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Abstract

In this paper we consider the L–A–B representation of nonlinear evolution equations (NLEEs)
and present an approach to determine its range. The method we adopt is that of Lie quotient
algebras. As an example, we consider the Kaup–Newell spectral problem and give a category of
NLEEs associated with it. Particularly, we obtain the negative order hierarchies of NLEEs by
considering the inverse of recursion operator. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

It is well known that the nonlinear evolution eqautions (NLEEs) solved by the
famous inverse scattering transformation can be understood as compatible conditions of
some linear equations [1,2]. Such examples include both the KdV, nonlinear
Schr>odinger, AKNS system in (1 + 1)-dimensional space and the KP, DS system in
(2 + 1)-dimensional space [3]. These integrable models have attracted attention of
mathematician and physists over the past years. This is mainly due to the fascinating
properties of mathematics and physics.
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Manakov [4] proved that for some concrete soliton equations the algebraic form of
the compatibility conditon is given by the L–A–B triple representation structure. It has
been found that some integrable systems possess this kind of representations [4–6].

In recent years, the discrete-time version [7] of integrable systems have already
attracted a lot of attention. Capel, NijhoJ and their collaborators have got many de-
velopments in this area [8–10]. Their methods have been considered for constructing
a new Lax pair from the old Lax pair for the continuous case [11] as well as deriving
some new hierarchies of integrable NLEEs from the spectral problems [12]. On the
basis of those literatures, this paper will further deal with the hierarchies of NLEEs,
especially, the negative order hierarchies. The concept and idea of the negative order
hierarchy of NLEEs Lrst appeared in Ref. [13].

Recently, we introduced the category of NLEEs, which is composed of hierarchies
of NLEEs and possesses a generalized Lax representation, and presented a constructive
approach to the L–A–B triple representations [14]. The present paper aims at deter-
mining the range of the generalized Lax representation for a given nonlinear equation.
The whole paper is organized as follows. In the next section, we concisely recall
the category of NLEEs and the generalized Lax representation. In Sections 3 and
4, we introduce two diJerent Lie quotient algebras for Lax operators, one of them
is independent of the hierarchy, while the other one is dependent on the underlying
hierarchy. Both of the Lie quotient algebras can be used for determining the range
of the generalized Lax representations. In Section 5, as an application we present a
new category of nonlinear evolution equations, obtained by the Kaup–Newell (KN)
spectral problem. Particularly, we give the formula of the inverse recursion opera-
tor of the KN hierarchies, and further discuss the negative order KN hierarchies of
NLEEs.

Before displaying our main results, let us Lrst give some necessary notations:

x∈Rl, t ∈R, u= (u1; : : : ; um)T ∈ Sm(Rl; R) =

m︷ ︸︸ ︷
S(Rl; R) × · · · × S(Rl; R), ui = ui(x; t)∈

S(Rl; R), i= 1; 2; : : : ; m, for arbitrary Lxed t, S(Rl; R) stands for the Schwartz func-
tion space on Rl. B stands for all complex (or real) value functions P(x; t; u) of the
class C∞ with respect to x; t, and of the class C∞ in Gateaux’s sense with respect to u.
BN = {(P1; : : : ; PN )T|Pi ∈B}, VN stands for all linear operators �=�(x; t; u) :BN →
BN which are of the class C∞ with respect to x, t, and of the class C∞ in Gateaux’s
sense with respect to u.

The Gateaux derivate of a vector function X ∈Bn in the direction Y ∈Bm is deLned
by

X∗(Y ) =
d
d�

∣∣∣∣
� = 0

X (u + �Y ) : (1.1)

For two arbitrary vector Lelds X; Y ∈Bm, we deLne the following operation:

[X; Y ] =X∗(Y ) − Y∗(X ) : (1.2)

Then, the set Bm endowed with the above multiplication operation [15] composes a
Lie algebra. For the operator �∈VN , its Gateaux derivate operator �∗ :Bm →VN in
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the direction � is deLned as follows:

�∗(�) =
d
d�

∣∣∣∣
� = 0

�(u + ��); �∈Bm : (1.3)

If not otherwise stated, the spectral operators L=L(u) (or the spectral operators
L=L(u; �) with the spectral parameter �) considered in this paper are denoted by
L∈VN , and we assume throughout the paper that L∗ :Bm →VN is an injective ho-
momorphism. An operator H acting on a function f is denoted by H ·f and I stands
for the N × N unit operator.

