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Abstract—Unmanned aerial vehicle (UAV) synthetic aperture
radar (SAR) is an essential tool for modern remote sensing ap-
plications. Owing to its size and weight constraints, UAV is very
sensitive to atmospheric turbulence that causes serious trajectory
deviations. In this paper, a novel databased motion compensation
(MOCO) approach is proposed for the UAV SAR imagery. The
approach is implemented by a three-step process: 1) The range-
invariant motion error is estimated by the weighted phase gradient
autofocus (WPGA), and the nonsystematic range cell migration
function is calculated from the estimate for each subaperture
SAR data; 2) the retrieval of the range-dependent phase error
is executed by a local maximum-likelihood WPGA algorithm;
and 3) the subaperture phase errors are coherently combined to
perform the MOCO for the full-aperture data. Both simulated
and real-data experiments show that the proposed approach is
appropriate for highly precise imaging for UAV SAR equipped
with only low-accuracy inertial navigation system.

Index Terms—Local maximum-likelihood (LML), motion com-
pensation (MOCO), phase gradient autofocus (PGA), synthetic
aperture radar (SAR), unmanned aerial vehicle (UAV), weighted
phase gradient autofocus (WPGA).

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) is a remote sensing
system to generate high-resolution microwave images of

the observed scene. It is mounted on-board a platform, such
as aircraft, satellite, or unmanned aerial vehicle (UAV), which
flies at a constant velocity along a nominal trajectory. By trans-
mitting wideband signals in a constant time interval, SAR can
achieve the backscattering characteristics from the echoed data.
As highlighted in [1], for SAR systems, the platform motion is
a solution as well as a problem. The problem arises from trajec-
tory deviations, and instability of platform velocities, which not
only causes serious blurring, but also geometric distortion of the
SAR imagery. Such motion errors can be obtained from the syn-
chronous measurements of the navigation systems, and motion
compensation (MOCO) is performed subsequently. To achieve
highly precise MOCO, the measurements have to be performed
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at subwavelength scale from pulse to pulse, which would ex-
ceed the accuracy of navigation systems. Therefore, navigation
measurements usually provide only coarse MOCO, such as
removal of the nonsystematic range cell migration (NRCM)
and partial phase errors [2], [3]. Autofocus approaches are
subsequently applied to estimate the rest motion errors. The
motion error problem is particularly apparent to the UAV SAR,
because it is easily disturbed by the atmospheric turbulence due
to its small size and light weight. Moreover, the UAV SAR may
not be equipped with a highly accurate navigation system due
to weight capacity constraint [4]. Therefore, for the UAV SAR
imaging, MOCO strategies are important and advisable based
on the raw data.

Up to now, some raw-databased MOCO approaches have
been proposed to focus the UAV SAR imagery. In [5], a MOCO
strategy is proposed based on the Doppler rate (DR) estimation
via the map-drift techniques [6]–[8]. It splits each subaperture
data into multiple range blocks to estimate the range-varying
DRs. Then, the motion errors are brought by the double integral
of the DRs. The MOCO approach is performed in an iterative
manner to reach an optimal accuracy. For UAV SAR imagery, it
normally needs a number of iterations, resulting in large com-
putational load. Another method presented in [9] is based on a
combination of range alignment and phase gradient autofocus
(PGA) [10]: The NRCM is corrected by the range alignment
techniques, and the phase error is estimated by PGA. However,
it also encounters the problem of huge computational load in
processing large-size data, because its NRCM correction is
very time consuming. In addition, the range variance of motion
errors challenges the MOCO scheme in wide-swath SAR imag-
ing. In the raw-databased approaches, autofocus techniques are
employed to estimate motion errors adaptively. PGA is one of
the most popular autofocus algorithms. Recent improvements
in the PGA algorithms, including the quality PGA (QPGA)
and the weighted phase estimation, are presented in [11]–[13],
respectively. However, direct application of these novel ap-
proaches to UAV SAR imagery encounters inherent difficulties.
Some factors should be accounted in the establishment of the
MOCO approach for UAV SAR, which are listed as follows.

1) UAV SAR may not be equipped with a highly accurate
navigation system. Therefore, MOCO based on raw data
is essential for UAV SAR imagery.

2) The motion errors are serious to the UAV SAR imaging,
which may not only cause phase errors, but also NRCM.

3) UAV usually flies at a low height, and it is required to
reach a wide observation area. Thus, in the MOCO, the
range variance of errors should be accounted carefully.
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4) UAV SAR is required to operate under different modes,
such as stripmap and spotlight mode. Therefore, its
MOCO should be adjusted to these modes, particularly
for the strip-map mode.

5) Another important factor for the MOCO of UAV
SAR is the efficiency and feasibility for its real-time
implementation.

Taking the aforementioned factors into consideration, we
propose a robust autofocus algorithm to meet the demands of
the precise and efficient MOCO for UAV SAR imagery. The
core of the proposed MOCO is extending the weighted PGA
(WPGA) to the range-variant case. Our approach runs a three-
step estimation: 1) range-invariant motion error is estimated by
the WPGA to compensate the NRCM for a subaperture data;
2) retrieval of range-dependent phase error is executed by a
modified WPGA algorithm, which is precise and robust through
using the weighting and local maximum-likelihood (LML) esti-
mate, which we call LML-WPGA; and 3) all subaperture phase
estimates are coherently combined into a full-aperture phase
error function, and the linear phase is filtered out to prevent the
image shift. In the range-variant phase estimation, the LML-
WPGA is proposed by considering the fact that the spatial
variance is negligible within a small range block of raw data. A
novel method is also proposed to determine the range block size
adaptively. By the LML, very fast convergence can be achieved
and the precision of the WPGA is improved significantly. The
LML-WPGA makes it suitable to correct range-variant phase
errors in UAV SAR data. The algorithm can precisely be applied
to the MOCO of the strip-map UAV SAR flying with a low
altitude. Its extensions to other modes, such as spotlight and
high squint, are also developed straightforwardly. Real UAV
SAR data sets are used to test the proposed approach. Owing to
its efficiency and accuracy, our approach opens the possibility
for the MOCO of UAV SAR systems with equipping only a
low-accuracy navigation system.

II. SIGNAL AND GEOMETRY MODEL

The UAV SAR data acquisition geometry is shown in Fig. 1,
where the linear straight line (X-axis) denotes the nominal
trajectory, and the curve represents the real trajectory. In the
ideal case, the antenna phase center (APC) of the radar moves
along the nominal path at a constant velocity V . However,
owing to the displacement of real trajectory from the nominal
one, additional range error from radar to target is caused. Let us
assume that the pulse repetition interval is Tr. APC is located
in a constant interval with the length of V Tr along the X-axis

Fig. 1. UAV SAR motion geometry.

