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The purpose of this paper is to construct a generalized r-matrix structure of finite
dimensional systems and an approach to obtain the algebro-geometric solutions of
integrable nonlinear evolution equations (NLEEs). Our starting point is a generalized
Lax matrix instead of the usual Lax pair. The generalized r-matrix structure and Hamil-
tonian functions are presented on the basis of fundamental Poisson bracket. It can be
clearly seen that various nonlinear constrained (c-) and restricted (r-) systems, such as
the c-AKNS, c-MKdV, c-Toda, r-Toda, c-Levi, etc, are derived from the reductions of
this structure. All these nonlinear systems have r-matrices, and are completely integrable
in Liouville’s sense. Furthermore, our generalized structure is developed to become an
approach to obtain the algebro-geometric solutions of integrable NLEEs. Finally, the
two typical examples are considered to illustrate this approach: the infinite or periodic
Toda lattice equation and the AKNS equation with the condition of decay at infinity or
periodic boundary.
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1. Introduction

Completely integrable systems are widespreadly applied in fields theory, fluid

mechanics, nonlinear optics and other fields of nonlinear sciences. The new

development of integrability theory can be roughly divided into three stages.

The first one was the direct use of Lax equations for some systems such as the

Calogero–Moser system [33] and the Euler rigid equation [32], which were allowed

for integration. The second one was the so-called “algebraization”, i.e. the tools
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of Lie algebras, Kac–Moody algebras were used to sysmetically construct a large

class of soliton equations and integrable systems [3, 43], and simultaneously present

the Lax representations of soliton equations and Hamiltonian structures. The third

one is being developed and witnessed through the use of nonlinearization method

[8] to generate finite dimensional integrable systems. These systems can be the

Bargmann system [12, 35], the C. Neumann system [12, 35], the higher-order con-

strained flows or symmetric constrained flows [4, 5], and the stationary flows of

soliton equations [51]. Indeed, with the help of this method, many new completely

integrable systems were successively found [12, 35]. In this way, each integrable

system is generated through making nonlinearized procedure for a concrete spec-

tral problem or Lax pair, and has its own characteristic property. Then a natural

question arises whether or not there is a unified structure such that it can contain

those concrete integrable systems? Recently, the study of r-matrix for nonlinear

integrable systems brings a great hope to dealing with this problem.

Semenov–Tian–Shansky ever gave the definition of r-matrix [45], and used the

r-matrix to construct Lie algebra and new Poisson bracket [44] in a given Lie algebra

and corresponding coadjoint orbit. The main idea of Semenov–Tian–Shansky and

Reyman was how to obtain the new Poisson bracket from a given r-matrix and an

element of Lie algebra. Here our thought is how to present r-matrix structure from

a given Lax matrix and the standard Poisson bracket:

L, {· , ·} ?
=⇒ r-matrix .

In the present paper, we give a sure answer for the above question. We propose

an approach to generate finite dimensional integrable systems by beginning with the

so-called generalized Lax matrix instead of the usual Lax pair. Another main result

of this paper is to deal with the algebro-geometric solutions of integrable nonlinear

evolution equations (NLEEs). It is well-known that the ideal aim for nonlinear

equations is to obtain their explicit solutions. According to the nonlinearization

method, solutions of integrable NLEEs can have the parametric representations

[10] or involutive representations [11], and also have numeric representations in

the discrete case [42]. However, these representations of solutions are not given

in an explicit form. Thus, an open question is how to obtain their explicit forms.

In the paper we would like to give solutions of integrable NLEEs in the form of

algebro-geometric Θ-functions.

The algebro-geometric solutions for some soliton equations with the periodic

boundary value problems were known since the works of Lax [28], Dubrovin, Mateev

and Novikov [20]. Similar results for the periodic Toda case were obtained slightly

later by Date and Tanaka [14]. Afterwards, the relations between commutative

rings and ordinary linear periodic differential operators and between algebraic

curves and nonlinear periodic difference equations were discussed by Krichever [27].

The technique they used is the Bloch eigenfunctions, the spectral theory of linear

periodic operators, and some analysis tools on Riemann surfaces.
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In the first example of this paper, we give the algebro-geometric solution of the

periodic or infinite Toda lattice equation. Our method is a constrained approach,

connecting finite dimensional integrable systems with integrable NLEEs, instead of

the usual spectral techniques and Bloch eigenfunctions which are often available

to the periodic boundary problems. The results with the periodic boundary con-

ditions are included in ours. In the second example, we consider the well-known

AKNS equation. The Ablowitz–Kaup–Newell–Segur (AKNS) equations are a very

important hierarchy [1] of NLEEs in soliton theory. It can turn out that the KdV,

MKdV, NLS, sine-Gordon, sinh-Gordon equations etc. All these equations can be

solvable by the inverse scattering transform (IST) [24], and usually have N -soliton

solutions [2]. But the algebro-geometric solutions of the AKNS equations seem not

to be obtained. We shall deal with this problem by using our constrained procedure.

The considered AKNS equation is under the case of decay at infinity or periodic

boundary condition.

The whole paper is organized as follows. We first introduce a generalized Lax

matrix in the next section, then construct a generalized r-matrix structure and a

generalized set of involutive Hamiltonian functions in Sec. 3. All those Hamiltonian

systems have Lax matrices, r-matrices, and are therefore completely integrable in

Liouville’s sense. In Sec. 4 it can be clearly seen that various nonlinear constrained

(c-) and restricted (r-) integrable flows, such as the c-AKNS, c-MKdV, c-Toda,

r-Toda, c-WKI, c-Levi, etc, can be derived from the reductions of this structure.

Moreover, the following interesting facts are given in Secs. 5, 6, 7, respectively:

— Several pairs of different integrable systems share the same r-matrices with the

good property of being non-dynamical (i.e. constant). In particular, a discrete

and a continuous dynamical system possess the common Lax matrix, r-matrix,

and even completely same involutive set. Additionally, on a symplectic sub-

manifold integrability of the restricted Hamiltonian flow (for continuous case)

and symplectic map (for discrete case) are described by introducing the Dirac-

Poisson bracket. They also have the same r-matrix but being dynamical.

— A pair of constrained integrable systems, produced by two gauge equivalent

spectral problems, possesses different r-matrices being non-dynamical.

— New integrable systems are generated through choosing new r-matrices from

our structure, and the associated spectral problems are also new.

In the last section, as a development of the generalized structure, through

considering the relation lifting finite dimensional system to infinite dimensional

system and using the algebro-geometric tools we present an approach for obtaining

the algebro-geometric solution of integrable NLEEs. To illustrate the procedure

we take the periodic or infinite Toda lattice equation and the AKNS equation with

the condition of decay at infinity or periodic boundary as the examples.