2. Category of NLEEs [14]

Let

L ·  = � ; L∈VN (2.1)

be an N × N matrix spectral problem, and K; J be a pair of Lenard operators of
(2.1), where � is a spectral parameter,  ∈BN . The positive order and negative order
generators G0 and G−1 are determined by the following operator equations:

L∗(J ·G0) = OM ;

L∗(K ·G−1) = M̃ ;

where OM = ( Omij)N×N ; M̃ = (m̃ij)N×N are arbitrarily given (1 + l)-dimensional linear
N × N matrix operators depending on the variables (x; t)∈Rl × R; l¿ 1. They yield
the category of nonlinear evolution equations of (2.1):

ut = J ·Gm(u; G0; G−1); m∈Z ; (2.2)

Gm =

{
Lm ·G0; j¿ 0 ;

Lm+1 ·G−1; j ¡ 0 ;
(2.3)

where L= J−1K is the recursion operator.

Theorem 2.1 (Qiao et al. [13]). Let OM = ( Omij)N×N ; M̃ = (m̃ij)N×N be two arbitrarily
given N×N linear matrix operators. Suppose that for G = (G[1]; : : : ; G[m])T ∈ Sm(Rl; R)
and $; %∈Z the operator equation

[V; L] =L∗(K ·G)L% − L∗(J ·G)L$ (2.4)

possesses a solution V =V (G); then the vector Aeld Xm =Xm(u; G0; G−1) = J ·Gm

satisfy

L∗(Xm) = [Wm; L] + MLm(; m∈Z; M =

{
OM; m¿ 0 ;

M̃ ; m¡ 0 ;
(2.5)
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where (= $− % and the operator Wm is given by

Wm =
∑

V (Gj)L(m−j)(−$;
∑

=




∑m−1

j = 0
; m¿ 0 ;

0; m= 0 ;

−
∑−1

j = m
; m¡ 0 :

(2.6)

Here Gj are determined by (2.3), and L−1 is the inverse of L, i.e., LL−1 =L−1L= I ,
and [ · ; · ] stands for the commutator.

This theorem ensures that category (2.2) has the following formal Lax representation:

Lt = [Wm; L] + MLm(; m∈Z; M =

{
OM; m¿0 ;

M̃ ; m¡ 0 :
(2.7)

which is called the generalized Lax representations (GLR) of (2.2) and Wm is called
the generalized Lax operator (GLO).

Apparently, Eq. (2.7) admits the structure of L–A–B representations of the category
(2.2) in an explicit form.

3. Lie quotient algebra independent of the hierarchy and range of the GLR

In Ref. [14], we deLned the Manakov operator pair (A;M) for a given spectral
operator L through

[A; L] =L∗(X ) −M ; (3.1)

where X is the vector Leld corresponding to (A;M). Denote the set of all Manakov
operator pairs (A;M), the set of all vector Lelds X , and the set of all triples (A;M; X )
by ML, V (ML), and PL, respectively.

As long as Eq. (2.4) has an operator solution for a given L∈VN , then by Theorem
2.1 and Eq. (2.5) there exists a triple (A;M; X )∈PL satisfying (3.1). Apparently, if
there is A;M ∈VN for X ∈Bm such that Eq. (3.1) holds, then ut =X possesses the
GLR Lt = [A; L] + M .

We have already proven that under the binary operation

(A;M) 	 (B; N ) = (A	 B;M 	 N ) ; (3.2)

A	 B=A∗(Y ) − B∗(X ) + [A; B] ; (3.3)

M 	 N =M∗(Y ) − N∗(X ) + [M;B] − [N; A] ; (3.4)

ML forms a Lie algebra (see Ref. [14, Theorem 3.1]). This result shows that there
is a universal algebraic structure for the diBerent hierarchies of NLEEs within one
category, and the GLR of ut = [X; Y ] is produced by GLR of the equations ut =X and
ut =Y (X; Y ∈Bm).