Fig. 2. Normal plane of the ideal trajectory (side-looking mode).

direction at a reference height of H . The actual and ideal APC
position at the slow time tm is [X(tm),Δy(tm), H +Δz(tm)]
and [V tm, 0, H], respectively. The instantaneous motion er-
ror vector d, defined by the displacement between the real
and nominal trajectories, is [Δx(tm),Δy(tm),Δz(tm)], where
Δy(tm) and Δz(tm) represent the cross-track displacement.
Considering a scatterer at (x, y, z) and nonsquint mode (α =
0), the instantaneous range from the actual APC to the scat-
terer (see (1)–(3), shown at the bottom of the page) where
r =

√
y2 + (H − z)2 is the closest range of the scatterer to

the ideal trajectory. Furthermore, sin θ =
√

1− (H/r)2 and
cos θ = H/r refers to the incidence angle, as shown in Fig. 2. In
(1), the instantaneous range is approximately decomposed into
two terms: R0 corresponds to the nominal track, and ΔR stands
for the range error. In (3), the first term of range error is caused

R(tm; r, x) =

√
(V tm +Δx(tm)− x)2 + (Δy(tm)− y)2 + (H +Δz(tm)− z)2

=R0(tm; r, x) + ΔR(tm;x, y, z) (1)

R0(tm; r, x) =
√
r2 + (V tm − x)2 (2)

ΔR(tm;x, y, z) ≈ [2V tm +Δx(tm)− 2x]

2r
·Δx(tm) + sin θ ·Δy(tm) + cos θ ·Δz(tm) (3)



3204 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 50, NO. 8, AUGUST 2012

by the along-track motion error, and the second and third terms
are the cross-track errors. Based on the narrow beam and flat
topography assumption [2], [3], [5], [14], the spatial variance
of the motion error can be simplified as range dependence.
Equation (3) is approximately equal to

ΔR(tm; r, x) ≈ (V tm − x)

r
·Δx(tm) + sin θ ·Δy(tm)

+ cos θ ·Δz(tm). (4)

Suppose the radar transmits a linear frequency modulated signal

st(t̂) = rect

[
t̂

Tp

]
exp

[
j2π

(
fct̂+

1

2
γt̂2

)]
(5)

where t̂ is the fast time, rect[u] =

{
1 |u| ≤ 1/2
0 |u| > 1/2

, fc is the

carrier frequency, Tp is the pulse width, and γ is the chirp
rate. After down conversion to the baseband, the received signal
from the scene is expressed by

sr(t̂, tm) =

∫∫
σ(r, x) · g

(
tm − x

V

)
· st

(
t̂− 2R(tm; r, x)

c

)

· exp
[
−j4πfc

R(tm; r, x)

c

]
drdx (6)

where r and x are the range and azimuth coordinates, respec-
tively, c is the light speed, σ(r, x) is the complex reflectivity,
and g(tm) represents the antenna pattern and other slow time-
variant characters. By transforming (6) into the range frequency
domain via a Fourier transform (FT), we obtain

sr(fr, tm) =

∫∫
σ(x, r) · g

(
tm − x

V

)
· st(fr)

· exp
[
−j4π(fc + fr)

R(tm; r, x)

c

]
drdx

=

∫∫
σ(x, r) · g

(
tm − x

V

)
· st(fr)

· exp
[
−j4π(fc + fr)

R0(tm; r, x)

c

]

· exp
[
−j4π(fc + fr)

ΔR(tm; r, x)

c

]
drdx (7)

where st(fr) = FT[st(t̂)], and FT[·] is the FT operator. The
first step of conventional image formations, such as the range-
Doppler algorithm [15]–[17], the chirp scaling algorithm (CSA)
[3], [18]–[20], and the frequency scaling algorithm [21], is to
remove the RCM caused by the ideal data acquisition geometry
and the followed-up range matched filtering [1]. The signal with
motion errors in the range frequency and azimuth time domain
is given by

sr(fr, tm)=

∫∫
σ(x, r)·g

(
tm− x

V

)
·exp

(
−j4πfr

r

c

)
·exp

[
−j4πfc

R0(tm; r, x)

c

]

·exp
[
−j4πfc

ΔR(tm; r, x)

c

]

·exp
[
−j4πfr

ΔR(tm; r, x)

c

]
drdx. (8)

The ideal RCM is deterministic and corrected precisely. How-
ever, motion errors still present phase errors and NRCM
(induced by exp[−j4πfr(ΔR(tm; r, x)/c)]) when the motion
error exceeds a range cell. They are expected to be corrected
in the MOCO. In general, the NRCM correction requires the
precise estimation of profile shift within a quarter of range
cell, while the phase error correction requires higher precision,
because the phase is relevant to the wavelength. In some cases
where the motion error is nominal to cause NRCM, only the
phase errors are taken into account. Applying the inverse FT to
(8) yields the following range-compressed signal

src(t̂, tm)=

∫ ∫
σ(x, r)·g

(
tm− x

V

)
·sinc

[
γTp

(
t̂− 2r

c

)]

· exp
[
−j4πfc

R0(tm; r, x)

c

]

· exp
[
−j4πfc

ΔR(tm; r, xt)

c

]
drdx. (9)

No NRCM error assumption is widely used in the current
autofocus algorithms. However, in the MOCO of UAV SAR
imagery, this assumption is generally too strict to apply.

III. RELATED WORKS

Before presenting our approach for the UAV SAR imagery,
let us briefly review some related works.

A. Phase Gradient Autofocus and Its Improvements

The PGA is one of the useful autofocus algorithms in the
SAR imagery. It provides robust performance over wide variety
of scene content. By neglecting the spatial variance of phase
error, PGA exploits the phase error redundancy at different
range bins. Before using the PGA, the azimuth de-ramping
[1], [13], [22] is applied to remove the quadratic term in
R0(tm; r, x). The de-ramping reference function for range bin
at coordinate r is expressed by

d(tm) = exp

[
j2π

(V tm)2

λr

]
(10)

where λ = c/fc denotes the wavelength. Multiplying by d(tm)
on both sides of (9) and by neglecting the constants and high-
order phase terms, we have

s(t̂, tm) ≈
∫ ∫

σ(x, r) · g
(
tm − x

V

)
· sinc

[
γTp

(
t̂− 2r

c

)]
· exp

(
j4π

V tmx

rλ

)

· exp
[
−j4πfc

ΔR(tm; r, x)

c

]
drdx. (11)

Then, PGA is performed to estimate the phase error in (11).
Standard PGA is executed in the following five steps.

—Samples selection. Selecting samples with high signal-to-
clutter ratio (SCR) makes the estimation more efficient and
precise. The QPGA extends conventional PGA by making
use of the redundancy of phase error in both the range and
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azimuth directions [11], which significantly increases the
amount of high-quality samples by several times to obtain
noniterative convergence. QPGA reveals that coherent fu-
sion of high-quality samples is important in phase gradient
estimation.

—Circular shifting. For the selected samples, the azimuth
cell with the strongest response is circularly shifted to the
image center, which removes the frequency offset in the
Doppler domain.

—Windowing. Windowing processing preserves only the
width of the dominant blur, which allows the phase gra-
dient estimation to proceed using the input data with the
highest SCR. The selection of window size can be obtained
adaptively [10]. We also know that a progressively decreas-
ing window width works quite well in real cases.

—Phase gradient estimate. After circular shifting and win-
dowing, the phase gradient is able to be estimated. Symbol
s(k, :) is used to denote the discrete form of the kth
selected range bins after circular shifting and windowing.
The linear unbiased minimum variation and ML estimate
kernels can be found in [8]. More recently, following the
idea of weighted phase estimation in [12], a weighted
ML kernel is presented in [13]. Weighting technique is
based on the contribution adjustments of different samples
according to their SCR, which encourages the contribution
of high SCR samples in phase gradient estimate. If so,
the selection of samples can be much relaxed and the
fast convergence can be obtained. The weighted maximum
likelihood (WML) kernel is given by

ˆ̇
φ
WML

e (h) = arg

K∑
k=1

wk · [conj [s(k, h)] · s(k, h+ 1)]
K∑
j=1

wj

h = 1, 2, . . . , J (12)

where ˆ̇
φe is the estimated phase-error gradient, K is the

number of selected range bins, J + 1 denotes the azimuth
length of samples, conj[·] denotes the conjugate operator,
and wk is the weight in the kth range bin. The weight wk

for the kth range bin is the inverse of the phase variance of
the range bin. Details can be found in [12] and [13].

