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Abstract

The Adomian decomposition method is applied to the Camassa–Holm equation. Approximate solutions are
obtained for three smooth initial values. These solutions are weak solutions with some peaks. We plot those approx-
imate solutions and find that they are very similar to the peaked soliton solutions. Also, one single and two anti-peakon
approximate solutions are presented. Compared with the existing method, our procedure just works with the polyno-
mial and algebraic computations for the CH equation.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The generalized shallow water equation—the Camassa–Holm (CH) equation, which was derived physically as a
shallow water wave equation by Camassa and Holm in [10], takes the form
0960-0
doi:10.
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mt þ mxuþ 2mux ¼ 0; m ¼ u� 1

4
uxx ð1:1Þ
where u = u(x, t) represents the horizontal component of the fluid velocity, and m ¼ u� 1
4
uxx is the momentum variable.

The subscripts x, t of u denote the partial derivatives of the function u w.r.t. x, t, for example, ut = ou/ot, uxxt = o3u/
o2xot, similar notations will be used frequently later in this paper. This equation was first included in the work of Fuchs-
steiner and Fokas [15] on their theory of hereditary symmetries of soliton equations. As it was shown by Camassa and
Holm, Eq. (1.1) describes the unidirectional propagation of two dimensional waves in shallow water over a flat bottom.
The solitary waves of Eq. (1.1) regain their shape and speed after interacting nonlinearly with other solitary waves. The
most feature of this equation is peaked soliton (called peakon) solution, which is a weak solution with non-smooth
property at some points.

The CH equation possesses the bi-Hamiltonian structure, Lax pair and multi-dimensional peakon solutions, and
retains higher order terms of derivatives in a small amplitude expansion of incompressible Euler�s equations for unidi-
rectional motion of waves at the free surface under the influence of gravity. In 1995, Calogero [9] extended the class of
779/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
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mechanical system of this type. Later, Ragnisco and Bruschi [23] and Suris [24], showed that the CH equation yields the
dynamics of the peakons in terms of an N-dimensional completely integrable Hamiltonian system. Such kind of dynam-
ical system has Lax pair and an N · N r-matrix structure [23].

Recently, the algebro-geometric solution of the CH equation and the CH hierarchy arose much more attraction.
This kind of solution for most classical integrable PDEs can be obtained by using the inverse spectral transform theory,
see Dubrovin [14], Ablowitz and Segur [4], Novikov et al. [19], Newell [18]. This is done usually by adopting the spectral
technique associated with the corresponding PDE. Alber and Fedorov [8] studied the stationary and the time-dependent
quasi-periodic solution for the CH equation and Dym type equation through using the method of trace formula [7] and
Abel mapping and functional analysis on the Riemann surfaces. Constantin and McKean [11] presented the solution of
the CH equation on the circle. Later, Alber, Camassa, Fedorov, Holm and Marsden [6] considered the trace formula
under the nonstandard Abel-Jacobi equations and by introducing new parameters presented the so-called weak finite-
gap piecewise-smooth solutions of the integrable CH equation and Dym type equations. Very recently, Gesztesy and
Holden [16], and Qiao [20] discussed the algebro-geometric solutions for the CH hierarchy using polynomial recursion
formalism and the trace formula, and constrained method, respectively. Thereafter, Qiao [21] studied an extension ver-
sion of the CH equation—the DP equation [13], and presented exact solutions by using the constrained method [22].

The present paper provides a different approach to the solutions of the CH equation. The Adomian decomposition
method is implemented to solve the Camassa–Holm equation with smooth initial conditions. Numeric algorithm and
graphs are analyzed and plotted, respectively. We also compare our solutions with other existing procedures, and find
that our approximate solutions are similar to peaked solitons of the CH equation.
2. Adomian decomposition method for Camassa–Holm equation

The Camassa–Holm equation (1.1) for real u(x, t)
ut �
1

4
uxxt þ

3

2
ðu2Þx �

1

8
ðu2

xÞx �
1

4
ðuuxxÞx ¼ 0 ð2:2Þ
is written as
Lt u� 1

4
uxx
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2
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4
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ð2:3Þ
where Lt ¼ o
ot and Lx ¼ o

ox. Then L�1
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R x
0
ð�Þdx and L�1

t ð�Þ ¼
R t

0
ð�Þdt. After operating the two sides of Eq. (2.3) with
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4
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where h(u) denote the differential operator
hðuÞ :¼ Lx �
3