Before displaying our main results, let us first give some necessary notation:

dp ∧ dq stands for the standard symplectic structure in Euclidean space R2N =

{(p, q)|p = (p1, . . . , pN), q = (q1, . . . , qN )}; 〈· , ·〉 is the standard inner product in
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RN ; in the symplectic space (R2N , dp∧dq) the Poisson bracket of two Hamiltonian

functions F,G is defined by [6]

{F,G} =

N∑
i=1

(
∂F

∂qi

∂G

∂pi
− ∂F

∂pi

∂G

∂qi

)
=

〈
∂F

∂q
,
∂G

∂p

〉
−
〈
∂F

∂p
,
∂G

∂q

〉
; (1.1)

I and ⊗ stand for the 2 × 2 unit matrix and the tensor product of matrix,

respectively; λ1, . . . , λN are N arbitrarily given distinct constants; λ, µ are the

two different spectral parameters; Λ = diag(λ1, . . . , λN ), I0 = 〈q, q〉, J0 = 〈p, q〉,
K0 = 〈p, p〉, I1 = 〈Λp, p〉〈Λq, q〉, J1 = 〈Λp, q〉, a0, a1 = const.. Denote all infinitely

times differentiable functions on real field R by C∞(R).

2. A Generalized Lax Matrix

Consider the following matrix (called Lax matrix)

L(λ) =

(
A(λ) B(λ)

C(λ) −A(λ)

)
(2.1)

where

A(λ) = a−2(I1, J1)λ−2 + a−1(J0)λ−1 + a0 + a1λ+

N∑
j=1

pjqj

λ− λj
, (2.2)

B(λ) = b−1(I0, J0)λ−1 + b0(J0)−
N∑
j=1

q2
j

λ− λj
, (2.3)

C(λ) = c−1(J0,K0)λ−1 + c0(J0) +

N∑
j=1

p2
j

λ− λj
, (2.4)

with some undetermined functions a−2, a−1, b−1, c−1, b0, c0 ∈ C∞(R).

Now, in order to produce finite dimensional integrable systems directly from the

Lax matrix (2.1), we need an inevitable assumption.

Assumption (A): {A(λ), A(µ)}, {A(λ), B(µ)}, {A(λ), C(µ)}, {B(λ), B(µ)}, {B(λ),

C(µ)}, and {C(λ), C(µ)} are expressed as some linear combinations of A(λ), A(µ),

B(λ), B(µ), C(λ), C(µ) with the cofficients in C∞(R).

Then we have the following lemma.

Lemma 2.1. Under Assumption (A), L(λ) only contains the following cases:

(1) If a−2 6= const., a0 = b0 = c0 = a1 = 0, a−1 = −J0, b−1 = I0, and

c−1 = −K0, then a−2 satisfies the relation I1 = (J1 + a−2)2 + f(a−2); if

a−2 = const. 6= 0 and a0 = b0 = c0 = a1 = 0, then a−1 = −J0, b−1 =

I0, c−1 = −K0, or a−1 = const., b−1 = I0 + f1(J0), c−1 = −K0 + g1(J0),

where f1, g1 satisfy the relation f1g1 = −J2
0 − 2a−1J0 + const..
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(2) a−2 = a−1 = b−1 = c−1 = b0 = c0 = a1 = 0, and a0 = const.

(3) a−2 = b−1 = a0 = b0 = c0 = a1 = 0, c−1 = −K0, and a−1 satisfies a′−1 6= 0.

(4) a−2 = a−1 = b−1 = c−1 = b0 = a1 = 0, a0 = const., and c0 6= 0.

(5) a−2 = c−1 = b0 = a1 = 0, a−1, a0 = const., b−1 = I0 +g(J0), and c0 satisfies

(c0g)′ = −2a0.

(6) a−2 = c−1 = a0 = b0 = c0 = a1 = 0, a−1 = J0 + const., and b−1 = I0.

(7) If a−2 = a0 = b0 = c0 = a1 = 0, then there are the following five subcases:

(i) a−1 = const., c−1 = −K0 + f2(J0), and b−1 = I0 + g2(J0);

(ii) a−1 = −J0, b−1 = I0, and c−1 = K0;

(iii) a−1 = −J0 + const., and b−1 = b−1(J0), c−1 = c−1(J0) satisfy

(b−1c−1)′ = 2a−1;

(iv) a−1 = −J0 + const., b−1 = I0, and c−1 = c−1(J0);

(v) a−1 = −J0 + const., c−1 = −K0, and b−1 = b−1(J0).

(8) a−2 = a−1 = b−1 = c−1 = 0, a0, a1 = const., b0 6= 0, c0 6= 0, and b0, c0
satisfy the relation (b0c0)′ = −2a1.

(9) a−2 = a−1 = b−1 = c−1 = 0, c0, a1, a0 = const., and b0 6= 0.

(10) a−2 = b−1 = c0 = a1 = 0, a−1, a0 = const., c−1 = −K0 + h(J0), and b0
satisfies the relation (b0h)′ = −2a0.

The above all functions f, g, h, fi, gi (i = 1, 2) are in C∞(R), and “′ ” means
d
dJ0

.

Proof. Through some calculations we have

{A(λ), A(µ)} = 2
∂a−2

∂I1
〈Λp, p〉

(
λ

µ2
B(λ)− µ

λ2
B(µ)

)

+ 2
∂a−2

∂I1
〈Λq, q〉

(
λ

µ2
C(λ)− µ

λ2
C(µ)

)

+ 2
∂a−2

∂I1

(
1

λ2
− 1

µ2

)
(〈Λp, p〉(b−1 − I0)− 〈Λq, q〉(c−1 +K0))

+ 2
∂a−2

∂I1

(
µ

λ2
− λ

µ2

)
(〈Λp, p〉b0 + 〈Λq, q〉c0) ,

{B(λ), B(µ)} = 2
∂b−1

∂J0

(
1

µ
B(λ)− 1

λ
B(µ)

)
+ 2

db0

dJ0
(B(λ) −B(µ))

+ 2

(
1

λ
− 1

µ

)(
∂b−1

∂I0

db0

dJ0
I0 + b0

∂b−1

∂J0
− b−1

db0

dJ0

)
,

{C(λ), C(µ)} = 2
∂c−1

∂J0

(
− 1

µ
C(λ) +

1

λ
C(µ)

)
+ 2

dc0

dJ0
(−C(λ) + C(µ))

+ 2

(
− 1

λ
+

1

µ

)(
∂c−1

∂K0

dc0

dJ0
K0 + c0

∂c−1

∂J0
− c−1

dc0

dJ0

)
,
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{A(λ), B(µ)} =
2

λ− µ (−B(µ) +B(λ)) − 2

λ

da−1

dJ0
B(µ)

+
2

µ

∂b−1

∂I0
B(λ) − 2µ

λ2

(
∂a−2

∂J1
B(µ) + 2

∂a−2

∂I1
〈Λq, q〉A(µ)

)

− 2〈Λq, q〉
(

2
∂b−1

∂I0

∂a−2

∂I1
J1 +

∂b−1

∂I0

∂a−2

∂J1
+ 2a−2

∂a−2

∂I1

)
λ−2µ−1

+ 2

(
−∂b−1

∂I0

da−1

dJ0
I0 − b−1

∂b−1

∂I0
+ b−1

da−1

dJ0
+ b−1

)
λ−1µ−1

− 2

(
2〈Λq, q〉∂a−2

∂I1
(J0 + a−1) +

∂a−2

∂J1
(I0 − b−1)