Set SL = {(A;M)∈VN ×VN | [A; L] = −M}. Then SL corresponds to the stationary
systems X (u) = 0 of the NLEEs ut =X (u).
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Theorem 3.1. SL forms a Lie subalgebra as well as an ideal of ML with regard to
the operation (3:2).

Proof. Let (A;M; X ), (B; N; Y )∈PL, then

(A;M); (B; N )∈ SL ⇔ X =Y = 0 :

Thus, SL is a subalgebra of ML.
Let (A;M)∈ SL and arbitrarily choose (B; N; Y )∈PL, then we have (A 	 B;

M 	 N; [0; Y ])∈PL, which implies (A	 B;M 	 N )∈ SL.

For (A;M), (B; N )∈ SL, operation (3.2) reads:

A	 B= [A; B]; M 	 N = [M;B] + [A; N ] : (3.5)

De'nition 3.1. In VN × VN , two pairs of operators (A;M) and (B; N ) are called
equivalent (A;M) ∼ (B; N ), iJ [A; L] + M = [B; L] + N .

Obviously, ∼ is an equivalence relation in VN ×VN . Denote the equivalent class
of (A;M) with regard to SL by (A;M). Set E(ML) = {(A;M)| (A;M)∈ML}, then by
Theorem 3.1, E(ML) =ML=SL forms a quotient algebra with the operation

(A;M) 	 (B; N ) = (A	 B;M 	 N ); (A;M); (B; N )∈ML : (3.6)

This algebra is independent of the hierarchy of NLEEs.

Theorem 3.2. (E(ML);	) is isomorphic to the Lie algebra (V (ML); [ · ; · ]) and forms
a Lie algebra with operation (3:6); called the Lie quotient algebra.

Proof. For any (A;M; X )∈PL, we construct the following map:

+ :E(ML)→V (ML); (A;M) �→ X :

It is easy to know + is a linear isomorphism.
For any (A;M; X ), (B; N; Y )∈PL, since

+((A;M) 	 (B; N )) = +((A	 B;M 	 N )) = [X; Y ] = [+((A;M)); +((B; N ))] ;

+ is a Lie isomorphism.

This Theorem shows that if the spectral operator L is given, then all possible Man-
akov operator pairs (A;M) for every hierarchy ut =X (u) (X ∈V (ML)) are exactly
(A;M). Thus, we determine the range of the GLR Lt = [A; L] + M , which by setting
M =BL can be evidently transformed into the L–A–B representation Lt = [A; L] + BL.
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4. Lie quotient algebra dependent on the underlying hierarchy and range of the
related GLR

Let L∈VN and M be a given spectral operator and an invertible N × N matrix
operator, respectively. Then from Ref. [14], we know that LM

L forms an algebra under
the operation

(A; P)  (B;Q) = (A B; P  Q) (4.1)

with

A B=A∗(Y ) − B∗(X ) + [A; B] ; (4.2)

P  Q = P∗(Y ) − Q∗(X ) + [A;Q] − [B; P]

+M−1(M∗(Y ) − [B;M ])P −M−1(M∗(X ) − [A;M ])Q ; (4.3)

where LM
L stands for the set of all LM operator pairs (A; P) of L satisfying the

following property [14]:

[A; L] + MP =L∗(X ) : (4.4)

This result reveals that there exists an algebraic structure available for all equations
in the same hierarchy. If for given operators L;M there exist A; P ∈VN

L such that (4.4)
holds, then obviously the evolution equation ut =X has the following Lax form (also
called generalized Lax representation (GLR))

Lt = [A; L] + MP : (4.5)

And if ut =X; ut =Y (X; Y ∈Bm) have the GLR (4.5), then the evolution equation
ut = [X; Y ] is still in the same hierarchy, and possesses the GLR (4.5), too.

In general, LM
L is not forming a Lie algebra under operation (4.1), because the

Jacobi identity cannot be guaranteed. Nevertheless, the subset SM
L ⊂LM

L considered
below is an exception.

Set SM
L = {(A; P)∈VN × VN | [A; L] = − MP}, then SM

L is corresponding to the
stationary system X (u) = 0 of evolution equation ut =X (u).