2
ðu2Þx þ

1

8
u2

x þ
1

4
uuxx

� �
ð2:5Þ
The Adomian decomposition method consists of calculating the solution of Eq. (2.4) in a series form
u ¼
X1
n¼0

un ð2:6Þ
and the nonlinear term becomes
hðuÞ ¼
X1
n¼0

An ð2:7Þ
where An are polynomials of u0,u1, . . . ,un called Adomian�s polynomials and are given by
A0ðu0Þ ¼ hðu0Þ n ¼ 0;

Anðu0; u1; . . . ; unÞ ¼
P

b1þ���þbn¼n
hðb1Þðu0Þ

u
ðb1�b2 Þ
1

ðb1�b2Þ!
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8<
: ð2:8Þ
where h is a real function. (See for instance [5,1,2] for more details about the preceded procedure.)
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By the use of the relationships shown in the paper of Abbaoui and Cherruault [1], the An are determined as follows:
A0 ¼ hðu0Þ

A1 ¼ hð1Þðu0Þu1

A2 ¼ hð1Þðu0Þu2 þ 1
2
hð2Þðu0Þu2

1

A3 ¼ hð1Þðu0Þu3 þ hð2Þðu0Þu1u2 þ 1
6
hð3Þðu0Þu2

1

A4 ¼ hð1Þðu0Þu4 þ hð2Þðu0Þ u1u3 þ 1
2
u2

2

� �
þ 1

2
hð3Þðu0Þu2

1u2 þ 1
24

hð4Þðu0Þu4
1

..

.

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð2:9Þ
which recursively generates the formula of un:
u0 ¼ uðx; 0Þ � 1
4
uxxðx; 0Þ n ¼ 0

unþ1 ¼ 1
4
unxx þ

R t
0

An ds if n 6¼ 0

(
ð2:10Þ
Following Adomian decomposition methods, we consider the following functional equation:
u� w ¼ NLðuÞ þ LðuÞ ð2:11Þ
where u is to be determined approximately in some appropriate functional space S, w is a given element of S, NL and L

are a nonlinear operator and a linear operator from a subset X of the functional space S onto itself, respectively. Here,
we seek a solution of Eq. (2.11) in the form u ¼

P1
n¼0un . To do so, we approximate the nonlinear operator NL with
NLðuÞ ¼ hðuÞ ¼
X1
n¼0

Anfug ð2:12Þ
where the functions An�s (n = 0,1,2 ,. . .) are the so-called Adomian�s polynomials and determined by
Anfug ¼
1
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� �" #

¼ a
Xn

j¼0

½ujxxun�j þ 2ujxuðn�jÞx þ uðn�jÞxxuj� þ b
Xn

j¼0

½ujxxuðn�jÞx þ ujxuðn�jÞxx�

þ c
Xn

j¼0

½ujxuðn�jÞxx þ ujuðn�jÞxxx�
where a = �3/2 , b = 1/8, c = 1/4 and uk ¼
P1

i¼0k
iui.

The expected solution u ¼
P1

n¼0un is approximated by the following m term�s sum:
/m½u� ¼
Xm�1

n¼0

un ð2:13Þ
which rapidly converges u. In this sense, m is able to be chosen as a small number so that this series is convergent to u.
This method has been investigated in several authors� work (see [12,1,2] for more details).

As we see, it is not hard to write a program for generating the Adomian polynomials. We summarize the entire pro-
cedure in the following algorithm:

Algorithm

• Input: J(x)—initial conditions, i.e: uðx; 0Þ � 1
4
uxxðx; 0Þ ¼ JðxÞ.k—number of terms in the approximation

• Output: uapprox(x, t) : the approximate solution
– Step 1: Set u0 = J(x) and uapprox(x, t) = u0.
– Step 2: For k = 0 to n � 1, do Step 3, Step 4, and Step 5.
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– Step 3: Compute

Ak ¼ a
Xk

j¼0

½ujxxuk�j þ 2ujxuðk�jÞx þ uðk�jÞxxuj� þ b
Xk

j¼0

½ujxxuðk�jÞx þ ujxuðk�jÞxx� þ c
Xk

j¼0

½ujxuðk�jÞxx þ ujuðk�jÞxxx�.