)
λ−2

− 2

(
−b0

∂a−2

∂J1
+ 2a0〈Λq, q〉

∂a−2

∂I1

)
λ−2µ

+ 2b0
da−1

dJ0
λ−1 − 2b0

∂b−1

∂I0
µ−1 − 4a1〈Λq, q〉

∂a−2

∂I1
λ−2µ2 ,

{A(λ), C(µ)} =
2

λ− µ (C(µ)− C(λ)) +
2

λ

da−1

dJ0
C(µ)

+
2

µ

∂c−1

∂K0
C(λ) +

2µ

λ2

(
∂a−2

∂J1
C(µ) + 2

∂a−2

∂I1
〈Λp, p〉A(µ)

)

+ 2〈Λp, p〉
(

2
∂c−1

∂K0

∂a−2

∂I1
J1 +

∂c−1

∂K0

∂a−2

∂J1
− 2a−2

∂a−2

∂I1

)
λ−2µ−1

+ 2

(
∂c−1

∂K0

da−1

dJ0
K0 − c−1

∂c−1

∂K0
− c−1

da−1

dJ0
− c−1

)
λ−1µ−1

−2

(
−2〈Λp, p〉∂a−2

∂I1
(J0 + a−1) +

∂a−2

∂J1
(K0 + c−1)

)
λ−2

− 2

(
c0
∂a−2

∂J1
+ 2a0〈Λp, p〉

∂a−2

∂I1

)
λ−2µ

− 2c0
da−1

dJ0
λ−1 − 2c0

∂c−1

∂K0
µ−1 − 4a1〈Λp, p〉

∂a−2

∂I1
λ−2µ2 ,

{B(λ), C(µ)} =
4

λ− µ (−A(µ) +A(λ)) +
4

λ

∂b−1

∂I0
A(µ)

− 4

µ

∂c−1

∂K0
A(λ)+2

(
1

µ

∂c−1

∂J0
+
dc0

dJ0

)
B(λ)+2

(
1

λ

∂b−1

∂J0
+
db0

dJ0

)
C(µ)

+ 4

(
−∂b−1

∂I0
+ 1

)
a−2µ

−2λ−1 + 4

(
∂c−1

∂K0
+ 1

)
a−2λ

−2µ−1
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+ 2

(
∂c−1

∂J0

∂b−1

∂I0
I0 + 2

∂b−1

∂I0

∂c−1

∂K0
J0 +

∂b−1

∂J0

∂c−1

∂K0
K0

− ∂b−1

∂J0
c−1 −

∂c−1

∂J0
b−1 − 2

∂b−1

∂I0
a−1 + 2

∂c−1

∂K0
a−1 + 2a−1

)
λ−1µ−1

+ 2

(
−∂b−1

∂J0
c0 +

∂b−1

∂I0

dc0

dJ0
I0 −

dc0

dJ0
b−1 − 2

∂b−1

∂I0
a0

)
λ−1

+ 2

(
−∂c−1

∂J0
b0 +

∂c−1

∂K0

db0

dJ0
K0 −

db0

dJ0
c−1 + 2

∂c−1

∂K0
a0

)
µ−1

− 2

(
db0

dJ0
c0 +

dc0

dJ0
b0 + 2a1

)
+ 4

∂c−1

∂K0
a1µ
−1λ− 4

∂b−1

∂I0
a1λ
−1µ .

According to Assumption (A), the terms that do not contain A(λ), A(µ), B(λ),

B(µ), C(λ), C(µ) in the above six equalities, are zero. After discussing these terms,

we can obtain every result in Lemma 2.1.

3. Generalized r-Matrix Structure and Integrable

Hamiltonian Systems

Let L1(λ) = L(λ) ⊗ I, L2(µ) = I ⊗ L(µ). In the following, we search for a general

4× 4 r-matrix structure r12(λ, µ) such that the fundamental Poisson bracket [21]:

{L(λ) ⊗, L(µ)} = [r12(λ, µ), L1(λ)] − [r21(µ, λ), L2(µ)] (3.1)

holds, where r21(λ, µ) = Pr12(λ, µ)P , P = 1
2

∑3
i=0 σi⊗σi, and σ′is are the standard

Pauli matrices. For the given Lax matrix (2.1) and the Poisson bracket (1.1), we

have the following theorem.

Theorem 3.1. Under Assumption (A),

r12(λ, µ) =
2

µ− λP + S (3.2)

is an r-matrix structure satisfying (3.1), where

S =



2λ

µ2

∂a−2

∂J1
+

2

µ

da−1

dJ0

2

µ

∂b−1

∂J0

2λ

µ2
〈Λq, q〉∂a−2

∂I1
0

2
dc0

dJ0
0

2

µ

∂c−1

∂K0
−2λ

µ2
〈Λq, q〉∂a−2

∂I1

−2λ

µ2
〈Λp, p〉∂a−2

∂I1
− 2

µ

∂b−1

∂I0
0 −2

db0

dJ0

0
2λ

µ2
〈Λp, p〉∂a−2

∂I1
− 2

µ

∂c−1

∂J0

2λ

µ2

∂a−2

∂J1
+

2

µ

da−1

dJ0


.

Proof. Under Assumption (A), we have
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{A(λ), A(µ)} = 2
∂a−2

∂I1
〈Λp, p〉

(
λ

µ2
B(λ) − µ

λ2
B(µ)

)

+ 2
∂a−2

∂I1
〈Λq, q〉

(
λ

µ2
C(λ) − µ

λ2
C(µ)

)
,

{B(λ), B(µ)} = 2
∂b−1

∂J0

(
1

µ
B(λ) − 1

λ
B(µ)

)
+ 2

db0

dJ0
(B(λ)−B(µ)) ,

{C(λ), C(µ)} = 2
∂c−1

∂J0

(
− 1

µ
C(λ) +

1

λ
C(µ)

)
+ 2

dc0

dJ0
(−C(λ) + C(µ)) ,

{A(λ), B(µ)} =
2

λ− µ (−B(µ) +B(λ)) − 2

λ

da−1

dJ0
B(µ) +

2

µ

∂b−1

∂I0
B(λ)

− 2µ

λ2

(
∂a−2

∂J1
B(µ)− 2

∂a−2

∂I1
〈Λq, q〉A(µ)

)
,

{A(λ), C(µ)} =
2

λ− µ (C(µ) − C(λ)) +
2

λ

da−1

dJ0
C(µ) +

2

µ

∂c−1

∂K0
C(λ)

+
2µ

λ2

(
∂a−2

∂J1
C(µ) + 2

∂a−2

∂I1
〈Λp, p〉A(µ)

)
,

{B(λ), C(µ)} =
4

λ− µ (−A(µ) +A(λ)) +
4

λ

∂b−1

∂I0
A(µ) − 4

µ

∂c−1

∂K0
A(λ)

+ 2

(
1

µ

∂c−1

∂J0
+
dc0

dJ0

)
B(λ) + 2

(
1

λ

∂b−1

∂J0
+
db0

dJ0

)
C(µ) ,

which complete the proof.

