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Abstract

The purpose of this paper is to develop the negative order MKdV hierarchy and to present a
new related integrable Neumann-like Hamiltonian 5ow from the view point of inverse recursion
operator and constraint method. The whole MKdV hierarchy both positive and negative is gen-
erated by the kernel elements of Lenard’s operators pair and recursion operator. Through solving
a key operator equation, the whole MKdV hierarchy is shown to have the Lax representation. In
particular, some new integrable equation together with the Liouville equations, the sine-Gordon
equation, and the sinh-Gordon equation are derived from the negative order MKdV hierarchy.
It is very interesting that the restricted 5ow, corresponding to the negative order MKdV hier-
archy, is just a new kind of Neumann-like system. This new Neumann-like system is obtained
through restricting the MKdV spectral problem onto a symplectic submanifold and is proven to
be completely integrable under the Dirac–Poisson bracket, which we de=ne on the symplectic
submanifold. Finally, with the help of the constraint between the Neumann-like system and the
negative order MKdV hierarchy, all equations in the hierarchy are proven to have the parametric
representations of solutions. In particular, we obtain the parametric solutions of the sine-Gordon
equation and the sinh-Gordon equation. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

It is well known that the nonlinear evolution equations (NLEEs) solved by the
famous inverse scattering transformation (IST) can be understood as compatible con-
ditions of some linear equations [1,2], namely, Lax representation. In the past two
decades, the Lax representation has played a very important role in the discussion
of NLEEs. In particular, the Lax representation has been used successively in the
bi-Hamiltonian structure of =nite-dimensional dynamical systems [3,4], in the nonlin-
earization theory of soliton system to produce new completely integrable systems in
the Liouville sense [5,6], in the tri-Hamiltonian formulation of nonlinear equations [7],
and in the =nite-dimensional restricted 5ows of the underlying in=nite systems [8].
Recently, the =nding of peaked solitons produced a breakthrough in the study of non-
linear partial diLerential equations [9], where Camassa and Holm showed their equation
is completely integrable by the IST method. This fact allows one to discuss the non-
linear dynamics of soliton solutions and billiard solution [10] via their linear spectral
content (i.e., Lax representation). Thus, for a given hierarchy of NLEEs, to =nd the
Lax representation is of great importance.
The modi=ed Korteweg–de Vries (MKdV) equation together with the MKdV hier-

archy has wide applications in physics and other nonlinear sciences. It possesses the
Lax pair [2], the periodic soliton solution [11,12], the bi-Hamiltonian structure [13]
and other soliton properties such as Darboux transformation, BMacklund transformation
and the Miura transformation between it and the KdV equation [14]. About the study
of the MKdV hierarchy, i.e., usual higher-order MKdV equations, there have been
many discussions in the literature. In Ref. [15], the sine-Gordon equation and the
integrated MKdV equations were shown to conserve the same in=nite set of charges
which were determined by a recursion relation. Afterward, Verosky [16] introduced the
negative powers of Olver recursion operator and presented the relations between the
sine-Gordon=sinh-Gordon equation and the potential MKdV equations (nonlocal 5ows).
In 1993, Andree and Shmakova [17] discussed the supersymmetry structure of the
sine-Gordon equation, which can be embraced in the MKdV and KdV hierarchies. All
of those interesting facts happened between the sine-Gordon equation and the MKdV
equation. The fact that the sine-Gordon equation is a negative 5ow of MKdV can be
seen in Ref. [1].
In recent years, the time-discrete version [18] of integrable systems have already

arisen a lot of attractive attentions. This idea was applied to constructing a new Lax
pair from the old Lax pair [19]. In Ref. [20], we proposed an approach to generate the
positive and the negative order integrable hierarchies from a given spectral problem. In
fact, we had this idea in Ref. [21]. Later, Zhou [22] followed this way and did some
discussions on the Lax pair of the negative hierarchy and related dynamical r-matrix
[23]. But that depends on the existence of inverse recursion operator. This means,
for every concrete spectral problem, we need to determine the inverse of recursion
operator.
In the present paper, we will give the inverse of recursion operator of the MKdV

