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Abstract

An interesting fact is found in this Letter that a pair of finite dimensional integrable Hamiltonian systems produced by
two gauge equivalent spectral problems possesses the different r-matrices. In addition, an approach is also presented for
deriving the finite dimensional integrable systems from the Lax matrix instead of Lax pair. q 1999 Elsevier Science B.V. All
rights reserved.
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1. Introduction

The r-matrix method plays an important part in the study of integrable systems. The structures of r-matrix
and fundamental Poisson bracket include many necessary information of a finite dimensional system, such as

w xthe conserved integrals 13,2 etc. Also the classical method for separation of variables to solve the integrable
w xsystem can be formed in the r-matrix structure 14,5 . Both dynamical and nondynamical r-matrices correspond-

w xing to many finite dimensional integrable systems with physics interest have appeared in the literature 7,8 .
w xRecently, we reported an interesting fact 12 : two different finite dimensional systems can share a common

r-matrix with a good property of being nondynamical. Those further three examples are still found in a
w xsuccessive paper 11 . Now, we shall have another amazing fact in this Letter: a pair of finite dimensional

Hamiltonian systems produced by two gauge equiÕalent spectral problems possesses the different r-matrices.
Of cause, their Lax matrices and conserved integrals are different, too. In addition, taking this pair of
Hamiltonian systems as two examples, we also present an approach for how to derive the finite dimensional
integrable systems from the Lax matrix instead of Lax pair.
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Before displaying our results, let us first give some necessary symbols and notations:
Ž 2 N . 2 N �Ž . < Ž .R ,dpndq stands for the standard symplectic structure in Euclid space R s p,q ps p , . . . , p ,1 N
Ž .4 Ž . ² :qs q , . . . ,q , p ,q is1, . . . , N are N pairs of canonical coordinates, P ,P is the standard inner1 N i i

N Ž 2 N . w xproduct in R ; in R ,dpndq , the Poisson bracket of two Hamiltonian functions F,G is defined by 1

N E F E G E F E G E F E G E F E G
� 4F ,G s y s , y , . 1Ž .Ý ¦ ; ¦ ;ž /E q E p E p E q E q E p E p E qi i i iis1

l , . . . ,l are N arbitrary given distinct constants; l,m are the two different spectral parameters; Ls1 N
Ž . `Ž .diag l , . . . ,l . Denote all infinitely times differentiable functions on real field R by C R . Let x be the1 N

continuous variable of space R or C.

2. Two gauge equivalent spectral problems

w xIn 1992, Geng introduced the following spectral problem 4

ily ib uÕ u 2f sMf , Ms , i sy1, 2Ž .x ž /Õ yilq ib uÕ

where u and Õ are two scalar potentials, l is a spectral parameter and b is a constant, and discussed its
Ž .evolution equations, Hamiltonian structure and integrability of the related constrained system. 2 is apparently

w xan extension of the well-known ZS–AKNS spectral problem 16

l uy s y. 3Ž .x ž /Õ yl

w xTwo years later Qiao considered the following spectral problem 9

2 2yis lqrqb s yrŽ .
c sMc , Ms , 4Ž .x 2 2ž /ylqryb s yr isŽ .

Ž .where r, s are scalar potentials, the meanings of other signs are the same as ones in Eq. 2 , and obtained a
Ž .completely integrable systems with a set of finite dimensional involutive functions. 4 is actually an extension

w xof the Dirac spectral problem 6

yÕ lyuy s y. 5Ž .x ž /ylyu Õ

Ž . Ž .It is well-known that Eqs. 3 and 5 are gauge equivalent via some transformation. Then, for their extensive
spectral problems we have the following further proposition.

Proposition 1 Let

1 1
csGf , Gs . 6Ž .ž /i yi

Then,

MGsGM 7Ž .
( ) ( ) ( ) ( )with Õs i rys , usyi rqs . That is to say, the spectral problems 2 and 4 are gauge equiÕalent Õia the

( )transformation 6 .
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Proof Directly calculate.
Ž .We have known that the constrained flows of the ZS–AKNS spectral problem 3 and Dirac spectral problem

Ž . w x5 , which are gauge equivalent, share a common standard r-matrix being nondynamical 11 . Thus, it seems to
turn out this conclusion: two gauge equivalent spectral problems should have their finite dimensional
constrained systems with the same r-matrix. But, unfortunately, it is not the case. The exception is the spectral

Ž . Ž .problems 2 and 4 . Please see below.