In general, Eq. (3.2) is a dynamical r-matrix structure, i.e. dependent on

canonical variables pi, qi [7].

Now, we turn to consider the determinant of L(λ)

−det L(λ) =
1

2
Tr L2(λ) = A2(λ) +B(λ)C(λ)

=
2∑

i=−4

Hiλ
i +

N∑
j=1

Ej

λ− λj
, (3.3)

where

H−4 = a2
−2 , (3.4)

H−3 = 2a−2a−1 , (3.5)

H−2 = a2
−1 + 2a−2a0 + b−1c−1 − 2a−2〈Λ−1p, q〉 , (3.6)
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H−1 = 2a−2a1 + 2a−1a0 + b−1c0 + b0c−1 − 2a−2〈Λ−2p, q〉

− 2a−1〈Λ−1p, q〉 − b−1〈Λ−1p, p〉+ c−1〈Λ−1q, q〉 , (3.7)

H0 = a2
0 + 2a−1a1 + b0c0 + 2a1〈p, q〉 , (3.8)

H1 = 2a0a1 , (3.9)

H2 = a2
1 , (3.10)

Ej = (2a−2λ
−2
j + 2a−1λ

−1
j + 2a0 + 2a1λj)pjqj

+ (b−1λ
−1
j + b0)p2

j − (c−1λ
−1
j + c0)q2

j − Γj , (3.11)

Γj =

N∑
k=1,k 6=j

(pjqk − pkqj)2

λj − λk
, j = 1, 2, . . . , N . (3.12)

Let Eq. (3.3) be multiplied by a fixed multiplier λk (k ∈ Z), then it leads to

1

2
λk · Tr L2(λ) =

2∑
l=−4

Hlλ
l+k +

k−1∑
i=0

Fiλ
k−1−i +

N∑
j=1

λkjEj

λ− λj

=

−1∑
l=k−4

Hl−kλ
l +

k−1∑
l=0

(Hl−k + Fk−1−l)λ
l

+
k+2∑
l=k

Hl−kλ
l +

N∑
j=1

λkjEj

λ− λj
, (3.13)

where

Fm =

N∑
j=1

λmj Ej , m = 0, 1, 2, . . . , (3.14)

which read

Fm = 2a−2〈Λm−2p, q〉+ 2a−1〈Λm−1p, q〉+ 2a0〈Λmp, q〉+ 2a1〈Λm+1p, q〉

+ b−1〈λm−1p, p〉+ b0〈Λmp, p〉 − c−1〈Λm−1q, q〉 − c0〈Λmq, q〉

−
∑

i+j=m−1

(〈Λip, p〉〈Λjq, q〉 − 〈Λip, q〉〈Λjp, q〉) . (3.15)

Because there is an r-matrix structure satisfying Eq. (3.1), one can obtain

{L2(λ) ⊗, L2(µ)} = [r̄12(λ, µ), L1(λ)] − [r̄21(µ, λ), L2(µ)] , (3.16)

where

r̄ij(λ, µ) =

1∑
k=0

1∑
l=0

L1−k
1 (λ)L1−l

2 (µ) · rij(λ, µ) · Lk1(λ)Ll2(µ) ,

i = 12, j = 21 . (3.17)
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Thus,

4{Tr L2(λ),Tr L2(µ)} = Tr{L2(λ) ⊗, L2(µ)} = 0 . (3.18)

So, by Eq. (3.13) we immediately obtain

Theorem 3.2. Under Assumption (A), the following equalities

{Ei, Ej} = 0, {Hl, Ej} = 0, {Fm, Ej} = 0 , (3.19)

i, j = 1, 2, . . . , N, l = −4, . . . , 2, m = 0, 1, 2, . . . ,

hold . Hence, the Hamiltonian systems (Hl) and (Fm)

(Hl) : qx =
∂Hl

∂p
, px = −∂Hl

∂q
, l = −4, . . . , 2 ,

(Fm) : qtm =
∂Fm

∂p
, ptm = −∂Fm

∂q
, m = 0, 1, 2, . . . ,

(3.20)

(3.21)

are completely integrable in Liouville’s sense.

Corollary 3.1. All composition functions f(Hl, Fm), f ∈ C∞(R) are completely

integrable Hamiltonians in Liouville’s sense.

4. Reductions

For the various cases of Lemma 2.1, we give the corresponding reductions of r-matrix

structure r12(λ, µ) in this section. The following numbers of title coincide with the

ones in Lemma 2.1, i.e. the corresponding conditions are coincidental.

Before giving our reductions, we’d like to re-stress the two “terminologies” used

usually in the theory of integrable systems in order to avoid some confusions: one

is “constrained system”, which means the finite dimensional Hamiltonian system or

symplectic map in R2N under the Bargmann-type constraint; the other “restricted

system”, which means the finite dimensional Hamiltonian system or symplectic map

on some symplectic submanifold in R2N under the Neumann-type constraint. In the

future we shall follow this principle.

(1)

r12(λ, µ) =
2λ

µ(µ− λ)
P + 2

∂a−2

∂J1
· λ
µ2
S + 2

∂a−2

∂I1
· λ
µ2
Q , (4.1)

S =


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

 , Q =


0 0 〈Λq, q〉 0

0 0 0 −〈Λq, q〉
−〈Λp, p〉 0 0 0

0 〈Λp, p〉 0 0

 .
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Particularly, with f(a−2) = −1, Eq. (4.1) exactly reads as the r-matrix of the

constrained WKI (c-WKI) system. With a−2 = const. 6= 0, Eq. (3.2) reads as the

r-matrix r12(λ, µ) = 2λ
µ(µ−λ)P of ellipsoid geodesic flow [26], or reads

r12(λ, µ) =
2

µ− λP +
2

µ
S , S =


0 f ′1 0 0

0 0 −1 0

0 −1 0 0

0 0 −g′1 0

 ,

which is a new r-matrix structure. For simplicity, below write “′ ” = d
dJ0

.

(2)

r12(λ, µ) =
2

µ− λP . (4.2)

This is nothing but the r-matrix of the well-known constrained AKNS (c-AKNS )

system [8].

(3)

r12(λ, µ) =
2

µ− λP +
2

µ
S , S =


a′−1 0 0 0

0 0 −1 0

0 0 0 0

0 0 0 a′−1

 , a′−1 6= 0 . (4.3)

In particular, with a−1 = −J0, Eq. (4.3) reads as the r-matrix of the constrained

LZ (c-LZ ) system [12].

(4)

r12 =
2

µ− λP + c′0S , S =


0 0 0 0

1 0 0 0

0 0 0 0

0 0 −1 0

 . (4.4)

With c0 = −2
√
J0, Eq. (4.4) reads as the r-matrix of the constrained Hu (c-H )

system [12].