—Iterative phase correction. The phase gradient ˆ̇
φe

is integrated to obtain the estimate of
exp[−j4πfc(ΔR(tm; r, x)/c)] in (11), and any bias
and linear component is removed prior to performing
correction. The estimation and compensation process is
repeated iteratively. Prior information about the motion
error, such as measurements of navigation systems, is
helpful to improve the efficiency: If partial phase error
can be corrected by using prior information, the initialized
window width can be selected narrow enough to ensure
high SCR.

B. Strip-Map Autofocus Approaches

Standard PGA framework cannot be directly applied to strip-
map SAR imagery, because the apertures of different targets

displace with each other during a long observation interval in
the strip-map mode. Then, applying the PGA brings a problem:
Partially overlapping apertures, which span different segments
of the phase error function with potentially different local
linear components, will not necessarily express the same phase
gradients in the overlapped region [23]. To solve this problem,
the phase curvature autofocus (PCA) has been proposed in
[23]. However, owing to the double differentiation character-
istics, PCA is inherently less robust than PGA [24]. The SCR
weighting process can effectively improve the performance
of PCA [13], [24]. The strip-map PGA [25] and the phase-
matching autofocus [26] present modifications by combining
the Doppler centroid estimation [27]–[29]. All these strip-
map autofocus algorithms do not have the spatial variance of
motion errors involved. The phase-weighted-estimation PGA
(PWE-PGA) [30] provides a weighted kernel with a range-
variant model for strip-map data. It computes the phase gradi-
ents other than the phase curvatures by converting data blocks
of the strip-map SAR into the spotlight representation. In
PWE-PGA, the trajectory derivation caused by the along-track
motion error is neglected, and there are only the cross-track
motion errors. According to the geometry shown in Fig. 2, the
instantaneous range error (4) is approximated by

ΔR(tm; r) ≈ sin θ ·Δy(tm) + cos θ ·Δz(tm) (13)

This range-variant model decomposes the phase error φe into a
vertical and a horizontal part, denoted by φez = (4π/λ)Δz and
φey = (4π/λ)Δy, respectively, corresponding to the geometry
shown in Fig. 2. The phase gradient estimation of PWE-PGA is

ˆ̇Φyz = (ATWA)
−1
ATWΦ̇ (14)

where [•]T and [•]−1 denotes matrix transpose

and inverse, respectively. A =

⎡
⎣ sin θ1 cos θ1

...
...

sin θK cos θK

⎤
⎦

and W = diag[m1, . . . ,mK ] are the geometry and
weighting matrix, respectively, with sin θ1, cos θ1 and
mk =

∑J
h=1 |[conj[s(k, h)] · s(k, h+ 1)]| corresponding

to the kth range bin sample, and Φ̇ =

⎡
⎢⎣

ˆ̇
φe(1, :)

...
ˆ̇
φe(K, :)

⎤
⎥⎦

is the estimated phase gradient matrix with ˆ̇
φe(k, h) =

arg[conj[s(k, h)] · s(k, h+ 1)], k = 1, 2, . . . ,K, ˆ̇Φyz =
[ˆ̇φey

ˆ̇
φez

]
being the matrix for the cross-track phase gradients estimate.
ˆ̇
φey and ˆ̇

φez represent the phase gradient estimation related to
Δy(tm) and Δz(tm), respectively. The weights in PWE-PGA
are determined by energy, which can be replaced by the SCR
weights to improve the performance [13], [24]. PWE-PGA
paves a way to autofocus SAR image with a wide swath and
low altitude. However, some difficulties in application of PWE-
PGA to the UAV SAR imagery make it unsuitable candidate
for the raw-databased MOCO. In (14), we need to retrieve 2-D
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phase gradients rather than the 1-D case in PGA from a set of
inaccurate phase gradient related to a range bin. Consequently,
to ensure the precise estimation and convergence of PWE-
PGA, more range samples are needed, which restricts the
PWE-PGA application to different scenes because some scenes
may not have enough prominent scatterers. Phase gradients
of different range bins are affected by strong noise, and they
are not coherently combined into high-accuracy estimates.
Direct usage of the noisy phase gradients in the PWE-PGA

kernel causes imprecision of ˆ̇Φyz , which results in a very
slow convergence. In addition, in addition to neglecting the
along-track motion error, another problem in the PWE-PGA is
the phase discontinuities between the blocks. In summary, the
PWE-PGA is not an efficient and robust approach to satisfy the
application of the UAV SAR imagery, where serious motion
error and the uncertainty of observation scene are usually
involved. This motivated our work presented in this paper.

IV. UAV SAR AUTOFOCUS APPROACH

In this section, we present a robust autofocus algorithm for
the UAV SAR imagery. It accounts both the phase error and
NRCM. Futhermore, the approach applies the range-variant
error model, and thus it is suitable to process strip-map SAR
data. Similar to the PWE-PGA, it could be directly applied
to the spotlight and high squint case with some modifications.
The phase errors estimation is composed of the following three
main steps in our approach to the UAV SAR MOCO based on
raw data.

1) First, the UAV SAR raw data is divided into several over-
lapped small subapertures to deal with the uncertainty of
linear phase component in the PGA application of strip-
map SAR autofocus. The range-invariant phase errors
for each subaperture data are estimated by the WPGA,
and then coarse MOCO is performed on the data block,
including NRCM correction and range-invariant phase
error removal. At this step, the coarse information from
the navigation system, if available, is useful.

2) After the coarse MOCO in the first step, NRCM can
be corrected effectively. Residual phase errors are range
variant, usually only being a fraction of the total errors,
but significantly enough to cause image blurring. In the
range-variant error estimation, a LML scheme is pro-
posed to ensure the robustness and high precision.

3) At this step, the estimated subaperture phase errors
are coherently combined into full-aperture phase func-
tions. As each sub-aperture error estimate is independent
of each other, different linear phases are involved in
each sub-aperture. Therefore, the overlapping between
two connective subapertures is necessary, and the linear
phase difference is easily extracted from the overlapped
segments and compensated to avoid discontinuities in
the full-aperture functions. This procedure is processed
for both range-invariant and range-variant phase errors.
Then, the smoothing filter is applied to reduce the esti-
mating noise. Based on the full-aperture phase errors, pre-
cise MOCO can be performed by a two-step procedure.

A. Coarse Phase Estimation

Through the course of a synthetic aperture, as the radar’s
perspective changes toward a target, the ranges to the target
change as well, which leads to the geometry-related RCM. This
RCM is removed within the image formation process. In this
paper, we use the CSA. Notably, image formation compensates
the RCM from the acquisition geometry, but not that from
motion errors. As a result, the motion errors still manifest
themselves as both NRCM and phase error in the data. For
the UAV SAR systems, however, the NRCM is approximately
identical in different parts of the SAR image, that is, NRCM
is range independent. This approximation is rigid because even
in the case of wide swath UAV SAR imagery, the range-variant
part of NRCM cannot exceed a range cell. This allows us to
estimate the NRCM from the range-invariant phase error. By

integrating the phase gradient ˆ̇
φec(tm), we obtain the phase

error estimate, denoted by φ̂ec(tm), and the range error can be
deduced from φ̂ec, which is expressed by

ΔR̂(tm) ≈ c

4πfc
· φ̂ec(tm). (15)

Then, the coarse correction function to remove range-invariant
phase error and the NRCM is given by

G1(tm) = exp

[
j4π(fr + fc)

ΔR̂(tm)

c

]
. (16)

The presence of NRCM degrades the precision of the WPGA
estimate of φ̂ec(tm). We can perform the WPGA to the raw
data with a lower resolution by the downsampling process.
The downsampling process eliminates NRCM by summing up
several neighboring range bins into a single bin. Also, the
processing can be implemented by extracting only a part of
the frequency band from the raw data to obtain the range-
compressed data block [31], which inherently has an energy
loss of the signal. Therefore, the summing process should be
preferable. The amount of adjacent range bins to combine
should cover the range of NRCM, and the price of SCR loss
is usually nominal. The span of NRCM could be estimated
from a coarse phase error. To avoid high computational load,
the coarse phase error can be extracted from only a part of
the samples. At this step, the coarse phase error estimate
exhibits little difference from the conventional WPGA with
regard to the spotlight SAR imagery, except the inclusion of
the downsampling process.