– Step 4: Compute

ukþ1 ¼
1

4
ukxx þ

Z t

0

Ak ds if k 6¼ 0.

– Step 5: Compute uapprox = uapprox + uk+1.
– Stop

Remark 2.1. It is not hard to see that the above procedure also works for the following general equation:
1 See
ut þ auxxt þ bðu2Þx þ cðu2
xÞx þ dðuuxxÞx ¼ cðx; tÞ ð2:14Þ
where a, b, c, d are real constants and the function c is sufficiently smooth.
3. Convergence analysis

In this section, we discuss the convergence property of the approximated solution for the CH equation.
Let us consider the CH equation in the Hilbert space H = L2((a,b) · [0,T]):
H ¼ v : ða; bÞ � ½0; T � with

Z
ða;bÞ�½0;T �

v2ðx; sÞdsds < þ1
( )

ð3:15Þ
Then the operator is of the form
T ðuÞ ¼ Ltðuþ auxxÞ ¼ �bðu2Þx � cðu2
xÞx � dðuuxxÞx þ cðx; tÞ ð3:16Þ
The Adomian decomposition method is convergent if the following two hypotheses are satisfied:1

• (Hyp1): There exists a constant k > 0 such that the following inner product holds in H:
ðT ðuÞ � T ðvÞ; u� vÞP kku� vk; 8u; v 2 H ð3:17Þ
• (Hyp2): As long as both u 2 H and v 2 H are bounded (i.e. there is a positive number M such that kuk 6M,
kvk 6M), there exists a constant h(M) > 0 such that
ðT ðuÞ � T ðvÞ; u� vÞ 6 hðMÞku� vkkwk; 8w 2 H ð3:18Þ
Theorem 3.1 (Sufficient conditions of convergence for the CH equation). Let
T ðuÞ ¼ Ltðuþ auxxÞ ¼ �bðu2Þx � cðu2
xÞx � dðuuxxÞx þ cðx; tÞ; with d � c > 0; Lt ¼

o

ot
and consider the free initial and boundary conditions for the CH equation. Then the Adomian decomposition method leads

to a special solution of the CH equation.

Proof. To prove the theorem, we just verify the conditions (Hyp1) and (Hyp2). For "u,v 2 H, let us calculate:
Abbaoui and Cherruault [1,2] and some references therein for more details.
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T ðuÞ � T ðvÞ ¼ �bðu2 � v2Þx � cðu2
x � v2

xÞx � dðuuxx � vvxxÞx
¼ �bðu2 � v2Þx � ð2cþ dÞðuxuxx � vxvxxÞ � dðuuxxx � vvxxxÞ

¼ �b
o

ox
ðu2 � v2Þ � ð2cþ dÞðuxuxx � vxvxxÞ �

d
2

o
3

ox3
ðu2 � v2Þ � 3

o

ox
ðu2

x � v2
xÞ

� �

¼ �b
o

ox
ðu2 � v2Þ � ðc� dÞ o

ox
ðu2

x � v2
xÞ �

d
2

o3

ox3
ðu2 � v2Þ

� �
Therefore, we have the inner product
T ðuÞ � T ðvÞ; u� vð Þ ¼ b � o

ox
ðu2 � v2Þ; u� v

� �
þ ðc� dÞ � o

ox
ðu2

x � v2
xÞ; u� v

� �

þ d
2
� o3

ox3
ðu2 � v2Þ; u� v

� �
ð3:19Þ
Let us assume that u, v are bounded and there is a constant M > 0 such that (u,u), (v,v) < M2. By using Schwartz
inequality
o

ox
ðu2 � v2Þ; u� v

� �
6 kðu2 � v2Þxkku� vk ð3:20Þ
and since there exist h1 and h2 such that k(u � v)xk 6 h1ku � vk, k(u + v)xk 6 h2ku � vk and ku + vk 6 2M, we have
o

ox
ðu2 � v2Þ; u� v

� �
6 2Mh1h2ku� vk2

()