hierarchy in an explicit form. With the help of the recursion operator and its inverse,
we present the positive order and the negative order MKdV hierarchies of NLEEs.
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The whole MKdV hierarchy is proven to have the Lax pair through employing a key
operator equation, and is, therefore, a completely integrable hierarchy. Particularly,
some new integrable equation together with the Liouville equations, the sine-Gordon
equation, and the sinh-Gordon equation are derived from the negative order MKdV
hierarchy. Furthermore, the constraint between the MKdV spectral problem and the
negative order MKdV hierarchy derives a restricted Hamiltonian 5ow on a symplectic
submanifold, which is a new kind of Neumann-like system. Then, we de=ne the Dirac–
Poisson bracket on the symplectic submanifold, which is a very useful tool to deal
with the =nite dimensional integrable system on some submanifolds. Under the Dirac–
Poisson bracket, the new Neumann-like system has the Hamiltonian canonical form and
has furthermore independent and involutive functions, which guarantees its complete
integrability. Finally, each equation in the negative order MKdV hierarchy is proven
to have the parametric representation of solution, which is given by the involutive
solution of Hamiltonian phase 5ows (i.e., x- and tm-5ow, m¡ 0; m∈Z). Particularly,
we obtain the parametric solutions of the sine-Gordon equation and the sinh-Gordon
equation.
The whole paper is organized as follows. Next section gives the pair of Lenard’s op-

erators, the recursion operator and their inverses, and introduces a key operator equation
which is available for both the positive order and the negative order MKdV hierar-
chies. This operator equation is diLerent from the one usually considered in literatures
[24–26]. In Section 3, we will see that the positive order MKdV hierarchy, arising from
the kernel of one of Lenard’s operators, is nothing but the well-known MKdV hierar-
chy. In Section 4, we present the negative order MKdV hierarchy by using the kernel
element of the other one of Lenard’s operators. All equations in the hierarchy have
the Lax pairs. In Sections 5 and 6, we provide a new kind of integrable Neumann-like
system on a symplectic submanifold, and give the parametric solutions of the negative
order MKdV hierarchy, respectively. In the last section, we give some conclusions.
For convenience, we make the following conventions:

f(m) =




@m

@xm f = fmx; m= 0; 1; 2; : : : ;∫
: : :
∫

︸ ︷︷ ︸
−m

f dx; m=−1;−2; : : : ;

ft = @f=@t, fmxt = (@m+1f)=(@t@xm) (m=0; 1; 2; : : :), @= @=@x, @−1 is the inverse of @,
i.e., @@−1 = @−1@= 1, @mf means the operator @mf acts on some function g, i.e.,

@mf · g= @m(fg) =




@m

@xm (fg) = (fg)mx; m= 0; 1; 2; : : : ;∫
: : :
∫

︸ ︷︷ ︸
−m

fg dx; m=−1;−2; : : : :

In the following, the function u stands for potential, the imaginary unit i is satisfying
i2 = −1, and  is assumed to be a spectral parameter, and the domain of the spatial
variable x is � which becomes equal to (−∞;+∞) or (0; T ), while the domain of the
time variable tm is the positive time axis R+ = {tm | tm ∈R; tm¿ 0; m=0;±1;±2; : : :}.
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In the case �=(−∞;+∞), the decaying condition at in=nity and in the case �=(0; T ),
the periodicity condition for the potential function is imposed.
(R2N ; dp ∧ dq) stands for the standard symplectic structure in Euclid space R2N =

{(p; q) |p=(p1; : : : ; pN ); q=(q1; : : : ; qN )}, pj; qj (j=1; : : : ; N ) are N pairs of canonical
coordinates, 〈·; ·〉 is the standard inner product in RN ; in (R2N ; dp ∧ dq), the Poisson
bracket of two Hamiltonian functions F;H is de=ned by [27]

{F;H}=
N∑

j=1

(
@F
@qj

@H
@pj

− @F
@pj

@H
@qj

)
=
〈
@F
@q

;
@H
@p

〉
−
〈
@F
@p

;
@H
@q

〉
: (1.1)

1; : : : ; N are N distinct spectral parameters, and � = diag(1; : : : ; N ). Denote all
in=nitely times diLerentiable functions on real =eld R and all integers by C∞(R)
and by Z, respectively.