B. Fine Phase Estimation

The task of fine phase estimation is to retrieve the range-
variant error phase accurately. In PWE-PAG, the range-
dependent error model only deals with the cross-track trajectory
deviations. For the UAV SAR, serious along-track deviation
may also bring significant phase errors. In this paper, we have
developed a new range-dependent motion error model. After
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the NRCM correction and coarse phase compensation, the de-
ramped signal becomes

s(t̂, tm) =

∫ ∫
σ(x, r) · g

(
tm − x

V

)
· sinc

[
γTp

(
t̂− 2r

c

)]

· exp
(
j4π

V tmx

rλ

)
· exp

[
−j4πfc

ΔR′(tm; r, x)

c

]
drdx (17)

where ΔR′(tm; r) = ΔR(tm; r)−ΔR̂(tm) is the range-
dependent residual range error. In general, the coarse phase
correction removes major phase error in the signal, and a
coarse-focused image is achieved. Therefore, the coarse phase
correction is very helpful for the range sample selection and
iterative phase gradient estimation, which benefits the range-
dependent phase error retrieval in this step. Based on the narrow
beam and flat topography assumption, the residual phase error
is range dependent, which is expended into Taylor series with
respect to range as follows:

ΔR′(tm; r, x) ≈ c

4πfc
·
[
θ0(tm) + θ1(tm)Δr + θ2(tm)Δr2

]
(18)

where Δr = r − rc, rc is the closet distance from the scene
center to the ideal track, the first term in the bracket is the resid-
ual range-invariant error, and the second and third terms are
linear and quadratic range-variant error, respectively. Unlike the
range-dependent model in (13), in (18), the range dependence
of motion error does not correspond to the data acquisition
geometry. This range-variant model is capable of containing
any kinds of range-dependent errors, including both along-track
and cross-track derivations. Generally, the second-order Taylor
series expansion is precisely enough to represent the range
dependence of motion error.

Adapting both WPGA and PWE-PGA, the phase gradient
estimate kernel for our range-variant error model is developed
as

ˆ̇
ϑ = (ATMA)

−1
ATMΩ̇ (19)

where A =

⎡
⎢⎣
1 Δr(1) (Δr(1))2

...
...

...
1 Δr(K) (Δr(K))2

⎤
⎥⎦
K×3

, and

M = diag[m1, . . . ,mK ]K×K is the weighting matrix with mk,
which denotes the inverse of the phase variance for the kth

range bin, Ω̇ =

⎡
⎢⎢⎣

ˆ̇
φ
′
e(1, :)

...
ˆ̇
φ
′
e(K, :)

⎤
⎥⎥⎦
K×J

is the phase gradient estimate

matrix with being ˆ̇
φ
′
e(k, :), the residual phase gradient vector

of the kth range bin, and ˆ̇
ϑ =

⎡
⎢⎣
ˆ̇
θ0(:)
ˆ̇
θ1(:)
ˆ̇
θ2(:)

⎤
⎥⎦
3×J

is the estimate

matrix for the polynomial phase gradient. ˆ̇θ0(:),
ˆ̇
θ1(:), and ˆ̇

θ2(:)
represent the vector of the phase gradient of range-invariant, the
first-order, and second-order phase gradient term, respectively.
As described earlier, J + 1 still stands for the azimuth length of

Fig. 3. Range variance and local range invariance of phase errors.

the data. Similar to PWE-PGA, the polynomial phase gradients
estimate kernel has problem in the precision and efficiency.
Direct application of the polynomial phase gradient kernel
may require a large amount of range samples. Moreover, as the
gradient phase of each range bin is interfered by strong noise,
the precision and efficiency of this kernel is not ensured, even
if we use the SCR weighting.

One can easily understand that in the polynomial phase
gradient estimate kernel, if each range bin provides an accu-
rate estimation of the phase gradient, high precision, and fast
convergence are achievable. The robustness of the WPGA lies
in the coherent fusion process, such that it coherently combines
different range samples overcoming the estimating noise in the
phase gradients. In UAV SAR imaging, although the motion
error presents strong range variance along the whole swath,
it is approximately invariant within a small range block, that
is, residual phase presents a local range invariance. Another
factor that we want to stress in the range-dependent phase
error estimate is that the range bins, distributing over a wide
extent, should be selected to provide sufficient range-variant
information, which is different from the selection scheme in the
standard PGA. Considering the local range invariance, we make
some significant improvements to the phase gradient estimation
kernel in (19). First, the de-ramped data are split into B blocks
in range, as shown in Fig. 3. Each block is expected to provide

an invariant phase gradient ˆ̇
φ
′
e(b, :) with high precision by

coherently combining the estimates from selected G range bins
within the block

ˆ̇
φ
′
e(b, h) = arg

G∑
g=1

mb,g · [conj [sb(g, h)] · sb(g, h+ 1)]
G∑

j=1

mb,j

(20)

where mb,g denotes the SCR weight of the gth sample bin in the
bth range block data (referred to as sb(g, :)). For the bth range
block, the weight wb is given by

wb =

G∑
g=1

mb,g. (21)

The synthetic range corresponding to the bth range block is
calculated by

Δrb =

G∑
g=1

Δrb(g) ·mb,g

wb
. (22)
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Then, the estimate kernel in (19) becomes

ˆ̇
ϑ =

(
AT

blockWAblock

)−1
AT

blockWΩ̇ (23)

where

Ablock =

⎡
⎢⎣
1 Δr1 (Δr1)

2

...
...

...
1 ΔrB (ΔrB)

2

⎤
⎥⎦
B×3

(24)

Ω̇ =

⎡
⎢⎢⎣

ˆ̇
φ
′
e(1, :)

...
ˆ̇
φ
′
e(B, :)

⎤
⎥⎥⎦ . (25)

This phase gradient estimate kernel is developed by applying
the local range invariance of phase error. Therefore, we call it
the LML-WPGA kernel.

For the clarity of the LML-WPGA for range-variant phase
estimation, we have employed a feasible procedure as follows:

—Selecting samples for each range block. This step is simi-
lar to the procedure in the conventional PGA. However, as
we split the data into small blocks in range, each block may
only contain a few good range bins with prominent scat-
tering centers. To increase the amount of useful samples,
the phase error redundancy in azimuth should also be used
similar to the QPGA, at a price of increasing computational
load. In this step, the weights and the matrix Ablock are also
calculated.

—Circular shifting. It is used to move the azimuth cell with
the strongest response to the image center for each block
data.

—Windowing. In our approach, this processing is a little
different from the one in the standard PGA, because the
phase errors in different range blocks have different val-
ues causing distinct degrees of blurring. Therefore, the
window width for each range block should be determined
separately.

—Phase gradient estimation. Estimation is performed inde-
pendently to each range block data by the WML kernel. As
the phase gradient information of different range bins are
coherently fused, the precise estimation of phase gradient
is achieved for each range block.