Theorem 4.1. Under operation (4.1) SM
L forms an ideal of LM

L .

Proof. The proof is analogous to Theorem 3.1.

Now, we deLne the equivalence relation “∼” as follows: if

[A; L] + MP = [B; L] + MQ ; (4.6)

then (A; P) is said to be equivalent to (B;Q), and write (A; P) ∼ (B;Q). Denote
the equivalent class of (A; P) by (A; P). Set E(LM

L ) = {(A; P) | (A; P)∈LM
L }, then

E(LM
L ) =LM

L =SM
L is a quotient algebra, whose operation is

(A; P)  (B;Q) = (A B; P  Q); (A; P); (B;Q)∈LM
L : (4.7)
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Theorem 4.2. Quotient algebra (E(LM
L );) is isomorphic to the Lie algebra (V (LM

L );
[ · ; · ]). Thus; E(LM

L ) is also a Lie algebra.

Proof. The proof is similar to Theorem 3.2.

This Theorem assures that the range of generalized Lax-operators for Eq. (4.5) is
(A; P).

5. An example

In this section we consider the Kaup–Newell spectral problem as an example. For
convenience, we make the following conventions: m∈Z ,

f(m) =




@m

@xm f=fmx; m¿ 0;∫
: : :
∫

︸ ︷︷ ︸
−m

f dx; m¡ 0;
∑

=




∑m−1

j = 0
; m¿ 0 ;

0; m= 0 ;

−
∑−1

j = m
; m¡ 0 ;

ft = @f=@t, fmxt = @m+1f=@t@xm(m¿ 0), @= @=@x, @−1 is the inverse of @, i.e., @@−1 =
@−1@= 1, @mf means the operator @mf acts on some function g, i.e., @mf · g= @m(fg).
The imaginary unit i is satisfying i2 = − 1, and I2×2 stands for the 2 × 2 unit matrix.

In the following, the functions q; r stand for potentials, and � is assumed to be
a spectral parameter, and the domain of the spatial variable x is 1 which becomes
equal to (−∞;+∞) or (0; T ), while the domain of the time variable t is the positive
time axis R+ = {t|t ∈R; t¿ 0}. In the case 1= (−∞;+∞), the decaying condition at
inLnity and in the case 1= (0; T ), the periodicity condition for the potential function
is imposed.

Consider the Kaup–Newell (KN) spectral problem [16]

yx =

(
−i�2 �q

�r i�2

)
y; y=

(
y1

y2

)
; (5.1)

which is equivalent to

L ·y= �2y; L=L(q; r; �) =

(
i@ −i�q

−�−1r@ −i@ + qr

)
: (5.2)

It is easy to obtain the spectral gradient 4�=4q= �y2
2 ; 4�=4r = − �y2

1, satisfying the
Lenard eigenvalue problem

K · 4�
4u

= �2J · 4�
4u

;
4�
4u

=
(
4�
4q

;
4�
4r

)T

; (5.3)

with the Lenard’s operators pair

K =
1
2

(
@q@−1q@ i@2 + @q@−1r@

−i@2 + @r@−1q@ @r@−1r@

)
; J =

(
0 @

@ 0

)
; (5.4)
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which yields the recursion operator

L= J−1K =
1
2

(
−i@ + r@−1q@ r@−1r@

q@−1q@ i@ + q@−1r@

)
: (5.5)

Apparently, the Gateaux derivative operator L∗(�) of the spectral operator L given
by (5.2) in the direction �= (�1; �2)T ∈B2 is

L∗(�) =

(
0 −i��1

−�−1�2@ r�1 + q�2

)
(5.6)

which is an injective homomorphism.
Through guesswork and calculations, we can obtain the inverse operators of L; J; K

and L:

L−1 =

(
−i@−1 + @−1q@−1r i�@−1q@−1

�−1@−1r i@−1

)
; (5.7)

J−1 =

(
0 @−1

@−1 0

)
; (5.8)

K−1 = 2

(
−@−1r@−1r@−1 i@−2 + @−1r@−1q@−1

−i@−2 + @−1q@−1r@−1 −@−1q@−1q@−1

)
; (5.9)