� o

ox
ðu2 � v2Þ; u� v

� �
P 2Mh1h2ku� vk2

ð3:21Þ
Following the preceding procedure, we can calculate:
o

ox
ðu2

x � v2
xÞ; u� v

� �
6 kðu2

x � v2
xÞxkku� vk

6 h3kux þ vxkkux � vxkku� vk
6 2Mh3h4h5ku� vk2

()

� o

ox
ðu2

x � v2
xÞ; u� v

� �
P 2Mh3h4h5ku� vk2

ð3:22Þ
where hi (i = 3,4,5) are positive constants.
Moreover, the Cauchy–Schwartz–Buniakowski inequality yields
o3

ox3
ðu2 � v2Þ; u� v

� �
6 kðu2 � v2Þxxxkku� vk ð3:23Þ
then by using the mean value theorem, we have
o
3

ox3
ðu2 � v2Þ; u� v

� �
6 h6h7h8ku2 � v2kku� vk

6 2Mh6h7h8ku� vk2

()

� o3

ox3
ðu2 � v2Þ; u� v

� �
P 2Mh6h7h8ku� vk2

ð3:24Þ
where hj (j = 6,7,8) are three positive constants, and k(u2 � v2)xxxk 6 h6k(u2 � v2)xxk, k(u + v)xxk 6 h7k(u + v)xk and
k(u + v)xk 6 h8ku + vk.
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Substituting (3.21), (3.22), (3.24) into (3.19) generates the following inner product:
ðT ðuÞ � T ðvÞ; u� vÞ ¼ �b
o

ox
ðu2 � v2Þ; u� v

� �
� ðc� dÞ o

ox
ðu2

x � v2
xÞ; u� v

� �
� d

2

o3

ox3
ðu2 � v2Þ; u� v

� �

P kku� vk2
where k = (2bh1h2 + 2(c � d)h3h4h5 + dh6h7h8)M. So, (Hyp1) is true for the CH equation.
Let us now verify the hypotheses (Hyp2) for the operator T(u). We directly compute:
ðT ðuÞ � T ðvÞ;wÞ ¼ �b
o

ox
½u2 � v2�;w

� �
� ðc� dÞ o

ox
½u2

x � v2
x �;w

� �
� d

2

o3

ox3
ðu2 � v2Þ

� �
;w

� �
6 hðMÞku� vkkwk
where h(M) = (�2b + d � 2c)M. Therefore, (Hyp2) is correct as well. h

Remark 3.2. Choice of b = �3/2 , c = 1/8, d = 1/4, c(x, t) � 0 corresponds to the CH equation. So, the Adomian
decomposition method works for the CH equation.
4. Implementation of the method and approximate solutions

In this section, we take some examples to show the procedure and present some approximate solutions for the CH
equation.

Example 4.1
ut � 1
4
uxxt þ 3

2
ðu2Þx � 1

8
ðu2

xÞx � 1
4
ðuuxxÞx ¼ 0

u0 ¼ uðx; 0Þ � 1
4
uxxðx; 0Þ ¼ c sinhðxÞ

(
ð4:25Þ
In this case, one straightforwardly gets u0xx ¼ u0; u0x ¼ c coshðxÞ; u2
0x � u2

0 ¼ c2 and hðnþ1Þðu0Þ ¼ ðhðnÞðu0ÞÞx=u0x

where u0x 5 0, h(0) = h and h(n) denotes the nth derivative of h. Since the formula (2.13) implies the formula (2.9),
we need the explicit expression of the nth derivative of h. Through direct calculations, we obtain the following
formulas:
A0 ¼ hðu0Þ ¼ �3 u2
0x � u2