(5)

r12(λ, µ) =
2

µ− λP + S , S =



0
1

µ
g′ 0 0

c′0 0 0 0

0 − 2

µ
0 − 1

µ
g′

0 0 c′0 0


. (4.5)
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With b−1 = I0, c0 = const., Eq. (4.5) reads as the r-matrix of the constrained Qiao

(c-Q) system [38].

(6)

r12(λ, µ) =
2

µ− λP +
2

µ
S , S =


1 0 0 0

0 0 0 0

0 1 0 0

0 0 0 1

 . (4.6)

This is a new r-matrix .

(7)(i)

r12(λ, µ) =
2

µ− λP +
2

µ
S , S =


0 g′2 0 0

f ′2 0 −1 0

0 −1 0 0

0 0 0 0

 . (4.7)

This is also a new r-matrix .

(ii)

r12(λ, µ) =
2λ

µ(µ− λ)
P . (4.8)

This is the r-matrix of the constrained Heisenberg spin chain (c-HSC ) system [39].

(iii)

r12(λ, µ) =
2

µ− λP −
2

µ
S , S =


1 0 0 0

0 0 0 0

0 0 0 b′−1

0 0 c′−1 1

 . (4.9)

With b′−1 = −1, c′−1 = 1, Eq. (4.9) becomes the r-matrix of the constrained Levi

(c-L) system [35].

(iv)

r12(λ, µ) =
2

µ− λP −
2

µ
S , S =


1 0 0 0

0 0 0 0

0 1 0 0

0 0 c′−1 1

 . (4.10)
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This is a new r-matrix .

(v)

r12(λ, µ) =
2

µ− λP −
2

µ
S , S =


1 0 0 0

0 0 1 0

0 0 0 b′−1

0 0 0 1

 . (4.11)

This is also a new r-matrix .

(8)

r12(λ, µ) =
2

µ− λP + S , S =


0 2b′0 0 0

2c′0 0 0 0

0 0 0 0

0 0 0 0

 . (4.12)

With b0 = c0 =
√
J0, a1 = − 1

2 , Eq. (4.12) reads as the r-matrix of the constrained

Tu (c-T ) system [12].

(9)

r12(λ, µ) =
2

µ− λP + S , S = b′0


0 1 0 0

0 0 0 0

0 0 0 −1

0 0 0 0

 . (4.13)

With b0 = −J0, Eq. (4.13) reads as the common r-matrix of the constrained Toda

(c-Toda) system (a discrete system) and the constrained CKdV (c-CKdV ) system

(a continuous system), which will be seen in Sec. 5.1.

(10)

r12(λ, µ) =
2

µ− λP + S , S =



0 b′0 0 0

1

µ
h′ 0 − 2

µ
0

0 0 0 −b′0

0 0 − 1

µ
h′ 0


. (4.14)

With h = const., b0 = 0, Eq. (4.14) reads as the r-matrix of the constrained MKdV

(c-MKdV ) system [37].

Proof. For simplicity, we only present the proof in Cases 1 and 10, other cases are

similar.
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Case 1. With a−2 6= const., the matrix S becomes

S =



2λ

µ2

∂a−2

∂J1
− 2

µ
0

2λ

µ2
〈Λq, q〉∂a−2

∂I1
0

0 0 − 2

µ
−2λ

µ2
〈Λq, q〉∂a−2

∂I1

−2λ

µ2
〈Λp, p〉∂a−2

∂I1
− 2

µ
0 0

0
2λ

µ2
〈Λp, p〉∂a−2

∂I1
0

2λ

µ2

∂a−2

∂J1
− 2

µ


.

Substituting S into Eq. (3.2) and sorting it, we can obtain Eq. (4.1), where

a−2 satisfies the relation I1 = (J1 + a−2)2 + f(a−2), for any f(a−2) ∈ C∞(R).

Particularly, choosing f(a−2) = −1 yields a−2 =
√

1 + 〈Λp, p〉〈Λq, q〉 − 〈Λp, q〉.
Thus Eq. (4.1) reads

r12(λ, µ) =
2λ

µ(µ− λ)
P − 2λ

µ2
S +

λ

µ2

1√
1 + 〈Λp, p〉〈Λq, q〉

Q , (r −WKI)

while the corresponding Lax matrix L(λ) becomes

L(λ) =

(
l11 〈q, q〉λ−1

−〈p, p〉λ−1 −l11

)
+

N∑
j=1

1

λ− λj

(
pjqj −q2

j

p2
j −pjqj

)
,

where

l11 = (
√

1 + 〈Λp, p〉〈Λq, q〉 − 〈Λp, q〉)λ−2 − 〈p, q〉λ−1 .

Set an auxiliary matrix M1 as follows

M1 = M1(λ) =

 −λ 〈Λq, q〉√
1 + 〈Λp, p〉〈Λq, q〉

λ

− 〈Λp, p〉√
1 + 〈Λp, p〉〈Λq, q〉

λ λ

 .

Then the Lax equation

Lx = [M1, L]

is equivalent to the following finite dimensional Hamilton system (
√
H−4):

(
√
H−4) :


qx = −Λq +

〈Λq, q〉√
1 + 〈Λp, p〉〈Λq, q〉

Λp =
∂
√
H−4

∂p
,

px = Λp− 〈Λp, p〉√
1 + 〈Λp, p〉〈Λq, q〉

Λq = −
∂
√
H−4

∂q
,

(4.15)

with √
H−4 = a−2 = −〈Λp, q〉+

√
1 + 〈Λp, p〉〈Λq, q〉 ,
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which is obviously integrable by Theorem 3.2.

Let

u =
〈Λq, q〉√

1 + 〈Λp, p〉〈Λq, q〉
, v = − 〈Λp, p〉√

1 + 〈Λp, p〉〈Λq, q〉
. (4.16)

Then (
√
H−4) is nothing but the WKI spectral problem [49]

yx =

(
−λ λu

λv λ

)
y

with the above two constraints (4.16), λ = λj , and y = (qj , pj)
T , j = 1, . . . , N .

That means that (r −WKI) is the r-matrix of the integrable constrained WKI

(c-WKI) system (4.15).

Other subcases in Case 1 can be similarly proven.

The proof of Case 10 can be found in Ref. [37]. In this case, the corresponding

constrained system is reduced to the well-known MKdV spectral problem [48].

Remark 4.1. From the above formulae (4.1)–(4.14), the r-matrices of Cases 2,

6, and 7(ii) are non-dynamical. But in fact, for other cases we can also obtain

non-dynamical r-matrices if choosing some special functions, for instance, in

Eq. (4.3) setting a−1 such that a′−1 = const. leads to a non-dynamical one. Of

course, we can also get dynamical r-matrices, for instance, in Eq. (4.4) choosing

c0 = −2
√
J0 yields a dynamical one.

Remark 4.2. Equations (4.1)–(4.14) cover most r-matrices of 2 × 2 constrained

systems. But among them there are also some new r-matrices and finite dimen-

sional integrable systems like Cases 6, 7(i), 7(iv), and 7(v) (also see Sec. 7). Their

Lax matrices are altogether unified in Eq. (2.1). So, quite a large number of finite

dimensional integrable systems are classified or reduced from the viewpoint of Lax

matrix and r-matrix structure.