3. Lax matrix and finite dimensional Hamiltonian flows

Let us consider the following two Lax matrices:

² :1q2 ib p ,q 0
G GL sL l s y iL , 8Ž . Ž .0ž /² :0 y1y2 ib p ,q

1
² : ² :0 yb p , p q q ,qŽ .

2Q QL sL l s qL . 9Ž . Ž .01
² : ² :� 0y qb p , p q q ,q 0Ž .

2

where the 2=2 matrix L is0

N 2p q yq1 j j j
L s .Ý0 2lyl ž /p yp qjjs1 j j j

Then through calculating their determinants we have:

N 2 J1 l E2 j j2 J 2 J J J J 2yl det L s l Tr L sF qF lqH l q , JsG , Q, 10Ž . Ž .Ý1 0 02 lyl jjs1

where

E J sE J qG , 11Ž .j j ,0 j

2N p q yp qŽ .j k k j G ² :G s , JsG , Q ; js1, . . . , N , E sy2 i 1q2 ib p ,q p q ,Ž .Ýj j ,0 j j
l ylj kks1,k/j

1 2Q 2 2 G² : ² : ² :E s yb p , p q q ,q p qq , H s 1q2 ib p ,q , 12Ž .Ž . Ž .Ž .j ,0 j j 0ž /2

21
Q ² : ² :H sy yb p , p q q ,q , 13Ž .Ž .0 ž /2

N
J k JF s l E , ks0,1, . . . ; JsG , Q. 14Ž .Ýk j j

js1
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Ž .Apparently, Eq. 14 reads the following

G ² : ² :F sy2 i 1q2 ib p ,q p ,q , 15Ž .Ž .0

G ² : ² :2F sy2 1q2 ib p ,q H y p ,q , 16Ž .Ž .1 G

1
Q ² : ² : ² : ² :F s yb p , p q q ,q p , p q q ,q , 17Ž .Ž . Ž .0 ž /2

2Q ² : ² : ² : ² :F s 1y2b p , p q q ,q H q4 p , p q q ,q , 18Ž .Ž . Ž .Ž .1 Q

where the two key Hamiltonian functions H and H areG Q

² :² :p , p q ,q
² :H s i Lq , p y 19Ž .G ² :2 1q2 ib p ,qŽ .

and

22² : ² : ² :1 1 4 p ,q q p , p y q ,qŽ .
² : ² :H s L p , p q Lq ,q y . 20Ž .Q ² : ² :2 2 4y8b p , p q q ,qŽ .

Then, the above two Hamiltonians give the following finite dimensional Hamiltonian flows:

² :² : ² :° E H p , p q ,q q ,qG
q s sLqq ib qy p ,x 2E p 1q2 ib² :1q2 ib p ,qŽ .~ 21Ž .² :² : ² :E H p , p q ,q p , pG
p sy syL py ib pq q ,x 2¢ E q 1q2 ib² :1q2 ib p ,qŽ .

and

22° ² : ² : ² : ² : ² : ² :E H 4 p ,q q p , p y q ,q 2 p ,q qq p , p y q ,q pŽ . Ž .Q
q s sL pyb py ,x 2 ² : ² :E p 1y2b q ,q q p , pŽ .² : ² :1y2b p , p q q ,qŽ .Ž .~

22² : ² : ² : ² : ² : ² :E H 4 p ,q q p , p y q ,q 2 p ,q py p , p y q ,q qŽ . Ž .QZ
p sy syLqqb qq .x 2¢ ² : ² :E q 1y2b q ,q q p , pŽ .² : ² :1y2b p , p q q ,qŽ .Ž .

22Ž .

Ž . Ž . Ž . Ž .Obviously, Eqs. 21 and 22 can become Eqs. 2 and 4 with the constraints

² : ² :q ,q p , p
usy , Õs , 23Ž .² : ² :1q2 ib p ,q 1q2 ib p ,q

Ž .Tlsl , fs q , p , js1, . . . , N; and the constraintsj j j

² : ² : ² :y2 i p ,q q ,q y p , p
ss , rs , 24Ž .² : ² : ² : ² :1y2b q ,q q p , p 1y2b q ,q q p , pŽ . Ž .