0 �
1

4
u0u0x

� �
x

¼ � 3c2

4
ðcosh2ðxÞ þ sinh2ðxÞÞ

u1ðx; tÞ ¼
1

4
u0xx þ

Z t

0

hðu0Þds ¼ c
4

sinhðxÞ � 3c2

4
ðcosh2ðxÞ þ sinh2ðxÞÞt

A1 ¼ u1hð1Þðu0Þ ¼
1

4
u0 þ A0t

� � �3 u2
0x � u2

0 � 1
4
u0u0x

� �
x

� 	
x

u0x

¼ 1

4
u0 þ A0t

� ��3 2u0xxu0x � 2u0xu0 � 1
4
ðu0xu0x þ u0u0xxÞ

� �
x

u0x

¼ 3c
c
4

sinhðxÞ � 3c2

4
cosh2ðxÞ þ sinh2ðxÞ
� �

t
� �

sinhðxÞ

u2ðx; tÞ ¼
1

4
u1xx þ

Z t

0

A1 ds ¼ c
16

sinhðxÞ � 3c2 1þ 2sinh2ðxÞ
� �

t þ 3
c2

4
sinhðxÞt þ 3c3

8
ð1þ 2sinh2ðxÞÞt2

� �
sinhðxÞ

¼ c
16

sinhðxÞ � 3c2 1þ 7

4
sinh2ðxÞ

� �
t þ 9c3

8
sinhðxÞ2 þ 2sinh3ðxÞ
� 	

t2

A2 ¼ u2hð1Þðu0Þ þ u2
1hð2Þðu0Þ ¼ �3u2u0 � 3

c
4

sinhðxÞ þ 3c2

4
ðcosh2ðxÞ þ sinh2ðxÞÞt

� �2
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u3ðx; tÞ ¼
1

4
u2xx þ

Z t

0

A2 ds

¼ c
64

sinhðxÞ � 42c2

16
ðcosh2ðxÞ þ sinh2ðxÞÞt þ 9c3

8
ððsinhðxÞ2 þ cosh2ðxÞÞ þ 2sinh3ðxÞ þ 12 sinhðxÞcosh2ðxÞÞt2

� 3 sinhðxÞ c
16

sinhðxÞt � 3c2

2
1þ 7

4
sinh2ðxÞ

� �
t2 þ 9c3

24
ðsinhðxÞ2 þ 2sinh3ðxÞÞt3

� �

� 4

c2ð1þ 2sinh2ðxÞÞ
c
4

sinhðxÞ þ 3c2

4
ð1þ 2sinh2ðxÞÞt

� �3
So, the approximate solution, truncated in the second term, is
uðx; tÞ � u0 þ u1ðx; tÞ þ u2ðx; tÞ

¼ c3

2

585

8
coshðxÞ sinhðxÞ2 � 9

2
sinhðxÞ3 � 27 coshðxÞ2 sinhðxÞ

� �
t2 þ c3

2

585

8
coshðxÞ3 � 9

2

coshðxÞ4

sinhðxÞ

 !
t2

þ c2

2
� 93

8
sinhðxÞ2 � 93

8
ðcoshðxÞ2 � 3 coshðxÞ sinhðxÞÞ

� �
t þ 21c

16
sinhðxÞ
The graph of u(x, t) is plotted in Fig. 1. From the figure, we see that the approximate solution is similar to a single pea-
kon solution of the CH equation.
Example 4.2
ut � 1
4
uxxt þ 3

2
ðu2Þx � 1

8
ðu2

xÞx � 1
4
ðuuxxÞx ¼ 0

u0 ¼ uðx; 0Þ � 1
4
uxxðx; 0Þ ¼ c1 coshðxÞ; c1 ¼ constant.

(
ð4:26Þ
Fig. 1. Approximate solution for c = 1.
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Let us follow the procedure in Example 4.1 and notice u2
0 � u2

0x ¼ c2
1, we obtain the following formulas.
u1ðx; tÞ ¼
1

4
u0xx þ

Z t

0

hðu0Þds

¼ c
4

coshðxÞ � 3c2

4
ð4ðcoshðxÞ2 þ sinhðxÞ2Þ � coshðxÞ sinhðxÞÞt.