5. Different Systems Sharing the Same r-Matrices

In the above r-matrices, we find some pairs of different integrable systems sharing

the common r-matrices. Now, we present these results as follows.

5.1. The constrained Toda and CKdV flows

Let us consider the following 2 × 2 traceless Lax matrix [36] (corresponding to

Case 9 in Sec. 4)

LTC = LTC(λ, p, q) =

−
1

2
λ 〈p, q〉

−1
1

2
λ

+ L0

≡
(
ATC(λ) BTC(λ)

CTC(λ) −ATC(λ)

)
, (5.1)
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where

L0 = L0(λ, p, q) =

N∑
j=1

1

λ− λj

(
−pjqj p2

j

−q2
j pjqj

)
. (5.2)

The determinant of Eq. (5.1) leads to

1

2
λTr(LTC)2(λ) = −1

2
λ3 + 〈p, q〉λ+ 2HC +

∑N
j=1

ETCj
λ− λj

, (5.3)

ETCj = λjpjqj − p2
j − 〈p, q〉q2

j − Γj , j = 1, 2, . . . , N , (5.4)

where Γj is defined by Eq. (3.12) and the Hamiltonian function HC is

HC = −1

2
〈p, p〉+

1

2
〈Λq, p〉 − 1

2
〈q, q〉〈p, q〉 . (5.5)

Viewing the variables q and p as the functions of continuous variables x, we have

the following Hamiltonian canonical equation (HC):
px = −∂HC

∂q
= −1

2
Λp+

1

2
〈q, q〉p+ 〈p, q〉q ,

qx =
∂HC

∂p
= −p+

1

2
Λq − 1

2
〈q, q〉q ,

(5.6)

which is nothing but the coupled KdV (CKdV) spectral problem [29]

ψx =

−
1

2
λ+

1

2
u v

−1
1

2
λ− 1

2
u

ψ (5.7)

with the two constraints (Bargmann-type)

u = 〈q, q〉 , v = 〈p, q〉 , (5.8)

λ=λj and ψ=(pj , qj)
T . So, (HC) coincides with the constrained CKdV (c-CKdV)

flow.

Let us consider endowing with an auxiliary 2× 2 matrix MT as follows

MT =

 0 g

−1

g

λ− 〈q, q〉
g

 , g2 = 〈Λq, q〉 − 〈p, q〉 − 〈q, q〉2 . (5.9)

Then, we have the following theorem.

Theorem 5.1. The discrete Lax equation

(LTC)′MT = MTL
TC , (LTC)′ = LTC(λ, p′, q′) (5.10)

is equivalent to a finite dimensional symplectic map HT : R2N → R2N , (p, q) 7→
(p′, q′), which is called the constrained Toda (c-Toda) flow :

p′ = gq ,

q′ =
Λq − p− 〈q, q〉q

g
.

(5.11)
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Proof. Through direct calculations, one can readily show (5.10) ⇔ (5.11) and

(HT )∗(dp ∧ dq) = dp ∧ dq.

When we understand the above two matrices (LTC)′ and MT in the following

sense: (LTC)′ → LTCn+1, MT → MTn (i.e. q → qn, p → pn, here n is the discrete

variable), and set{
un = ±(〈Λqn, qn〉 − 〈pn, qn〉 − 〈qn, qn〉2)

1
2 ,

vn = 〈qn, qn〉 ,
(5.12)

the constrained Toda flow (5.11) is none other than the well-known Toda spectral

problem

Lψn ≡ (E−1un + vn + unE)ψn = λψn , Efn = fn+1 , E−1fn = fn−1 (5.13)

with the above constraint (5.12), λ = λj and ψn = qn,j . Theorem 5.1 shows

that the constrained Toda flow (HT ) has the discrete Lax representation (5.10).

Equation (5.12) is a kind of discrete Bargmann constraint [42] of the Toda spectral

problem (5.13).

The Hamiltonian systems (HT ) and (HC) share the common Lax matrix (5.1).

Thus, they have the following same r-matrix:

r12(λ, µ) =
2

µ− λP − S, S =


0 1 0 0

0 0 0 0

0 0 0 −1

0 0 0 0

 , (5.14)

which is proven to satisfy the classical Yang–Baxter equation (YBE)

[rij , rik] + [rij , rjk] + [rkj , rik] = 0, i, j, k = 1, 2, 3 . (5.15)

5.2. The restricted Toda and CKdV flows

Let us now consider the case on a symplectic manifold. We restrict the Toda and

CKdV flows on the following symplectic submanifold M in R2N

M =

{
(q, p) ∈ R2N |F ≡ 〈q, q〉 − 1 = 0, G ≡ 〈q, p〉 − 1

2
= 0

}
. (5.16)

Let us first introduce the Dirac bracket

{f, g}D = {f, g}+
1

2
({f, F}{G, g} − {f,G}{F, g}) , (5.17)

which is easily proven to be a Poisson bracket on M .

According to the idea of Ref. [36], the following Lax matrix

LTCR = LTCR (λ, p, q) =

−
1

2
0

0
1

2

+ L0 ≡
(
AR(λ) BR(λ)

CR(λ) −AR(λ)

)
(5.18)
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yields

−λ2 det LTCR =
1

2
λ2 Tr (LTCR )2 =

1

4
λ2 + 〈p, q〉λ+ 2HC

R +

N∑
j=1

λ2
jE

TC
R,j

λ− λj
, (5.19)

where

HC
R =

1

2
〈Λp, q〉 − 1

2
〈q, q〉〈p, p〉+

1

2
〈p, q〉2 , (5.20)

ETCR,j = ETCR,j (p, q) = pjqj − Γj, i = 1, . . . , N , (5.21)

and L0 is defined by Eq. (5.2).

An important observation is: if we consider the Hamiltonian canonical

equation produced by Eq. (5.20) in R2N, then this equation is ex-

actly the well-known constrained AKNS flow, which will be discussed in the

next subsection. Now, we first consider the Hamiltonian canonical equation

restricted on M :

(HC
R ) : qx = {q,HC

R}D, px = {p,HC
R}D , (5.22)

which reads as the following finite dimensional system:
px = −1

2
Λp+

1

2
(〈Λq, q〉 − 1)p+ 〈p, p〉q ,

qx = −p+
1

2
Λq − 1

2
(〈Λq, q〉 − 1)q ,

〈q, q〉 = 1, 〈q, p〉 =
1

2
.

(5.23)

This is actually the CKdV spectral problem (5.7) with the two constraints

(Neumann-type) [13]

u = 〈Λq, q〉 − 1, v = 〈p, p〉 , (5.24)

and λ = λj , ψ = (pj , qj), j = 1, 2, . . . , N . So, the finite dimensional system (5.23)

coincides with the restricted CKdV (r-CKdV ) flow .