2. Inverse recursion operator and operator equation

Let us consider the following spectral problem:

 x =
(−i u

u i

)
 ;  =

(
 1

 2

)
; (2.1)

which is quite a special case of the well-known Zakharov–Shabat-AKNS spectral
problem [28]

 x =
(−i u

v i

)
 (2.2)

with v= u.
Eq. (2.1) is equivalent to

L ·  ≡
(
i@ −iu
iu −i@

)
·  =  (2.3)

and its spectral gradients ∇ ≡ �=�u= 2
2− 2

1 satis=es the Lenard eigenvalue problem

K · ∇= 2J · ∇ (2.4)

with the Lenard’s operators pair

K =− 1
4@

3 + @u@−1u@; J = @ ; (2.5)

which yields the recursion operator

L= J−1K =− 1
4@

2 + u@−1u@ : (2.6)

Apparently, the Gateaux derivative operator L∗(�) of the spectral operator L given
by Eq. (2.3) in the direction �∈C∞(R) is

L∗(�)
P=

d
d�

∣∣∣∣
�=0

L(u+ ��) =
(

0 −i�
i� 0

)
(2.7)

which is obviously an injective homomorphism.
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Through guesswork and calculations, we can obtain the inverse operators of L; J; K
and L:

L−1 =


 A −@−1uA

@−1uA −A


 ; (2.8)

A=−ieu
(−1)

@−1e−2u(−1)
u@−1eu

(−1)
@u−1 ;

J−1 = @−1 ; (2.9)

K−1 =−4@−1e−2u(−1)
@−1e4u

(−1)
u@−1e−2u(−1)

@u−1@−1 ; (2.10)

L−1 =−4@−1e−2u(−1)
@−1e4u

(−1)
u@−1e−2u(−1)

@u−1 : (2.11)

For any given C∞-function G, we construct the following operator equation with
respect to V = V (G):

[V; L] = L∗(K · G)− L∗(J · G)L2 : (2.12)

Remark 1. This equation contains a special term L2 instead of the term L usually
considered in literatures [24–26].

Theorem 1. For the MKdV spectral operator (2.3) and an arbitrarily given C∞-
function G; the operator equation (2.12) has the following solution:

V = V (G) =
(
(uGx)(−1)@− 1

2uGx
1
2Gx@− 1

4Gxx
1
2Gx@− 1

4Gxx (uGx)(−1)@− 1
2uGx

)
: (2.13)

Proof. Directly substituting Eqs. (2.13); (2.3); (2.5) and (2.7) into Eq. (2.12); we can
complete the proof of this theorem.

3. Positive order hierarchy of Eq. (2.1), i.e., usual MKdV hierarchy

Let us now give the positive order MKdV hierarchy through considering the kernel
element of the Lenard’s operator J .

G0 = a∈Ker J and the recursion operator (2.6) yield the positive order hierarchy of
Eq. (2.3)

utm = JLm · a; m= 0; 1; 2; : : : ; (3.1)

which has the following representative equations:

ut1 = aux trivial case ; (3.2)

ut2 =− 1
4auxxx + 3

2au
2ux : (3.3)
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Here, a = a(tn)∈C∞(R) is an arbitrarily given function with respect to variables
tn (n¿ 0; n∈Z), but independent of x. Apparently, with a = 4 Eq. (3.3) becomes
the well-known MKdV equation

ut2 − 6u2ux + uxxx = 0 : (3.4)

Therefore, Eq. (3.1) coincides with the well-known MKdV hierarchy, which corre-
sponds to the isospectral case: tm = 0.
By Eq. (2.13), the whole hierarchy (3.1) has the standard Lax representation

Ltm = [Wm; L] ; (3.5)

Wm =
m−1∑
j=0

V (Gj)L2(m−j−1) ; (3.6)

where V (Gj) is given by Eq. (2.13) with G=Gj =Lj · a; j¿ 0, j∈Z. Therefore, we
obtain the following theorem.