—LML-WPGA estimation. This is applied to provide the
estimation of the polynomial phase gradients. Clearly, in
LML-WPGA, the dimension of matrix AT

blockWAblock

corresponds to the number of range blocks, rather than the
quantity of the range bins. For example, if we break the
data into 32 blocks in range, then the size of the matrix
Ablock is only 32 × 3. Thus, the nominal computational
load is involved in calculating matrix multiplication and
inverse of AT

blockWAblock. Accurate polynomial phase
gradients are estimated by the weighting and LML esti-
mate. In the following subsection, one can note that LML-
WPGA requires much less iterations to reach a precise
estimate than conventional methods, which indicates high
efficiency of LML-WPGA.

Similar to the standard PGA, our approach utilizes an iter-
ative phase correction and estimation scheme. The estimated

polynomial phase gradient ˆ̇θ0, ˆ̇θ1 and ˆ̇
θ2 are integrated to obtain

Fig. 4. LML-WPGA flowchart.

the estimate of θ0, θ1 and θ2. For each range bin, the correc-
tion phase function is calculated by using (18). Then, range-
variant phase correction is performed to the de-ramped data.
Both estimation and correction are repeated iteratively. In the
procedure, the high accuracy of block phase gradients provides
a very fast convergence of the algorithm. Only after several
iterations, accurate polynomial phase gradients are estimated
by the LML-WPGA kernel. As the major part of phase errors is
compensated in the coarse correction procedure, at this step, the
window width can be initialized as narrow as possible, accel-
erating the convergence dramatically. Furthermore, to promote
the efficiency of LML-WPGA, the captured scatterers are zero
padded into a short vector (such as 64 points [11]) for phase
gradients estimate, and we interpolate the estimates into full-
aperture length in the range-dependent phase correction step.

Now, the following question arises: How to determine the
size of range block to ensure the range invariance of phase
errors within individual range blocks. Clearly, the magnitude of
residual phase error should be accounted in the blocking. In the
case where phase error expresses severe range variance, small
range segmentation should be applied to eliminate estimate
error within an individual block. Conversely, the block can
be relatively large in small phase error case, which usually
promotes both the precision and efficiency of the LML-WPGA.
Without increasing additional computational load and complex-
ity, the range blocking has been embedded into the iterative
procedure of the phase gradient estimate kernel. Setting B
range blocks as initialization, the range variance of phase error

can be extracted from ˆ̇
θ1, and ˆ̇

θ2. In the following iteration,
adaptive range segmentation is performed for the subsequent
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iteration by using ˆ̇
θ1, and ˆ̇

θ2. As ˆ̇
θ1 usually contains most of

the range variance information of the residual phase, we can

consider only ˆ̇
θ1. Generally, for a short duration of time, higher

order terms usually take fraction of θ̂1, and hence, the quadratic
and cubic components can be applied to determine the range

block size. First, the phase gradient vector ˆ̇θ1/2π is fitted into
a cubic function with respect to the slow time, and the linear
and quadratic coefficients are denoted by μ1 and μ2, which
correspond to the quadratic and cubic coefficients of phase error
θ̂1, respectively. Then, the quadratic phase error (QPE) and
cubic phase error (CPE) [1] between two range gates distanced
by ΔD are defined by

QPE = πμ1 ·ΔD ·
(
T

2

)2

CPE =
1

3
πμ2 ·ΔD · T 3 (26)

where T denotes the time duration of the subaperture. To
ensure the range invariance of a range block with size ΔD,
both QPE and CPE magnitudes are constrained to be less
than π/4. Therefore, the range block size can be determined
by ΔD = min[1/μ1T

2, 3/4μ2T
3]. In strip-map data process-

ing, we usually divide received data into several subapertures,
and subsequently we have relatively large ΔD. Also, high-
order turbulence of phase error would be avoided during a
short interval, which makes the blocking rule valid to apply.
Before going to the next iteration of LML-WPGA, the sam-
ples collected are regrouped into range blocks with size ΔD.
The range block number B, matrix Ablock and weights are
also updated correspondingly. The adaptive segmentation only
involves the linear fitting processing, which increases little
computational load. Furthermore, it reduces model error from
the range-invariance approximation blocking processing and
also effectively promotes the convergence of LML-WPGA in
the medium- and small-phase error cases. We have presented
the flowchart of the LML-WPGA in Fig. 4. Clearly, when
compared with WPGA, the LML-WPGA has some additional
calculations, such as the matrix multiplication, matrix inverse,
and the range-blocking processing. However, the computational
load of LML-WPGA is just a little bit more than WPGA.
We also found that decreasing the block size through increas-
ing the iteration number is able to promote the accuracy of
LML-WPGA effectively.

In our MOCO of UAV SAR imagery, the LML-WPGA is
used as a subprocess to estimate the range-variant part of
phase errors. However, the LML-WPGA approach is ready
to autofocus the spotlight SAR image without any modifica-
tion. To demonstrate the performance and effectiveness of the
LML-WPGA with regard to autofocusing the SAR image, we
performed experiments with the SAR data from the website
of Sandia Lab (http://www.sandia.gov/radar/sar-data.html). We
added range-variant motion errors into the data in the range-
compressed and azimuth time domain according to the geom-
etry shown in Fig. 1. The phase errors in X-, Y - and Z-axis
are set as a tenth-order polynomial function given in Fig. 5.
The platform height is assumed to be 3000 m, and the closest
distance from the scene center to the nominal trajectory is set
as 15 000 m. The range bin width of the image and wavelength
are supposed to be 1 and 0.03 m, respectively. According to

Fig. 5. Trajectory deviations.

these parameters, the range-variance phase error for each range
bin can easily be calculated and added to the SAR data. All
experiments in this paper were run on a personal computer with
Core 2.53 GHz CPU with MATLAB.7.0.1.

Herein, the experiment was performed to validate the effec-
tiveness of LML-WPGA for range-variant phase autofocus. In
the experiment, we compared the proposed method to conven-
tional WPGA. The mean-squared error (MSE) [11] between the
added and estimated phase errors was used as a performance
measurement metric. Both WPGA and LML-WPGA were used
to focus the image. To present the robustness of both WPGA
and LML-WPGA, the tested SAR image was about a plain
scene, and only a few range bins contained prominent scat-
terers. In terms of evaluating the focusing performance, the
image entropy was calculated. Small entropy indicates optimal
focusing quality. The original SAR image is shown in Fig. 6(a)
with entropy 14.92. By adding range-variant phase errors, the
blurred image was generated, as shown in Fig. 6(b), and its
entropy was up to 15. The WPGA was applied to refocus the
image. As the range-invariant phase error plays a dominant role
in the total error, the WPGA removed significant phase errors,
and a focused image was generated, as shown in Fig. 6(c).
However, the range-variant part of phase error was left and
resulted in some blurring, particularly in the range boundary
of the scene. In the processing of LML-WPGA to the blurring
image, the data was blocked into 16 segments in the range
initially, and each range block gave a phase gradient estimate
independently. The regenerated image from the LML-WPGA
is presented in Fig. 6(d). Apparently, the LML-WPGA was
able to estimate both range-invariant and variant phase errors,
and a better focused performance was achieved. It should
be emphasized that only 128 samples were selected by their
contrasts in the range-compressed and azimuth time domain
[11], and they were applied in both WPGA and LML-WPGA in
this experiment. Moreover, identical predetermined windowing
scheme was adopted in terms of equality of the comparison.
The original window width was 400, and it decreases by 30%
for the subsequent iteration. The WPGA utilized about 14.1 s,
increased up to about 14.4 s in LML-WPGA due to addi-
tional calculation. Fig. 6(e) and (f) presents the local images
on the range boundary. One may view the residual blurring
of a prominent scatterer in the WPGA result, while in the
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Fig. 6. Performance test of the WPGA and LML-WPGA. (a) Original image. (b) Defocused image. (c) Refocused image by the WPGA. (d) Refocused image
by the LML-WPGA. (e) Local image by the WPGA. (f) Local image by the LML-WPGA.