Ž .T Ž .lsl , cs q , p , js1, . . . , N, respectively. Therefore, the finite dimensional Hamiltonian systems 21 andj j j
Ž . Ž . Ž .22 coincide with the constrained flows of the spectral problems 2 and 4 , respectively. For their
integrability, we need to discuss their own r-matrix structure.
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4. Different r-matrices and integrability

JŽ . JŽ . J Ž . JŽ .Let L l sL l m I, L m s ImL m , JsG, Q, where I is the 2=2 unit matrix, m is the tensor1 2
Ž .product of matrix. We shall search for a 4=4 r-matrix structure r l,m satisfying the fundamental Poisson12

w xbracket 3 :

mJ J J JL l , L m s r l,m , L l y r m ,l , L m , JsG , Q, 25Ž . Ž . Ž . Ž . Ž . Ž . Ž .� 4 12 1 21 2

m 1J J J J 3� Ž . Ž .4 � Ž . Ž . 4 Ž . Ž .where L l , L m s L l , L m , r l,m sPr l,m P, Ps Ý s ms , s is the standardk l,m n k m ln 21 12 is0 i i i2

w xPauli matrices, and P,P stands for the usual commutator of matrix.

( )Theorem 1. Eq. 25 is satisfied with the following two different r-matrix structures

2
J Jr l,m s PqS , JsG , Q, 26Ž . Ž .12

myl

where

1 0 0 0 0 0 0 y1
0 0 0 0 0 0 1 0G QS s4 ib , S s2b . 27Ž .
0 0 0 0 0 1 0 0� 0 � 0
0 0 0 1 y1 0 0 0

( )EÕidently, 26 is nondynamical both for JsG and for JsQ.

JŽ .Proof. We denote L l by

A l B lŽ . Ž .J JJL l s , JsG , Q, 28Ž . Ž .ž /C l yA lŽ . Ž .J J

where

N 1
² :A l s1q2 ib p ,q y i p q , 29Ž . Ž .ÝG j j

lyl jjs1

N 1
2B l s i q , 30Ž . Ž .ÝG j

lyl jjs1

N 1
2C l syi p ; 31Ž . Ž .ÝG j

lyl jjs1

N 1
A l s p q , 32Ž . Ž .ÝQ j j

lyl jjs1

N1 1
2² : ² :B l s yb p , p q q ,q y q , 33Ž . Ž .Ž . ÝQ j2 lyl jjs1

N1 1
2² : ² :C l sy qb p , p q q ,q q p . 34Ž . Ž .Ž . ÝQ j2 lyl jjs1
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Ž .Then under the standard Poisson bracket 1 , it is not difficult to calculate the following equalities

° A l , A m s B l , B m s C l ,C m s0,� 4 � 4 � 4Ž . Ž . Ž . Ž . Ž . Ž .G G G G G G

2
A l , B m sy4 ibB m q B m yB l ,� 4Ž . Ž . Ž . Ž . Ž .Ž .G G G G G

myl

2
A l ,C m s4 ibC m q C l yC m ,� 4Ž . Ž . Ž . Ž . Ž .Ž .G G G G G

myl

4
B l ,C m s A m yA l ;� 4Ž . Ž . Ž . Ž .Ž .G G G G

myl

A l , A m s0,Ž . Ž .� 4Q Q~ 35Ž .
B l , B m sy4b A m yA l ,Ž . Ž . Ž . Ž .� 4 Ž .Q Q Q Q

C l ,C m s4b A m yA l ,Ž . Ž . Ž . Ž .� 4 Ž .Q Q Q Q

2
A l , B m sy2b C l yB l q B m yB l ,Ž . Ž . Ž . Ž . Ž . Ž .� 4 Ž . Ž .Q Q Q Q Q Q

myl

2
A l ,C m s2b C l yB l y C m yC l ,Ž . Ž . Ž . Ž . Ž . Ž .� 4 Ž . Ž .Q Q Q Q Q Q

myl

4
B l ,C m sy4b A l qA m q A m yA l .Ž . Ž . Ž . Ž . Ž . Ž .� 4 Ž . Ž .Q Q Q Q Q Q¢ myl

Ž . Ž . Ž .After substituting the above equalities into Eq. 25 , we can obtain Eqs. 26 and 27 . I