Theorem 2. The positive order hierarchy (3.1) (i.e. the MKdV hierarchy) of the
spectral problem (2.3) possesses the Lax pair

 x =
(−i u

u i

)
 ;

 tm = a
(−i u

u i

)
2(m−1) +

m−1∑
j=1

Vj2(m−j−1) ; m= 0; 1; 2; : : : ; (3.7)

where

Vj =

( −i(uGj;x)(−1) 1
2 iGj;x − 1

4Gj;xx + u(uGj;x)(−1)

− 1
2 iGj;x − 1

4Gj;xx + u(uGj;x)(−1) i(uGj;x)(−1)

)
;

(3.8)

Gj =Lj · a; j¿ 0; j∈Z : (3.9)

In particular, the MKdV Eq. (3.3) has the Lax pair

 x =
(−i u

u i

)
 ;

 t2 = a
( −i(3 + 1

2u
2) 2u+ 1

2 iux − 1
4uxx + 1

2u
3

2u− 1
2 iux − 1

4uxx + 1
2u

3 i(3 + 1
2u

2)

)
 : (3.10)

Remark 2. For the spectral problem (2.1); if we use the usual method [28;29]; i.e.;
the method of =nite power expansion with respect to spectral parameter ; then no
isospectral evolution equations of Eq. (2.1) can be obtained.
However, we here present the MKdV hierarchy (3.1) purely by the Lenard’s

operators pair satisfying Eq. (2.4). Due to containing the spectral gradient ∇ in
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Eq. (2.4), this procedure of generating evolution equations from a given spectral prob-
lem is called the spectral gradient method.

In this method, how to determine a pair of Lenard’s operators associated with the
given spectral problem mainly depends on the concrete forms of spectral problems
and spectral gradients, and some computational techniques. From this method, we can
furthermore derive the negative order MKdV hierarchy, which is displayed below.

4. The negative order MKdV hierarchy and Lax representation

Let us now give the negative order MKdV hierarchy through considering the kernel
element of Lenard’s operator K . The kernel of operator K has the following three seed
functions:

QG
1
−1 = (e−2u(−1)

)(−1) ; (4.1)

QG
2
−1 = (e2u

(−1)
)(−1) ; (4.2)

QG
3
−1 = (e−2u(−1)

)(−1)(e2u
(−1)

)(−1) ; (4.3)

whose all possible linear combinations form the whole kernel of K . Let QG−1 ∈Ker K ,
then

QG−1 =
3∑

k=1

ak QG
k
−1 ; (4.4)

where ak = ak(tn); k = 1; 2; 3, are three arbitrarily given C∞-functions with respect to
variables tn (n¡ 0; n∈Z), but independent of x. Therefore, QG−1 directly generates the
isospectral (tm = 0) negative order hierarchy of nonlinear evolution equations for the
spectral problem (2.3)

utm = JLm+1 · QG−1; m¡ 0; m∈Z ; (4.5)

which is called the negative order MKdV hierarchy of Eq. (2.3). By Theorem 1, the
hierarchy (4.5) has the standard Lax representation

Ltm = [ QWm; L] ; (4.6)

QWm =−
−1∑
j=m

V ( QGj)L2(m−j−1); m=−1;−2; : : : ; (4.7)

i.e.,

 x =
(−i u

u i

)
 ;

 tm =
−1∑
j=m

QV j2(m−j−1) ; m=−1;−2; : : : ; (4.8)



372 Z. Qiao, W. Strampp / Physica A 313 (2002) 365–380

with

QV j =

(
i(u QGj;x)(−1) − 1

2 i QGj;x −L · QGj

1
2 i QGj;x −L · QGj −i(u QGj;x)(−1)

)
; (4.9)

where

L · QGj =− 1
4
QGj;xx + u(u QGj;x)(−1) :

In Eq. (4.7), V ( QGj) and L−1 are given by Eq. (2.13) with G = QGj = Lj+1 · QG−1

and by Eq. (2.8), respectively. Thus, all nonlinear equations in the hierarchy (4.5) are
integrable.
Let us now give some special reductions of Eq. (4.5).