LML-WPAG image, the scatterer is focused ideally. To evaluate
the estimate precision quantitatively, in Fig. 7, we have given
the difference between the added and WPGA, and LML-WPGA
estimated phase errors corresponding to three different range
gates (256, 1024, and 1986). The MSEs between the added
and estimated phases were also calculated, which are given in
Fig. 7. Although the WPGA could remove most of the range-
independent phase errors, the residual range-variant parts were
still in the order of several radians, which were significant
enough to cause blurring. The LML-WPGA removed the entire
phase errors ideally with only about five iterations effectively.

C. Extending LML to WPCA and PWE-PGA

The fast convergence and high precision of the LML-WPGA
lie in the utilization of the local spatial-invariance of the phase
error. In each iteration, the phase gradients of neighboring
samples are fused coherently, and precise phase gradient esti-
mate is provided for a individual block. These lead to accurate
estimation at the beginning iterations of the LML-WPGA. In
this subsection, following motion error model in (13), we have
extended this idea to PWE-PGA and WPCA [13] in terms
of improvement of accuracy and efficiency. Both PWE-PGA
and WPCA are constructed based on the error model, where
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Fig. 7. Differences and MSEs between added and estimated phase errors.

the motion error is decomposed into horizontal and vertical
components that vary with the looking angle. By assuming that
there are K samples selected, we have grouped the samples
into B blocks, within which the samples are adjacent in looking
angles (assuming that each block contains G samples and that
phase errors are approximately identical). For the bth block,

the phase gradient ˆ̇φ
′
e(b, :) is estimated by the WPGA, and the

synthetic looking angle, corresponding to the bth range block,
is calculated by

θb =

G∑
g=1

θb(g) ·mb,g

wb
(27)

where θb(g) denotes the incident angle corresponding to the
gth sample in the bth block. By redefining the spatial variance

matrix as Ablock =

⎡
⎣ sin θ1 cos θ1

...
...

sin θB cos θB

⎤
⎦
B×3

, we can refine the

PWE-PGA and WPCA kernels as

ˆ̇Φyz =
(
AT

blockWAblock

)−1
AT

blockWΩ̇
ˆ̈Φyz =

(
AT

blockWAblock

)−1
AT

blockWΩ̈ (28)

where ˆ̈Φyz =
[ˆ̈φey

ˆ̈
φez

]
corresponds to the horizontal and vertical

phase curvature of phase errors. Ω̈ =

⎡
⎢⎢⎣

ˆ̈
φ
′
e(1, :)

...
ˆ̈
φ
′
e(B, :)

⎤
⎥⎥⎦, and ˆ̈

φ
′
e(b, :)

is the estimated phase double difference corresponding to
bth block and can be estimated by the SCR weighted ML
kernel [13].

ˆ̈
φ
′
e(b, h)

=arg

G∑
g=1

mb,g ·
[
sb(g, h−1)·conj [sb(g, h)]

2 ·sb(g, h+1)
]

∑G
j=1mb,j

.

(29)

In single iteration, the computational burden of LML-PWE-
PGA and LML-WPCA is nearly equal to that of PWE-PGA and
WPCA. However, accommodated by the LML, both WPCA
and PWE-PGA can be improved promisingly in both efficiency
and precision.

In the LML-WPGA, we have developed an adaptive blocking
scheme. Herein, QPE and CPE are also employed to determine
the angle size of the block. Considering the angle range Δθ of
a block around center angle θ, we have the QPE and CPE as
follows:

QPE =π · {[sin(θ +Δθ)− sin θ]μy1

+ [cos(θ +Δθ)− cos θ]μz1} ·
(
T

2

)2

CPE =
1

3
π {[sin(θ +Δθ)− sin θ]μy2

+ [cos(θ +Δθ)− cos θ]μz2} · T 3 (30)

where μy1 and μz1 represent the quadratic coefficients of
φ̂ey/2π and φ̂ez/2π, respectively, and μy2 and μz2 are the cubic
coefficients, respectively. They can be retrieved by polynomial
fitting. Based on approximations Δθ � θ and sin(Δθ/2) ≈
Δθ/2, we have

QPE ≈πΔθ · (cos θμy1 − sin θμz1) ·
(
T

2

)2

CPE ≈ 1

3
πΔθ · (cos θμy2 − sin θμz2) · T 3 (31)

Both QPE and CPE magnitudes should be restricted
within π/4. Therefore, the block size around incidence
angle θ can be determined by Δθ = min[1/(cos θμy1 −
sin θμz1)T

2, 3/4(cos θμy2 − sin θμz2)T
3].

To investigate the performance enhancement of both PWE-
PGA and WPCA using the LML scheme, we performed exper-
iments by employing the Sandia’s SAR data. In the experiment,
motion errors only in Y - and Z-axis were added into the range-
compressed data. LML-PWE-PGA and LML-WPCA, together
with the original PWE-PGA and WPCA, were applied to
refocus the image. Their performance was evaluated by MSE
between the added and estimated phase errors at the three
range gates. In the experiment, improvements on convergence
and precision by LML were tested. The same 256 samples
with largest contrast were used in all algorithms. Identical
predetermined windowing scheme was adopted for the purpose
of equality. The original window width is 400, which decreased
by 30% for the subsequent iteration. The total iteration number
was 15. The consuming time of WPCA, PWE-PGA, LML-
WPCA, and LML-PWE-PGA was 25.44, 20.26, 25.81 and
20.43 seconds, respectively. The image results of WPCA, PWE-
PGA, LML-WPCA, and LML-PWE-PGA are shown in Fig. 8.
Their image entropies were 14.94, 14.94, 14.92, and 14.92,
respectively, exhibiting significant focusing enhancement by
the LML processing. Because of low SCR of the samples
and scarcity of prominent scatterers of the data, both original
WPCA and PWE-PGA involved strong noise in the estimate,
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Fig. 8. Image results from the conventional and LML-based autofocus algorithms. (a) WPCA result. (b) PWE-PGA result. (c) LML-WPCA result. (d) LML-
PWE-PGA result.

Fig. 9. Convergence of conventional and LML-based autofocus algorithms.

which led to significant blurring in the image. Nevertheless, in
LML-WPCA and LML-PWE-PGA images, high-quality focus-
ing was achieved all over the scene and exhibiting promising
precision improvement. We analyzed the convergence of the
algorithms by plotting the MSE change with the iteration
number corresponding to the three range gates (Fig. 9). Owing

to the strong noise interference in single bin estimate, both
WPCA and PWE-PGA were found to provide very coarse es-
timates in the beginning iterations. As the iteration number in-
creased, their MSEs changed slowly and maintained a relatively
high level. However, both LML-WPCA and LML-PWE-PGA
achieved much lower MSE curves than the original kernels.
LML-WPCA and LML-PWE-PGA provided nearly nonitera-
tive convergence, because their estimates were very precise at
the beginning iteration, and converged to an optimal value after
a few iterations. High precision and fast convergence from the
LML processing ensured high efficiency of LML-WPCA and
LML-PWE-PGA, because we only used several iterations to
implement them without losing accuracy. We also found that the
LML-based methods perform robustly when only 128 samples
were used. However, in this case, neither WPCA nor PWE-PGA
could generate focused image. Clearly, enhanced by the LML
processing, promising improvement could be achieved for both
WPCA and PWE-PGA. Furthermore, based on the geometric
error model and no assumption of beam center approximation
[32], both PWE-PGA and WPCA were found to be ready to
be accommodated in the topography- and aperture-dependent
MOCO [33]–[35] by using an external digital elevation model.
Owing to the efficiency and accuracy improvement following
LML processing, they can achieve better performance in many
radar imaging activities, such as residual motion removal in
airborne repeat-pass SAR interferometry [13].
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Fig. 10. Full-aperture phase error combination.