L−1 = 2

(
i@−1 + @−1r@−1q −@−1r@−1r

−@−1q@−1q −i@−1 + @−1q@−1r

)
: (5.10)

Let Ai =Ai(x; t; q(x; t); r(x; t)); Bi =Bi(x; t; q(x; t); r(x; t)) (i= 1; 2) be four arbitrarily
given C∞-functions, then iJ

OM =

(
0 −i�A2

−�−1A1@ rA2 + qA1

)
; M̃ =

(
0 −i�B2

−�−1B1@ rB2 + qB1

)
; (5.11)

the operator equations L∗(J ·G0) = OM; L∗(K ·G−1) = M̃ have the following functions
as solutions:

G0 =

(
A(−1)

1

A(−1)
2

)
; (5.12)

G−1 = 2

(
iB(−2)

1 + @−1r@−1 · (qB(−1)
1 − rB(−1)

2 )

−iB(−2)
2 − @−1q@−1 · (qB(−1)

1 − rB(−1)
2 )

)
; (5.13)

which directly yields the KN category of NLEEs:(
q

r

)
t

= J ·Gm; m∈Z ; (5.14)
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Gm =

{
Lm ·G0; m= 0; 1; 2 : : : ;

Lm+1 ·G−1; m= − 1;−2; : : : ;
(5.15)

where J; L and L−1 are deLned by (5.4), (5.5) and (5.10), respectively.
For any given G = (G[1]; G[2])T ∈B2, the equation [V; L] =L∗(K ·G) − L∗(J ·G)L

has the operator solution

V =V (G) =
1
2

(
0 i�G[2]

x

0 −qG[1]
x

)

+
1
2

(
(qG[1]

x + rG[2]
x )(−1) 0

�−1G[1]
x (qG[1]

x + rG[2]
x )(−1)

)
@ : (5.16)

Therefore, the KN category (5.14) has the GLR:

Lt = [Wm; L] + MLm; m∈Z; M =

{
OM; m¿ 0 ;

M̃ ; m¡ 0
(5.17)

with the GLO

Wm =
∑

V (Gj)Lm−j−1; m∈Z ; (5.18)

where L; L−1 and V (Gj) are given by (5.2), (5.7) and (5.16) with G =Gj deLned by
(5.15), respectively.

Let us discuss now reductions of (5.14) below.

I. Positive Case (m= 0; 1; 2; : : :)

• With A1 =A2 = 0, G0 = (a1; a2)T ∈Ker J , ai = ai(t)∈C∞(R), i= 1; 2, the positive
order category of (5.14) reads as the Kaup–Newell isospectral (�t = 0) hierarchy(

q

r

)
t

= JLm ·
(

a1

a2

)
; m= 0; 1; 2; : : : ; (5.19)

which has the following representative equations:

qt = qx;

rt = rx;
m= 1 ; (5.20)

qt = 1
2 iqxx + 1

2(q
2r)x;

rt = − 1
2 irxx + 1

2(r
2q)x;

m= 2 : (5.21)

They possess the standard Lax operators

W1 = I2×2@; (5.22)

W2 =

(
i@2 + 1

2qr −i�q@− 1
2 i�qx

−�−1r@2 − 1
2�

−1rx@ −i@2 + 3
2qr@ + 1

2qxr

)
; (5.23)
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respectively. With r = q∗ Eq. (5.21) becomes the well-known derivative Schr>odinger
equation

qt = 1
2 iqxx + 1

2(q|q|2)x ; (5.24)

with the standard Lax operator W2 by substitution of r = q∗ in Eq. (5.23).
Apparently, hierarchy (5.19) has the standard Lax representation Lt = [Wm; L], Wm =∑m−1
j = 0 V (Gj)Lm−j−1, where V (Gj) is given by (5.16) with G =Gj =Lj · (a1; a2)T;

j¿ 0.
• Let(

A1

A2

)
=

(
2a1

2a2

)
;

(
2ir

−2iq

)
and

(
2qx

2rx

)
;

respectively, where ai = ai(t)∈C∞(R) (i= 1; 2) are arbitrarily given. Then the positive
order category of (5.14) reads as the following hierarchies:(

q

r

)
t

= JLm−1 ·
(
−ia1 + r(a1q(−1) + a2r(−1))

ia2 + q(a1q(−1) + a2r(−1))