• In the cases of a2 = a3 = 0; a1 = a3 = 0; a1 = a2 = 0, Eq. (4.5) separately has the
following representative equations:

ut−1 = a1e−2u(−1)
; (4.10)

ut−1 = a2e2u
(−1)

; (4.11)

ut−1 = a3(e−2u(−1)
(e2u

(−1)
)(−1) + e2u

(−1)
(e−2u(−1)

)(−1)) ; (4.12)

which can be via the transformation u= vx respectively changed to

vx; t−1 = a1e−2v Liouville equation ; (4.13)

vx; t−1 = a2e2v Liouville equation ; (4.14)

vt−1 = a3(e2v)(−1)(e−2v)(−1) a new integrable equation : (4.15)

They are also equivalent to the following diLerential equations:

ux; t−1 + 2uut−1 = 0 ; (4.16)

ux; t−1 − 2uut−1 = 0 ; (4.17)

uxx; t−1 − u−1uxux; t−1 + u−1ux − 4u2ut−1 = 0 : (4.18)

Apparently, Eqs. (4.10)–(4.12) possess the following standard Lax pairs:

 x =
(−i u

u i

)
 ;

 t−1 = QW
1
−1 ·  = 1

2 ia1e
−2u(−1)

(−1 −1
1 1

)
−1 ; (4.19)

 x =
(−i u

u i

)
 ;

 t−1 = QW
2
−1 ·  = 1

2 ia2e
2u(−1)

(
1 −1
1 −1

)
−1 ; (4.20)
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 x =
(−i u

u i

)
 ;

 t−1 = QW
3
−1 ·  = 2a3

(
0 1
1 0

)
−2 + U−1−1 ; (4.21)

respectively, where

U−1 = 2ia3e2u
(−1)

(e−2u(−1)
)(−1)

(
1 −1
1 −1

)

+2ia3e−2u(−1)
(e2u

(−1)
)(−1)

(−1 −1
1 1

)
: (4.22)

Eqs. (4.16) and (4.17) are two Liouville equations, and easy to see that they can
be directly integrated as u2 ± ux =f(x); f(x)∈C∞(R), which are two typical Riccati
equations. They can be solved by some methods in the theory of ordinary diLerential
equations. But, Eq. (4.15) or (4.18) is a new integrable equation.

• In the case of a1 =− 1
4 ; a2 = 1

4 , and a3 = 0; the =rst equation of Eq. (4.5) reads

ut−1 =
e2u

(−1) − e−2u(−1)

4
: (4.23)

We make a simple transformation

u= 1
2 ivx (4.24)

then Eq. (4.23) is exactly changed to the well-known sine-Gordon equation

vx; t−1 = sin v : (4.25)

According to Eq. (4.8), the sine-Gordon equation (4.25) possesses the following Lax
pair:

 x =
( −i 1

2 ivx
1
2 ivx i

)
 ;

 t−1 =
1
4

(
i cos v sin v
−sin v −i cos v

)
 ; (4.26)

which has a slight diLerence from the usual one given in Refs. [1,30].
For Eq. (4.23), if we make the transformation u= 1

2vx, then it becomes

vx; t−1 = sinh v (4.27)

which is nothing but the well-known sinh-Gordon equation. By Eqs. (4.8) and (4.9),
the sinh-Gordon equation (4.27) has the following Lax pair:

 x =
(−i 1

2vx
1
2vx i

)
 ;

 t−1 =
1
4 i
(
cosh v −sinh v
sinh v −cosh v

)
 ; (4.28)

which is also slightly diLerent from the usual one [1,30].
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Remark 3. In Ref. [31]; Alber; Camassa; Holm and Marsden took evolution equations
of auxiliary linear system polynomial in −1 and gave the zero-curvature representation
for the Dym type hierarchy and the Camassa–Holm equation. Here; our starting point
is the spectral problem and the spectral gradient instead of the auxiliary linear problem;
then via a key operator equation we obtain the Lax pairs.