u2ðx; tÞ ¼
1

4
u1xx þ

Z t

0

A1 ds

¼ c3

2

585

8
coshðxÞ sinhðxÞ2

� �
t2

þ c3

2
� 9

2
sinhðxÞ3 � 27 coshðxÞ2 sinhðxÞ þ 585

8
coshðxÞ3 � 9

4
sinhðxÞ coshðxÞ4

� �
t2

þ 3c2 sinhðxÞ2 � 2 coshðxÞ2 þ 5

16
coshðxÞ sinhðxÞ þ 1

16
sinhðxÞ coshðxÞ3

� �
t þ c

16
coshðxÞ
So, the approximate solution corresponding to Eq. (4.26) is
uðx; tÞ � u0 þ u1ðx; tÞ þ u2ðx; tÞ

¼ c3

2

585

8
coshðxÞ sinhðxÞ2 � 9

4
sinhðxÞ3 � 27 coshðxÞ2 sinhðxÞ

� �
t2

þ c3

2

585

8
coshðxÞ3 � 9

2
sinhðxÞ coshðxÞ4

� �
t2

þ c2 �6 sinhðxÞ2 � 9 coshðxÞ2 þ 27

16
coshðxÞ sinhðxÞ þ 3

16 sinhðxÞ coshðxÞ3

 !
t þ 21c

16
coshðxÞ
The graph of u(x, t) is plotted in Fig. 2, which shows that the approximate solution is similar to a single anti-peakon
solution of the CH equation.

Example 4.3
ut � 1
4
uxxt þ 3

2
ðu2Þx � 1

8
ðu2

xÞx � 1
4
ðuuxxÞx ¼ 0

u0 ¼ uxxðx; 0Þ � 1
4
uxxðx; 0Þ ¼ aex þ be�x

(
ð4:27Þ
In this case, by u0xx ¼ u0; ex ¼ u0þu0x
2a ; e�x ¼ u0�u0x

2b and u2
0 � u2

0x ¼ 4ab, we obtain those uj�s below
A0 ¼ �
1

4
21a2e2x � 27b2e�2x
� �
Fig. 2. Approximate solution for c = 1.



Fig. 3. Approximate solution for a = �5, b = 2.

Fig. 4. Approximate solution for a = �5, b = 10.

Fig. 5. Approximate solution for a = 5, b = 2.
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Fig. 6. Approximate solution for a = 5, b = 10.
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u1 ¼
1

4
u0xx þ

Z t

0

A0 ds ¼ aex þ be�x

4
� 1

4
21a2e2x þ 27b2e�2x
� �

t

u2ðx; tÞ ¼
aex þ be�x

16
� 21a2

4
e2x þ 27b2

4
e�2x � 1

ae2x� b
27ab2

8
� 21a2b

8
e2x þ 27b3

8
e�2x

� �� �
t

þ 1

ae2x� b
441

16
a4e5x � 729

16
b4e�3x

� �
t2
So, the approximate solution corresponding to Eq. (4.27) is
uðx; tÞ � u0 þ u1ðx; tÞ þ u2ðx; tÞ

¼ 21

16
ðaex þ be�xÞ � 21a2

2
e2x þ 27b2

2
e�2x � 1

ae2x� b
27ab2

8
� 21a2b

8
e2x þ 27b3

8
e�2x

� �� �
t

þ 1

ae2x� b
441

16
a4e5x � 729

16
b4e�3x

� �
t2
The graphs of u(x, t) for different a�s and b�s are plotted in Figs. 3–6. Those figures reveal that the approximate solutions
are describing the interactions of two anti-peakons for the CH equation.
5. Conclusions

In this paper, we successfully apply the Adomian polynomial decomposition method to solve the CH equation in an
explicitly approximate form. The initial values we adopted are smooth, but the most interesting is: the approximate
solutions are weak solutions with some peaks (see graphs in Figs. 1–6). The approximate solutions in Figs. 1, 2 show
the single peakons of the CH equation, while the approximate solutions in Figs. 3–6 provide the interactions of the two
anti-peakons. In comparison with the existing method to obtain two exact anti-peakons, our procedure just works on
the polynomial and algebraic computations. In the future, we plan to generalize our method to multi-soliton solutions
for the CH equation and other higher order equations. In the recent literatures, there are also other methods to deal
with nonlinear partial differential equations [3,17], where smooth solutions were obtained. Our paper presents some
peaked (i.e. continuous but non-smooth) explicit solutions for the CH equation (1.1).
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