Ž .An immediate consequence of Eq. 25 is

2 2mJ J J JL l , L m s r l,m , L l y r m ,l , L m , 36Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .½ 5 12 1 21 2

where

1 1
1yk 1yl k lJ J J Jr l,m s L l L m Pr l,m P L l L m , ijs12,21. 37Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž . Ž .Ý Ýi j 1 2 i j 1 2

ks0 ls0

Ž .Thus, Eq. 36 leads to

2 2 2 2 2 2m mJ J J J J J4 Tr L l ,Tr L m sTr L l , L m sTr L l , L m s0.Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž . Ž . Ž . Ž .½ 5 ½ 5 ½ 51 2

Ž .which guarantees the involutivity of those integrals of motion obtained in Eq. 10 . Therefore, we have

E J , E J s H J , E J s F J , E J s0, JsG , Q, i , js1,2, . . . , N , ms0,1,2, . . . . 38Ž .� 4 � 4 � 4i j 0 j m j

Ž . Ž .In addition, noticing Eqs. 16 and 18 , the following equalities

² : G ² :H , p ,q s0, E , p ,q s0, js1, . . . , N ; 39� 4 Ž .� 4G j

² : ² : Q ² : ² :H , p , p q q ,q s0, E , p , p q q ,q s0 js1, . . . , N , 40Ž .� 4 � 4Q j

J J J Ž . 2 Nand a further property: E , E , . . . , E JsG,Q are functionally independent on certain region of R , we1 2 N

obtain the following theorem.
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( ) ( )Theorem 2. The constrained flows 21 and 22 are two completely integrable systems in LiouÕille’s sense.

Remark 1. Usually, the Hamiltonian H is one or at least the functional combinations of the N-inÕolutiÕe set
{ } ( ( ) ( )) ( ) ( )F . But, here is not the case see Eqs. 16 and 18 . Thus, we must Õerify Eqs. 39 and 40 . The presentj

calculation is not simple but guessed and skilled.

5. Conclusions

In this Letter it is revealed that there exists such an example that two spectral problems can be gauge
equivalent, but the associated r-matrices determined by their own finite dimensional constrained system are
different. Why does this phenomenon occur? Evidently, it does not depend upon the equivalence transformation
Ž . Ž . Ž . Ž6 , but upon the Lax matrices 8 , 9 which directly effect on the actual form of the r-matrices see Theorem
. Ž . Ž . Ž . Ž .1 . The two integrable Hamiltonian systems 21 and 22 , produced by the Lax matrices 8 , 9 , respectively

Ž . Ž . Ž . Ž .read the spectral problems 2 and 4 via the constraint conditions 23 and 24 which are generally determined
Ž . Ž .by the functional gradient of spectral parameter l with respect to the potentials u,Õ and s,r . For a given

w x Ž . Ž .spectral problem, its functional gradient can be uniquely calculated 15 . Although Eqs. 2 and 4 are
equivalent, obviously their constraints are not. So, the form of constraints or functional gradient of spectral
parameter has the actual effect on the choice of Lax matrices and the further calculation of r-matrices.

w xThe present Letter along with the previous papers 12,11 bring us the amazing consequence: a pair of
different finite dimensional constrained integrable flow can share a common r-matrix, even the same Lax matrix
and involutive conserved integrals; but a pair of gauge equivalent spectral problem yields different r-matrices.
The latter tells us that r-matrix structure is an innate property of finite dimensional integrable Hamiltonian flow,
in the meantime also implies a fact: a pair of gauge equivalent spectral problems indeed produces two different
finite dimensional integrable flows via some constraints.

w xIn our previous papers 8,11,12 , it was from the Lax pair that we obtained the finite dimensional constrained
integrable systems. Now, the starting point of this Letter is the Lax matrix instead of the Lax pair. This is a
different and more terse way. We do not need to construct the auxiliary matrix. As we see in Sections 3 and 4,

Žthe Lax matrix is sufficient enough to generate the finite dimensional integrable Hamiltonian systems like the
.r-matrix, involutive set, etc , especially to constrained flows. Simultaneously, we have also got a procedure

about how to induce a spectral problem starting from a given Lax matrix. The Hamiltonian system correspond-
ing to the induced spectral problem is namely the usual constrained flow. Moreover, in this way the scope of

w xfinite dimensional integrable systems will be greatly enlarged 10 . Another aim of studying the Lax matrix and
Žr-matrix structure is to classify the finite dimensional integrable systems including constrained and restricted

.systems from the viewpoint of r-matrix. We think that this can be realized. In a future step, we shall consider
promoting the r-matrix structure of finite dimensional constrained flows to the nonlinear evolution equations of

w xinfinite dimensional systems 10 .
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