)
; (5.25)

(
q

r

)
t

= 2iJLm ·
(

r(−1)

−q(−1)

)
; (5.26)

(
q

r

)
t

= 2JLm ·
(

q

r

)
: (5.27)

They, respectively, have the following representative equations:

qt = (a1qq(−1) + a2qr(−1))x;

rt = (a1rq(−1) + a2rr(−1))x;
m= 1 ; (5.28)

qt = 1
2 iqxx + 1

2(q
2r)x;

rt = − 1
2 irxx + 1

2(r
2q)x;

m= 2 ; (5.29)

qt = irxx + 3
2q

2qx + 1
2(qr

2)x;

rt = − iqxx + 3
2 r

2rx + 1
2(rq

2)x;
m= 1 : (5.30)

Their GLOs are, respectively,

W1 =

(
0 i�a2

0 −qa1

)
+

(
a1q(−1) + a2r(−1) 0

�−1a1 a1q(−1) + a2r(−1)

)
@ ;

W2 =

(
0 1

2�q(i + 2qr)

0 − 1
2qr − q2r2 + qxr

)
+

(
− 1

2qr −i�q
1
2�

−1r(1 + 2iqr) 1
2qr

)
@

+

(
0 0

−�−1r 0

)
@2 ;
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W1 =

(
0 i�rx
0 −qqx

)
+

(
1
2 (q

2 + r2) 0

�−1qx
1
2 (q

2 + r2)

)
@ :

Obviously, Eq. (5.29) coincides with Eq. (5.21). Therefore, hierarchy (5.26) again
reads as the KN hierarchy (5.19), but now it has the GLR Lt = [Wm; L] + MLm with

Wm =
m−1∑
j = 0

V (Gj)Lm−j−1 and M =

(
0 −2�q

−2i�−1r@ 0

)
:

Here V (Gj) is given by (5.16) with

G =Gj =Lj ·
(

2ir(−1)

−2iq(−1)

)
; j¿ 0; j∈Z :

II. Negative Case (m= − 1;−2; : : :)
• Let B1 =B2 = 0, then the negative order generator G−1 has the following two seed

functions:

G1
−1 = 1

2

(
i + r(−1)

−i − q(−1)

)
; (5.31)

G2
−1 =


 ia1x +

(
r
(
a1q(−1) − a2r(−1)))(−1)

−ia2x −
(
q
(
a1q(−1) − a2r(−1)))(−1)


 ; (5.32)

where ai = ai(t); i= 1; 2 are two arbitrarily given C∞-functions. They generate two
isospectral (�t = 0) negative order hierarchies of (5.2)(

q

r

)
t

= JLm+1 ·Gk
−1; m¡ 0; m∈Z; k = 1; 2 ; (5.33)

which have the standard Lax representation Lt = [Wk
m; L] with Wk

m = −∑−1
j = m V (Gk

j )
Lm−j−1, k = 1; 2; where V (Gk

j ) and L−1 are given by (5.16) with G =Gk
j =Lj+1 ·Gk

−1

and by (5.7), respectively. Thus, hierarchies (5.33) are integrable.
Eq. (5.33) has the following representative equations

qt = − 1 + iq(−1) − iq
(
q(−1) + r(−1))− qq(−1)r(−1);

rt = − 1 + ir(−1) + ir
(
q(−1) + r(−1))+ rq(−1)r(−1);

m= − 2; k = 1 ;

(5.34)

and

qt = − ia2 − q
(
a1q(−1) − a2r(−1)) ;

rt = ia1 + r
(
a1q(−1) − a2r(−1)) ; m= − 1; k = 2 ; (5.35)

which can be, respectively, changed to

Qxt = − 1 + iQ − i(Q + R)Qx − RQQx ;

Rxt = − 1 + iR + i(Q + R)Rx − RQRx
(5.36)
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and

Qxt = − ia2 − Qx(a1Q − a2R) ;