5. A new integrable Neumann-like system

In Ref. [32], we presented an integrable Neumann-like system closely associated
with the positive order MKdV hierarchy (3.1), showed that the Neumann-like system
was sent by a gauge transformation to an integrable Bargmann system, and obtained
the parametric solutions for the positive order MKdV hierarchy. Now, we study the
negative case.
Let 1; : : : ; N be N diLerent spectral parameters of Eq. (2.1), (qj; pj)T the spectral

function corresponding to j, and i2 =−1. Then Eq. (2.1) becomes

qj;x =−ijqj + upj ;

pj;x = uqj + ijpj ;

i.e., Eq. (2.1) yields the following form:

qx =−i�q+ up ;

px = uq+ i�p ; (5.1)

where p= (p1; : : : ; pN )T; q= (q1; : : : ; qN )T, and �= diag(1; : : : ; N ).
Assume 〈�q; p〉 �=0, then let us restrict Eq. (5.1) onto the following symplectic

submanifold M in R2N :

M= {(q; p)∈R2N |F ≡ 〈q; q〉 − 〈p;p〉 − 1
4 = 0 ;

G ≡ 1
2 (〈�q; q〉+ 〈�p;p〉) = 0} : (5.2)

Then, on M we obtain the following constraint:

u= i
〈�2q; q〉 − 〈�2p;p〉

2〈�q; p〉 : (5.3)

Thus, under Eq. (5.3) the MKdV spectral problem (2.1) is nonlinearized as the
following nonlinear system:

qx =−i�q+ i
〈�2q; q〉 − 〈�2p;p〉

2〈�q; p〉 p ;

px = i
〈�2q; q〉 − 〈�2p;p〉

2〈�q; p〉 q+ i�p ; (5.4)

which is called a restricted MKdV 5ow of the spectral problem (2.1) on M.
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Remark 4. Because dF; dG are independent everywhere on M and their determinant
det({F;G}) = 〈�q; p〉 �=0; M is therefore a symplectic submanifold in R2N [30].
Apparently; M is not the usual tangent bundle; i.e.; M �=TSN−1 = {(q; p)∈R2N | F̃ ≡
〈q; q〉 − 1 = 0; G̃ ≡ 〈q; p〉 = 0}; thus Eq. (5.3) does not coincides with the usual
Neumann constraint [33;34] on TSN−1. If we strongly impose Eq. (5.1) on the usual
tangent bundle TSN−1 = {(q; p)∈R2N | F̃ ≡ 〈q; q〉 − 1 = 0; G̃ ≡ 〈q; p〉 = 0}; then we
have no constraints except for u=0 which is of course meaningless. So; Eq. (5.4) has
no link to the standard Neumann system and is therefore a new kind of Neumann-like
system.

In order to prove the integrability of the restricted 5ow (5.4) on M, we introduce
the Dirac bracket

{f; g}D = {f; g}+ 1
2〈�q; p〉 ({f; F}{G; g} − {f;G}{F; g}) ; (5.5)

which is easily proven to be bilinear, skew-symmetric and satisfy the Jacobi identity.
Let us now consider a very simple Hamiltonian function

H =−i〈�q; p〉 (5.6)

together with independent functions

Fm = 1
8(〈�2mp; p〉 − 〈�2mq; q〉)

+
1
4

−2∑
j=m

(〈�2( j+1)q; q〉 − 〈�2( j+1)p;p〉)(〈�2(m−j−1)p;p〉 − 〈�2(m−j−1)q; q〉)

+
1
4

−1∑
j=m

∣∣∣∣∣∣ 〈�
2j+1q; q〉+ 〈�2j+1p;p〉 2〈�2(m−j)−1p; q〉

2〈�2j+1q; p〉 〈�2(m−j)−1q; q〉+ 〈�2(m−j)−1p;p〉

∣∣∣∣∣∣ ;

m=−1;−2; : : : : (5.7)

Lemma 1. The inner product 〈@Fm=@q; @Fn=@p〉 is symmetric with respect to m; n
(m; n¡ 0; m; n∈Z).