D. Full-Aperture Phase Combination

Similar to LML-PWE-PGA for the strip-map SAR autofo-
cusing, our approach also converts data blocks of the strip-
map SAR into the spotlight representation. Each block is
a segment of a full-aperture data. Although the windowing
process is expected to avoid linear phase component in the
PGA frameworks, small different linear phases exist in each
phase error segment. Therefore, before we reconstruct the full-
aperture functions of both range-invariant and variant phase
errors, the involved linear phase differences should be removed
appropriately. In the SAR imagery with subaperture process,
overlapping is applied to avoid discontinuities between two
joint subaperture blocks. In our approach, the overlapping
segments also provide overlapping phase error estimates of
the azimuth blocks, which are shown in Fig. 10. The linear
phase differences can be easily extracted from the overlapping
segments to reconstruct the phase errors for the full-aperture
strip-map SAR data.

Similar to the conventional PGA approach, the LML-WPGA
operates like a high-pass filter, and thus its precision degrades
along with the increase in the clutter-phase perturbation, partic-
ularly when limited strong point targets exist in the scene. The
phase error functions are affected by the high-frequency noise.
Owing to the inertia of the UAV motion, the motion error should
be smooth and continuous. Therefore, the combined phase error
functions are smoothed to filter out the estimating noise. To
implement this filter, autoregressive moving average has been
applied [13]. Herein, we propose a simple but useful scheme.
First, we set up the phase error function to be a high-order
polynomial function with its order up to 10. The appropriate
polynomial extracted the main low-frequency component of
the phase function. The residual part was obtained by directly
subtracting the polynomial function from the noisy function.
In the second step, the useful information was retrieved from
the residual phase, which corresponds to the medium frequency
components. To distinguish the useful components from the
noise, one can use some powerful transforms, such as the
discrete cosine transform (DCT) [36] and the wavelet transform
(WT) [37], [38]. By projecting the residual function into a
frequency or time-frequency domain, only the useful large-
valued and low-frequency components contained the informa-
tion that we needed. Therefore, only the largest coefficients
(usually eighth or quarter coefficients of the total number are
good selections) were retained and the small ones were set as

Fig. 11. Phase function filtering.

zeros. The inverse DCT or inverse WT was applied to obtain the
required smoothed component. On summing up the smoothed
part from the transform process and the polynomial function,
one can achieve the de-noised phase function. Fig. 11 clearly
illustrates this filtering process in detail.

E. Two-Step MOCO

After combining the subaperture phase errors (range-
invariant phase errors and range-variant polynomial phase
errors) into full-aperture functions, the MOCO for the full-
aperture data was performed by a two-step scheme. In the first
step, the range-invariant phase and the NRCM were corrected
before range compression processing, and then the CSA was
applied to complete the RCM correction and range compres-
sion. In the second step, the range-variant part of phase errors
was calculated by the polynomial phase error functions to
obtain a fine phase correction. Then, the azimuth compression
was performed to generate the precisely focused UAV SAR
image. The main flowchart of the MOCO process for the strip-
map UAV SAR imagery is shown in Fig. 12. Our approach
is different from some raw-databased schemes [5], [13], and
requires no process to estimate the motion errors iteration-
by-iteration. Therefore, our approach has lower computational
load than iterative approaches because both WPGA and LML-
WPGA are implemented in a robust and efficient manner.

F. Extension to the Squinted SAR MOCO

In addition to the broadside-looking mode, the squint mode
is important for the UAV SAR activities. In some cases, the
antenna exhibits a pointing angle (called squint angle) offset
from the zero Doppler direction, which is shown in Fig. 1
with α �= 0. Without losing generality, our MOCO should be
adjusted to operate in a squint mode. In this section, we have
introduced some modifications to the framework presented in
Fig. 12 and extend it to the squint mode SAR imagery. The
expression of instantaneous range from the scatterer to the
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Fig. 12. Main flowchart of the proposed MOCO for strip-map UAV SAR
imagery.

phase center (see (32), shown at the bottom of the page). Similar
to (1), we split the range into two parts, and the second denotes
the range error caused by trajectory deviations. The ideal range
and error range are given by

Rb(tm; r, x) =
√
r2 + (V tm − x)2 − 2r(V tm − x) sinα

(33)

ΔR(tm;x, y, z) = R(tm; r, x)−Rb(tm; r, x)

≈ ΔR(tm; r). (34)

In (34), the range error is simplified as range variant. In terms
of developing an efficient and convenient image format, (33) is
approximately equal to

Rb(tm; r, x) ≈
√
r2 + (cosα · V tm − cosα · x)2

− (V tm − x) sinα. (35)

Based on (35), a time domain range walk correction (RWC)
can be used, which dramatically simplifies the imaging process
for the squinted SAR [39], [40]. After RWC and range MF,
the signal expression in the range frequency and azimuth time

domain is given in (36). For simplicity, the expression is still
denoted by sr(fr, tm)

sr(fr, tm) =

∫ ∫
σ(x, r)·g

(
tm− x

V

)
· st(fr)

· exp
[
− j4π(fc + fr)

×
√
r2+(V tm cosα−x cosα)2+x sinα

c

]

· exp
[
−j4π(fc + fr)

ΔR(tm; r)

c

]
drdx. (36)

After RCM correction by CSA, the range-compressed signal
becomes

sr(t̂, tm)=

∫ ∫
σ(x, r)·g

(
tm− x

V

)

·sinc

[
γTp

(
t̂− 2 (r+x sinα+ΔR(tm; r))

c

)]

·exp
[
−j4πfc

√
r2+(V tm cosα−x cosα)2

c

]

·exp
[
−j4πfc

ΔR(tm; r)

c

]
drdx. (37)

In the process of performing the CSA, the velocity is replaced
by V cosα. Based on this signal model, our MOCO process can
directly be applied in succession. The only difference is that the
de-ramping reference function for the range bin at r is replaced
by [40]

d(tm) = exp

[
j2π

(cosα · V tm)2

λr

]
. (38)

We found that after the time-domain RWC, the signal DRs
corresponding to targets confined in a range gate would differ
from each other [39], [40]. This, obviously poses limitations
on the MOCO scheme. Therefore, the focus depth or nonlinear
chirp scaling should be considered in the application of MOCO
to the high-squint SAR imagery [39].