Let us return to the Lax matrix (5.18). After endowing with an auxiliary matrix

MT,R as follows

MT,R =

 0 a

−1

a

λ− b
a

 , (5.25)

a2 = 〈Λq − p,Λq − p〉+ 〈Λq, q〉 − 〈Λq, q〉2 ,

b = 〈Λq, q〉 − 1 ,

we have the following theorem.

Theorem 5.2. The discrete Lax equation

(LTCR )′MT,R = MT,RL
TC
R , (LTCR )′ = LTCR (λ, p′, q′) (5.26)
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is equivalent to a discrete Neumann type of finite dimensional symplectic map HT :

(p, q)T → (p′, q′)T 
p′ = aq ,

q′ = a−1(Λq − p− bq) ,

〈q, q〉 = 1, 〈q, p〉 =
1

2
,

(5.27)

which is called the restricted Toda (r-Toda) flow .

Remark 5.1. If we understand the above two matrices (LTCR )′ and MT,R in the

following sense: (LTCR )′ → (LTCR )n+1, MT,R → (MT,R)n (i.e. q → qn, p → pn, a →
an, b→ bn, here n is the discrete variable), then the restricted Toda flow (5.27) on

the symplectic submanifold M = {(q, p) ∈ R2N |〈q, q〉 = 1, 〈q, p〉 = 1
2} is nothing

but the discrete Neumann system studied by Ragnisco [41].

Let LTCR1 = LTCR (λ, p, q)⊗ I and LTCR2 = I ⊗LTCR (µ, p, q). Then, under the Dirac

bracket (5.17) we obtain the following theorem.

Theorem 5.3. The Lax matrix LTCR (λ, p, q) defined by Eq. (5.18) satisfies the fol-

lowing fundamental Dirac–Poisson bracket

{LTCR (λ) ⊗, LTCR (µ)}D = [r12(λ, µ), LTCR1 (λ)]− [r21(µ, λ), LTCR2 (µ)] (5.28)

with a dynamical r-matrix

r12(λ, µ) =
2

µ− λP − S12(λ, µ), r21(µ, λ) = Pr12(µ, λ)P , (5.29)

where

S12 = (E11 − E22)⊗ E12 + E11 ⊗
(
CR(µ) 0

0 0

)

+E12 ⊗
(

0 −BR(µ)

CR(µ) 0

)
+ E22 ⊗

(
0 2AR(µ)

0 CR(µ)

)
(5.30)

and P = 1
2 (I +

∑3
j=1 σj ⊗ σj) is the permutation matrix, σj (j = 1, 2, 3) are the

Pauli matrices, and Eij stands for the 2×2 matrix with the i-th line and jth column

element 1 and other elements 0.

This theorem ensures that Eq. (5.21) satisfies

{ETCR,i , ETCR,j}D = 0, i, j = 1, . . . , N . (5.31)

For the r-Toda flow (5.27), we have ETCR,i (p
′, q′) = ETCR,i (p, q) as well as∑n

i=1 E
TC
R,i = 〈p, q〉 = 1

2 from the discrete Lax equation (5.26). Thus, in the set

{ETCR,j}Nj=1, only ETCR,1, E
TC
R,2, . . . , E

TC
R,N−1 are independent on M .

Theorem 5.4. The restricted Toda flow HT is completely integrable, and its

independent and invariant (N − 1)-involutive system is {ETCR,i }N−1
i=1 .
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For the restricted CKdV flow on M, we have

HC
R =

1

2

N∑
j=1

λjE
TC
R,j (5.32)

which implies

{HC
R , E

TC
R,j}D = 0 , j = 1, 2, . . . , N . (5.33)

Thus, the following theorem holds.

Theorem 5.5. The r-CKdV flow (HC
R ) is completely integrable, and its indepen-

dent (N − 1)-involutive system is also {ETCR,k}N−1
k=1 .

Remark 5.2. As shown in this and last subsection, the r-Toda (i.e. Neumann-

type) and the r-CKdV flows, and the c-Toda (i.e. Bargmann-type) and the c-CKdV

flows respectively share the completely same Lax matrix, r-matrix and involutive

conserved integrals. Thus, we say that the finite dimensional integrable CKdV flow

both restricted and constrained is the interpolating Hamiltonian flow of invariant

of the corresponding Toda integrable symplectic map.

5.3. The constrained AKNS and Dirac (D) flows

From now on we assume:

L0 = L0(λ, p, q) =

N∑
j=1

1

λ− λj

(
pjqj −q2

j

p2
j −pjqj

)
. (5.34)

Let us again consider Eq. (5.18), and rewrite it as the following version:

LAKNS = LAKNS(λ, p, q) =

(
1 0

0 −1

)
+ L0 , (5.35)

while we introduce

LD = LD(λ, p, q) =

(
0 1

−1 0

)
+ L0 . (5.36)

Then we have

1

2
λ2 Tr(LAKNS)2(λ) = λ2 + 2λ〈p, q〉+ 〈p, q〉2

+ 2HAKNS +

N∑
j=1

λ2
jE

AKNS
j

λ− λj
, (5.37)

1

2
λ2 Tr(LD)2(λ) = λ2 + λ(〈q, q〉 + 〈p, p〉)

− 1

4
(〈p, p〉+ 〈q, q〉)2 + 2HD +

N∑
j=1

λ2
jE

D
j

λ− λj
, (5.38)
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where

HAKNS = 〈Λp, q〉 − 1

2
〈q, q〉〈p, p〉 , (5.39)

HD =
1

2
(〈Λq, q〉+ 〈Λp, p〉) +

1

2
(〈p, q〉2 − 〈q, q〉〈p, p〉)

+
1

8
(〈p, p〉+ 〈q, q〉)2 , (5.40)

EAKNSj = 2pjqj − Γj , j = 1, . . . , N , (5.41)

EDj = p2
j + q2

j − Γj , j = 1, . . . , N . (5.42)

Thus, HAKNS and HD generate the following two Hamiltonian systems

(HAKNS) :


qx =

∂HAKNS

∂p
= −〈q, q〉p+ Λq ,

px = −∂HAKNS

∂q
= 〈p, p〉q − Λp ;

(5.43)

(HD) :


qx =

∂HD

∂p
= 〈p, q〉q +

1

2
(〈p, p〉 − 〈q, q〉)p+ Λp ,

px = −∂HD

∂q
= −〈p, q〉p− 1

2
(〈p, p〉 − 〈q, q〉)q − Λq .

(5.44)

It can be easily seen that (HAKNS) and (HD) are changed to the well-known

Zakharov–Shabat–AKNS spectral problem [52]

yx =

(
λ u

v −λ

)
y (5.45)

and the Dirac spectral problem [30]

yx =

(
−v λ− u
−λ− u v

)
y (5.46)

with the constraints u = −〈q, q〉, v = 〈p, p〉, λ = λj , y = (qj , pj)
T , and the con-

straints u = − 1
2 (〈p, p〉 − 〈q, q〉), v = −〈p, q〉, λ = λj , y = (qj , pj)

T , respectively.

Therefore (HAKNS) and (HD) coincide with the constrained AKNS (c-AKNS)

system and the constrained Dirac (c-D) system, respectively.