Proof. Making the derivatives of Fm with respect to q; p and directly substituting
them into 〈@Fm=@q; @Fn=@p〉; we have a lengthy calculation and then know that this
inner product is sum of some symmetric terms with respect to m; n (m; n=−1;−2; : : :).

Proposition 1.

{Fm; Fn}= {H; Fm}= 0; m; n=−1;−2; : : : : (5.8)

Proof. Lemma 1 directly yields {Fm; Fn} = 0. As for the second equality; a straight-
forward computation completes its proof.
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Through some guesswork, we =nd that the restricted 5ow (5.4) can be expressed as
the canonical Hamiltonian form in the following theorem.

Theorem 3. Under the Dirac–Poisson bracket (5.5); the restricted MKdV Cow (5.4)
coincides with

(H)D:

{
qx = {q; H}D ;

px = {p;H}D ;
(5.9)

where H is deDned by Eq. (5.6).

A furthermore direct calculation leads to the following lemma.

Lemma 2.

{Fm; Fn}D = {H; Fm}D = 0; m; n=−1;−2; : : : : (5.10)

Because Fm are independent, we obtain the following theorem.

Theorem 4. The restricted MKdV Cow (5.4) on the symplectic submanifold M is
completely integrable. Moreover; all restricted Cows (Fm)D on M

(Fm)D:

{
qtm = {q; Fm}D ;

ptm = {p; Fm}D ;
(5.11)

are integrable.

6. Parametric solution of the negative order MKdV hierarchy

In the following, we will consider the relation between constraint and nonlinear
equations in the negative order MKdV hierarchy (4.5). Let us start from the following
setting:

QG−1 =
N∑

j=1

−2
j ∇j ; (6.1)

where QG−1 are de=ned by Eq. (4.4), and ∇j = p2
j − q2j is the functional gradient of

the spectral problem (2.1) corresponding to j.
Let the recursion operator L act on both sides of Eq. (6.1). Then, through making

a choice of J−1 · 0 = @−1 · 0 = 1
4 , we obtain

〈p;p〉 − 〈q; q〉= 1
4 : (6.2)

Doing the derivative on both sides of Eq. (6.2) with respect to x and substituting
Eq. (5.1) yield

〈�q; q〉+ 〈�p;p〉= 0 ; (6.3)

which together with Eq. (6.2) forms the symplectic submanifold M we need. Appar-
ently, derivative for Eq. (6.3) with respect to x leads to the constraint relation (5.3).
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Since the restricted Hamiltonian 5ows (H)D and (Fm)D are completely integrable
and their Poisson brackets {H; Fm}D = 0 (m = −1;−2; : : :), their phase 5ows gx

H ; g tm
Fm

commute [27]. Thus, we can de=ne their compatible solution as follows:(
q(x; tm)
p(x; tm)

)
= gx

Hgtm
Fm

(
q(x0; t0m)
p(x0; t0m)

)
; m=−1;−2; : : : ; (6.4)

where x0; t0m are the initial values of phase 5ows gx
H ; gtm

Fm
.

Theorem 5. Let q(x; tm); p(x; tm) be a solution of the compatible Hamiltonian systems
(H)D and (Fm)D on M. Then

u= i
〈�2q(x; tm); q(x; tm)〉 − 〈�2p(x; tm); p(x; tm)〉

2〈�q(x; tm); p(x; tm)〉 (6.5)

satisDes the negative order MKdV hierarchy

utm = JLm+1 · QG−1; m=−1;−2; : : : : (6.6)

Proof. On one hand; the recursion operator L acts on Eq. (6.1) and results in the
following

JLm+1 · QG−1 = J (〈�2mp; p〉 − 〈�2mq; q〉)
= 2(〈�2mp; px〉 − 〈�2mq; qx〉)
= 2i(〈�2m+1p;p〉+ 〈�2m+1q; q〉): (6.7)

In this procedure; Eqs. (2.4) and (5.4) are used.
On the other hand, we directly make the derivative of Eq. (6.5) with respect to tm.