V. REAL DATA EXPERIMENT

In the first experiment, the raw radar data with an imaging
resolution of 0.75 × 0.75 m are collected by an experimen-
tal UAV-SAR, which was developed by the research institute
of electronics technology in China. The UAV employed was
ASN-206 in size of 3.8× 6× 1.4 m(length × width × height)

R(tm; r, x) =

√
(V tm +Δx(tm)− x)2 + (Δy(tm)− y)2 + (H +Δz(tm)− z)2

=Rb(tm; r, x) + ΔR(tm;x, y, z) (32)
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with a maximum carrying capacity of 40 kg. The experimental
UAV-SAR system operated in X-band (9.5 GHz) with band-
width 200 MHz. The slant range of the scene center was
12.9 km. The UAV flew at a height of about 3000 m, at a
speed of 50–57 m/s. It was not equipped with highly accurate
inertial navigation units and the navigation depended merely on
a gyroscope and a GPS system. The altitude control was at an
accuracy of 3 m, the gyroscope provided motion information at
the frequency of 12.5 Hz, and its positioning accuracy of GPS
was 30 m. Owing to the limitation and inaccuracy of the motion
information, inertial navigation system (INS)-based MOCO
was insufficient for the generation of the high quality imagery.
Therefore, we needed a highly precise raw-data-based MOCO.
The images with size (3072 × 2048 m, range × azimuth)
generated by the INS-based MOCO and our approach are
shown in Fig. 13(a) and (b), respectively. The vertical direction
is azimuth, and the horizontal direction is range. Apparently,
it can be noted that the image generated by the INS-based
MOCO is seriously blurred and distorted in geometry due to the
lack and inaccuracy of motion measurements. While the image
achieved by our MOCO approach is focused with a high quality.
In the MOCO process, the nominal trajectory was supposed at
a height of 3000 m and with a constant velocity of 55 m/s.
The raw data were segmented into 16 subapertures, and each of
them was processed by the WPGA and LML-WPGA to retrieve
the coarse and range-variant phase function, respectively. To
highlight the severity of the UAV motion disturbance, the
estimated coarse phase and the corresponding radial range error
are shown in Fig. 14(a) and (b), respectively. Clearly, the range
error is at an extent of −1–4 m, which exceeds about five range
cells. Therefore, in addition, precise phase correction, a range
migration correction is also necessary to obtain fully focused
image. The range-invariant phase and range cell migration
compensation implement the coarse MOCO in our approach.
The range-variant phase correction is carried out to achieve a
fine MOCO. The range-variant phase functions are estimated
by the proposed LML-WPGA. In the LML-WPGA frame, the
data were adaptively segmented into blocks in the range. The
error phase functions, calculated by the polynomial estimate in
the WPGA at six different range cells, are shown in Fig. 14(c),
which present the spatial variance of the residual phase error
after the coarse MOCO. By compensating the spatially variant
phases, the UAV SAR imagery could be achieved with high
precision. From Fig. 13(b), one can see the towns, rivers,
freeway, villages, and wild scenes clearly distinguished and
well focused. The local scene, highlighted in Fig. 13(b) by
white circle, is amplified in Fig. 13(d). There are three groups
of corner reflectors array. Each array is composed of five metal
corner reflectors as a cross with a space of 2.5 m between two
arrays. As clearly presented in Fig. 13(d), the corner reflector
arrays are focused in an ideal way. To show the superiorities of
the proposed algorithm, we also performed the MOCO by using
the DR-based MOCO [5]. The DR-based method is an effective
candidate to the airborne SAR MOCO. It extracts motion
errors from raw data by MD algorithm in an iterative manner.
In each iteration, full-aperture data are first compensated by
motion information extracted from the last iteration, and then
it is divided into small blocks in both range and azimuth to

Fig. 13. UAV SAR images. (a) With INS-based MOCO. (b) With the proposed
MOCO. (c) With the DR-based MOCO. (d) Corner reflectors array circled in
Fig. 13(b). (e) Corner reflectors array circled in Fig. 13(c).

perform DR estimation. Finally, the DRs are linearly fitted
and interpolated to obtain the motion parameters. Generally,
to retrieve accurate motion error for UAV SAR MOCO, this
iteration is repeated many times before it reaches an optimal
convergence, bringing large computational burden. However, in
the proposed method, the motion errors are just divided into
range-variant and invariant parts, which are precisely estimated
by the WPGA and LML-WPGA. Owing to the high efficiency
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Fig. 14. Phase error and range error. (a) Range-invariant phase error function. (b) Corresponding radial range error function. (c) Residual phase errors at different
range bins.

Fig. 15. Response functions of a corner reflector by the DR-based and
proposed MOCO.

of WPGA and LML-WPGA, the MOCO is performed much
easily. For comparison, the image, obtained by the DR-based
MOCO with three iterations, is provided in Fig. 13(c). In the
DR estimation, the data are divided into 24 × 70 (range × az-
imuth) sub-blocks. Clearly, with three iterations, the DR-based
method removes majority of the motion errors and generates a
coarse-focused image. However, the residual error is still signif-
icant enough to cause serious blurring, which can be found in
the corner reflector array shown in Fig. 13(e). With increasing
the iteration number, the motion error was corrected gradually.
However, the computational load was increased proportionally.
The DR-based method with three iterations took 3 h and
27 min. However, the proposed method spent only 38 min to
correct both the range-invariant and variant phase errors accu-
rately. Notably, the proposed MOCO is more efficient than the
DR-based one. To demonstrate this, we have provided the im-
pulse response functions of one corner reflector corresponding
to the DR-based method with 3, 5, 7 iterations and the proposed
method in Fig. 15. One can find that only the proposed method
generates ideal response with a resolution of 0.761 m, while
the resolution achieved by the DR-based method with seven
iterations is still up to 2.33 m. Owing to the severe clutter
turbulence, peak-to-sidelobe ratio generated by the proposed
method is up to −12.2 dB. This result shows that the proposed
method possesses both efficiency and precision. This experi-
ment confirms that our MOCO approach is robust and efficient

with respect to the strip-map UAV SAR imagery and should be
suitable for the UAV SAR MOCO in real time.

In the following, we have presented the experimental results
of the UAV SAR imagery operating in a squint mode. It
provides a resolution of 2.15 × 2.15 m (range × azimuth).
The squint angle is about 55◦ and the flying velocity is about
60 m/s. The height of the UAV is about 2800 m, and the range
central to the scene is 2.832 km. The experimental SAR system
is kept identical to that employed in the former experiment
apart from the use of a low-accuracy INS. The SAR image
has been obtained by using the recorded motion parameters
from the INS, as shown in Fig. 16(a). In Fig. 16(b), the image
generated by applying the proposed MOCO approach after the
time-domain RCW, is presented. The vertical direction is range,
and the horizontal direction is azimuth. In comparison, the
magnified images of the circled scene in Fig. 16(a) and (b) are
shown in Fig. 16(c) and (d), respectively. Obviously, the image
generated by the INS data MOCO is seriously blurred and
distorted due to the inaccuracy of motion recording. However,
the image generated by the proposed MOCO is well-focused.
This experiment validates our method for the squint-mode UAV
SAR imagery.

VI. CONCLUSION

In this paper, a robust and efficient MOCO for the UAV
SAR imaging has been proposed. The approach first estimates
range-invariant phase error by the robust WPGA, which is
applied to correct NRCM and error phases of implementing
a coarse MOCO step. Second, an LML-WPGA kernel has
been developed to retrieve the residual phase errors. In the
LML-WPGA estimate, the range-variant phase error is modeled
as a polynomial function of range. Then, the range-variant
phase error is precisely obtained by an LML estimation of
phase gradient for each range block. It has been found that the
WPGA technique and LML estimation of phase gradient lead
to a robust and efficient MOCO for the UAV SAR imagery.
Both the simulated and real UAV SAR data experiments show
that the proposed approach is appropriate for the low-altitude
UAV SAR systems equipped with a low-accuracy navigation
system. Furthermore, the LML has been extended to the current
PWE-PGA and WPCA algorithms, and promising improve-
ment in both precision and efficiency has been achieved.
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Fig. 16. Squint-mode experimental results. (a) MOCO with INS information. (b) MOCO with the proposal. (c) Magnified image circled in (a).
(d) Magnified image circled in (b).
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