Rxt = ia1 + Rx(a1Q − a2R) ;
(5.37)

via the transformations q(−1) =Q; r(−1) =R. Eqs. (5.36) and (5.37) possess the stan-
dard Lax operators

W−2 = −V (G1
−2)L

−1 − V (G1
−1)L

−2

=
1
2

(
(i + Q)@−1Rx − i(Q + R) − QR i�(i + Q)@−1

−�−1(i + R) i(Q + R) + QR

)

+
1
4

(
i@−1 − @−1Qx@−1Rx −i�@−1Qx@−1

�−1@−1Rx i@−1

)
; (5.38)

W−1 = −V (G2
−1)L

−1

= −1
2

(
a2@−1Rx + a1Q − a2R i�a2@−1

�−1a1 −a1Q + a2R

)
; (5.39)

where L; L−1 are given by (5.2) and (5.7) with q=Qx; r =Rx, respectively.
• Let B1; B2 ∈B (B1 �= 0; B2 �= 0) be two arbitrarily given C∞-functions, then the

negative order generator G−1 deLned by (5.13) generates the negative order category
of (5.2)(

q

r

)
t

= JLm+1 ·G−1; m¡ 0; m∈Z ; (5.40)

where J; L−1 are given by (5.4) and (5.10), respectively. With m= − 1, Eq. (5.40)
reads

qt = − 2iB(−1)
2 − 2q

(
qB(−1)

1 − rB(−1)
2

)(−1)
;

rt = 2iB(−1)
1 + 2r

(
qB(−1)

1 − rB(−1)
2

)(−1)
;

(5.41)

which becomes a pair of diJerential equations(
Qx

B(−1)
1

)
t

= − 2iB(−1)
2 − 2

Qx

B(−1)
1

(Q − R) ;(
Rx

B(−1)
2

)
t

= 2iB(−1)
1 + 2

Rx

B(−1)
2

(Q − R) ;

(5.42)

via the transformations q=Qx=B
(−1)
1 ; r =Rx=B

(−1)
2 . Eq. (5.42) has the GLR Lt =

[W−1; L] + M with

W−1 =

(
R− Q − B(−1)

2 @−1 Rx

B(−1)
2

−i�B(−1)
2 @−1

−�−1B(−1)
1 Q − R

)
; (5.43)
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M =


 −iB2@−1 Rx

B(−1)
2

�B2@−1

�−1
(

iB1 + B2Rx

B(−1)
2

@−1 Rx

B(−1)
2

)
i B2Rx

B(−1)
2

@−1


 ; (5.44)

where L is given by (5.2) with q=Qx=B
(−1)
1 ; r =RxB

(H)
2 .

In particular, with B1; B2 = const. Eq. (5.42) becomes

Qxt = − 2Qx(Q − R) − 2iB1B2x2 ;

Rxt = 2Rx(Q − R) + 2iB1B2x2 :
(5.45)

With B1B2 = 1; Q =R∗ (∗ stands for the complex conjugate representation), Eq. (5.45)
reads as a simple nonlinear equation

Rxt = − 4iRxImR + 2ix2 (5.46)

which has the GLR Lt = [W−1; L] + M with

W−1 =

(
−x@−1 Rx

x + 2iImR −i�B2x@−1

−�−1B1x −2iImR

)
;

M =

(
−i@−1 Rx

x �B2@−1

�−1B1(i + Rx
x @−1 Rx

x ) iRx
x @−1

)
;

where L is given by (5.2) with q=R∗
x =B1x; r =Rx=B2x; ImR= 1

2 i(R
∗ − R). Of course,

if we choose diJerent functions B1; B2, then we shall still have other negative order
hierarchies of NLEEs.

By Section 3, the set of all Manakov operator pairs for every hierarchy produced
with diJerent M in the KN category (5.14) is (Wm;MLm), which is deLned according to
DeLnition 3.1. Here, L; Wm, and M are given by (5.2), (5.18), and (5.17), respectively.

By Section 4, the set of all LM operator pairs for every equation in a Lxed hierarchy
(i.e., produced with a Lxed M) of the KN category (5.15) is (Wm; Lm), which is deLned
through (4.6). Here, L and Wm are given by (5.2) and (5.18), respectively.
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