z=0),

A(P ) =
∫ P

P0
ω is the Abel map in which P0 is an arbitrarily chosen point on Γ, ω = (ω1, . . . , ωN−1)T,

ωj =
N−1∑
l=1

rj,lω̃l =
N−1∑
l=1

rj,l

∏N
k �=l,k=1(λ− λk)

2
√
K(λ)P (λ)

dλ

is a normalized holomorphic differential form, and rj,l is the normalized factor. The jth component φj(x, t)
of the (N−1)-dimensional vector φ is equal to

N−1∑
l=1

rj,l

(
Q0

l +
λlx

2
+

λ2
l t

2
+ Cl(t) + C̃l(x)

)
with the arbitrary constant Q0

l and functions Cl(t), C̃l(x) ∈ C∞(R). The vectors KB and KC in C
N−1 are

the two Riemann constant vectors respectively associated with the Darboux coordinates µB
j and µC

j . The
Riemann theta function [13] Θ(ξ) is defined on the Riemann surface Γ.

Calculating the residue at ∞s, s = 1, 2, for k = 1, 2 yields
N−1∑
j=1

µJ
j = C1(Γ)−

∂

∂x
log

ΘJ
1

ΘJ
2

,

N−1∑
j=1

(µJ
j )

2 = C2(Γ) +
∂

∂t
log

ΘJ
1

ΘJ
2

− ∂2

∂x2
logΘJ

1Θ
J
2 ,

where ΘJ
s = Θ(φ+KJ + ηs), J = B,C, and

ηs,j =
∫ P0

∞s

ωj , s = 1, 2,

is the jth component of the (N−1)-dimensional vector ηs.
Substituting the above equalities in (18) and (19) and sorting them, we obtain the explicit solution of

soliton equation (11):

u(x, t) = u(x0, t0)ea(t−t0)+2(b−c0)(x−x0)
ΘB

1

ΘB
2

∣∣∣∣
t=t0

(
ΘB

2

ΘB
1

)2
∣∣∣∣∣
x=x0

×

× ΘB
1

ΘB
2

exp

(∫ t

t0

[
∂2

∂x2
logΘB

1 Θ
B
2 +

(
b+

∂

∂x
log

ΘB
1

ΘB
2

)2]
dt

)
, (20)

v(x, t) = v(x0, t0)e−a(t−t0)−2(b−c0)(x−x0)
ΘC

2

ΘC
1

∣∣∣∣
t=t0

(
ΘC

1

ΘC
2

)2
∣∣∣∣∣
x=x0

×

× ΘC
2

ΘC
1

exp

(∫ t

t0

[
∂2

∂x2
logΘC

2 Θ
C
1 +

(
b+

∂

∂x
log

ΘC
2

ΘC
1

)2]
dt

)
, (21)
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where a = A2
1 −C2(Γ)− 2A2 and b = A1 −C1(Γ) are two constants, c0 = c0(t) ∈ C∞(R) is a given function

of t, and x0 and t0 are the initial values. Therefore, we obtain the following theorem.

Theorem 4. AKNS equations (11) have a pair of explicit solutions (20) and (21) given by the form
of the Riemann theta function, which are called the algebraic-geometric solution.

An analogous calculation process can also yield the algebraic-geometric solution of higher-order AKNS
equations (9). But that is a more complicated case, which we omit here.

6. Conclusion

A motivation for writing this paper originates from our work on finite-dimensional integrable systems
described in [10]. Indeed, with the example of the AKNS equations, we show that a procedure for algebraic-
geometric solutions is successfully extended from finite-dimensional integrable systems to integrable NLEEs
or soliton equations. This procedure can be applied into other NLEEs. Zhou [12] gave the algebraic-
geometric solution of the Jaulent–Miodek equation. Afterwards, Zhang [14] and Du [15] also obtained
the algebraic-geometric solutions of some soliton equations using this method. Of course, there are other
methods for solving soliton equations or NLEEs. Recently, Deift, Its, and Zhou [16] obtained the Θ-
function solutions of some NLEEs such as the KdV, MKdV, and nonlinear Schrödinger equation using the
Riemann–Hilbert asymptotic method. All these methods are still under development.
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