Then we obtain

utm =
i

2〈�q; p〉2 (2(〈�
2q; qtm〉 − 〈�2p;ptm〉)〈�q; p〉

− (〈�2q; q〉 − 〈�2p;p〉)(〈�q; ptm〉+ 〈�p; qtm〉)) ; (6.8)

where q= q(x; tm); p= p(x; tm). But,

qtm =
@Fm

@p
; ptm =−@Fm

@q
; (6.9)

therefore, after substituting them into Eq. (6.8) and calculating it, we have

utm = 2i(〈�2m+1p;p〉+ 〈�2m+1q; q〉) (6.10)

which completes the proof.

In the special case of m=−1, we have the following corollary.

Corollary 1. Let q(x; t−1); p(x; t−1) be a solution of the compatible Hamiltonian
systems (H)D and (F−1)D on M. Then

u= i
〈�2q(x; t−1); q(x; t−1)〉 − 〈�2p(x; t−1); p(x; t−1)〉

2〈�q(x; t−1); p(x; t−1)〉 (6.11)
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is a solution of the nonlinear evolution equation ut−1 =
∑3

k=1 ak(t−1) QG
k
−1; x; i.e.

ut−1 = a1e−2u(−1)
+ a2e2u

(−1)

+a3(e−2u(−1)
(e2u

(−1)
)(−1) + e2u

(−1)
(e−2u(−1)

)(−1)) ; (6.12)

Here H is deDned by Eq. (5.6) and F−1 is given by

F−1 = 1
8 (〈�−2p;p〉 − 〈�−2q; q〉)
− 1

4 〈�−1(q+ p); q+ p〉〈�−1(q− p); q− p〉 : (6.13)

In particular; the Liouville equations vx; t−1 = a1e−2v; vx; t−1 = a2e2v; the sine-Gordon
equation vx; t−1 = sin v; and the sinh-Gordon equation vx; t−1 = sinh v have the following
parametric solution:

v= u(−1) = i
∫ 〈�2q(x; t−1); q(x; t−1)〉 − 〈�2p(x; t−1); p(x; t−1)〉

2〈�q(x; t−1); p(x; t−1)〉 dx ; (6.14)

v=−2iu(−1) =
∫ 〈�2q(x; t−1); q(x; t−1)〉 − 〈�2p(x; t−1); p(x; t−1)〉

〈�q(x; t−1); p(x; t−1)〉 dx ; (6.15)

and

v= 2u(−1) = i
∫ 〈�2q(x; t−1); q(x; t−1)〉 − 〈�2p(x; t−1); p(x; t−1)〉

〈�q(x; t−1); p(x; t−1)〉 dx ; (6.16)

respectively.

By Theorem 5, the constraint (5.3) is a solution of the negative order MKdV hier-
archy (6.6). Thus, we also call the system (H)D (i.e., Eq. (5.4)) a negative order
restricted MKdV 5ow of the spectral problem (2.1) on the symplectic submanifold
M. All Hamiltonian systems (Fm)D (i.e., Eq. (5.11) derived from (H)D) are therefore
called the negative order restricted 5ows on M.

7. Conclusion and comparison

It is well known that some traveling wave solutions or soliton solutions for the
integrable equations are available by the Inverse Scattering Transformation. Thus, a
natural question is: what is the relationship between the traveling wave solutions and
the parametric solutions (6.5) for the MKdV case? Because we need either the potential
function u decaying at ±∞ or satisfying the periodic condition in the period T with
respect to the variable x (see the part of Introduction) when we do the spectral gradient
calculations, we believe that both the traveling wave solutions and the periodic or
quasi-periodic solutions should be in the formula (6.5), namely, they share a common
expression (6.5). In a further procedure, we will consider giving an explicit expression
of Eq. (6.5) for the cases of the potential u decaying at ±∞ or satisfying the periodic
condition in the period T .
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For the positive order constrained MKdV system by the constraint u=〈p;p〉−〈q; q〉,
we have dealt with it in Ref. [32] where we knew this constraint is closely connected
to the positive order (i.e., usual) MKdV hierarchy (3.1) and in detail discussed the
integrability of the constrained 5ow for the spectral problem (2.1).
A systematic approach to generate new integrable negative order hierarchies of

NLEEs can be seen in Ref. [35].
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