Let LJ1 (λ) = LJ(λ)⊗ I, LJ2 (µ) = I ⊗LJ(µ) (J = AKNS,D). Then we have the

following theorem.

Theorem 5.6. The Lax matrices LJ(λ) (J = AKNS,D) defined by Eq. (5.35)

and Eq. (5.36) satisfy the fundamental Poisson bracket

{LJ(λ) ⊗, LJ(µ)} = [r12(λ, µ), LJ1 (λ)]− [r21(µ, λ), LJ2 (µ)] . (5.47)

Here the r-matrices r12(λ, µ), r21(µ, λ) are exactly given by the following standard

r-matrix

r12(λ, µ) =
2

µ− λP , r21(µ, λ) = Pr12(µ, λ)P , (5.48)
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P =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 =
1

2

(
I +

3∑
i=1

σi ⊗ σi

)
. (5.49)

So, the c-AKNS and c-D flows share the same standard r-matrix (5.48), which

is obviously non-dynamical. However, the two constrained flows, produced

by Eqs. (5.45)’s and (5.46)’s extensive spectral problems (6.1) and (6.2)

(they are gauge equivalent), have different r-matrices (see Sec. 6).

Remark 5.3. In fact, the r-matrix r12(λ, µ) in the case of the c-AKNS and c-D

flows can be also chosen as

r12(λ, µ) =
2

µ− λP + I ⊗ S̃, S̃ =

(
a b

c d

)
(5.50)

where the elements a, b, c, d can be arbitrary C∞-functions a(λ, µ, p, q), b(λ, µ, p, q),

c(λ, µ, p, q), d(λ, µ, p, q) with respect to the spectral parametres λ, µ and the

dynamical variables p, q. This shows that for a given Lax matrix, the associated

r-matrix is not uniquely defined (there are even infinitely many r-matrices possible).

Here we give the simplest case: a = b = c = d = 0, i.e. the standard r-matrix (5.48).

5.4. The constrained Harry–Dym (HD) and Heisenberg spin

chain (HSC ) flows

The constrained Harry–Dym system describes the geodesic flow on an ellipsoid and

shares the same r-matrix with the constrained Heisenberg spin chain (HSC). To

prove this, we consider the following Lax matrices:

LHD = LHD(λ, p, q) =

(
−〈p, q〉λ−1 λ−2 + 〈q, q〉λ−1

−〈p, p〉λ−1 〈p, q〉λ−1

)
+ L0 , (5.51)

LHSC = LHSC(λ, p, q) =

(
−〈p, q〉λ−1 〈q, q〉λ−1

−〈p, p〉λ−1 〈p, q〉λ−1

)
+ L0 . (5.52)

Here LHSC is included in the generalized Lax matrix (2.1), but LHD is not. We

need two associated auxiliary matrices

MHD =

 0 1

− 〈Λp, p〉〈Λ2q, q〉λ 0

 , (5.53)

MHSC =

(
−iλ〈Λp, q〉 iλ〈Λq, q〉
−iλ〈Λp, p〉 iλ〈Λp, q〉

)
, i2 = −1 . (5.54)
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Theorem 5.7. The Lax representations

LHDx = [MHD, L
HD] , (5.55)

LHSCx = [MHSC , L
HSC ] (5.56)

respectively give the following fininte dimensional Hamiltonian flows:

(HHD) :


qx = p =

∂HHD

∂p

∣∣∣∣
TQN−1

,

px = − 〈Λp, p〉〈Λ2q, q〉Λq = −∂HHD

∂q

∣∣∣∣
TQN−1

,

〈Λq, q〉 = 1 ;

(5.57)

(HHSC) :


qx = i〈Λq, q〉Λp− i〈Λp, q〉Λq =

∂HHSC

∂p
,

px = i〈Λp, q〉Λp− i〈Λp, p〉Λq = −∂HHSC

∂q
,

(5.58)

with the Hamiltonian functions

HHD =
1

2
〈p, p〉 − 〈Λp, p〉

2〈Λ2q, q〉 (〈Λq, q〉 − 1) , (5.59)

HHSC =
1

2
i〈Λp, p〉〈Λq, q〉 − 1

2
i〈Λp, q〉2 . (5.60)

In Eq. (5.57) TQN−1 is a tangent bundle in R2N :

TQN−1 = {(p, q) ∈ R2N |F ≡ 〈Λq, q〉 − 1 = 0, G ≡ 〈Λp, q〉 = 0} . (5.61)

Obviously, (5.57) is equivalent to

qxx +
〈Λqx, qx〉
〈Λ2q, q〉 Λq = 0, 〈Λq, q〉 = 1 , (5.62)

which is nothing but the equation of the geodesic flow [26] on the surface 〈Λq, q〉 = 1

in the space RN and also coincides with the constrained HD (c-HD) flow [9]. In

addition, (5.58) becomes the Heisenberg spin chain spectral problem [47]

yx =

(
−iλw −iλu
−iλv iλw

)
y , i2 = −1 , (5.63)

with the constraints u = −〈Λq, q〉, v = 〈Λp, p〉, w = −〈Λp, q〉, λ = λj , y = (qj , pj)
T .

Thus, Eq. (5.58) reads as the constrained Heisenberg spin chain (c-HSC) flow [39].

Their Lax matrices (5.51) and (5.52) share all elements except one, namely(
0 λ−2

0 0

)
.
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This element does not affect the calculations concerning the fundamental Poisson

bracket, one can readily deduce that the c-HD flow and the c-HSC flow possess the

same non-dynamical r-matrix

r12(λ, µ) =
2λ

µ(µ− λ)
P, r21(µ, λ) = Pr12(µ, λ)P . (5.64)

Remark 5.4. The r-matrix (5.64) of the c-HD and c-HSC flows can be also

chosen as

r12(λ, µ) =
2λ

µ(µ− λ)
P + I ⊗ S̃ . (5.65)

Evidently, (5.64) is the simplest case: S̃ = 0 of (5.65).

5.5. The constrained G and Q flows

In this subsection, we introduce the following Lax matrices:

LG = LG(λ, p, q) =


(

1

2
+ 〈p, q〉

)
λ−1 〈q, q〉λ−1

0 −
(

1

2
+ 〈p, q〉

)
λ−1

+ L0 , (5.66)

LQ = LQ(λ, p, q) =

(
−λ−1 〈q, q〉λ−1

0 λ−1

)
+ L0 . (5.67)

If we set

MG =

 − 1

α
λ

1

α
(〈p, p〉 − 〈q, q〉)− 1

1

α
(〈p, p〉 − 〈q, q〉+ 1)λ

1

α
λ

 , (5.68)

MQ =

λ+
1

2β2
〈Λq, q〉〈p, p〉 1

β
〈Λq, q〉

− 1

β
〈p, p〉λ −λ− 1

2β2
〈Λq, q〉〈p, p〉

 (5.69)

with

α =
√

(〈p, p〉 − 〈Λq, q〉)2 − 4〈Λq, p〉, β = 1− 〈p, q〉 , (5.70)

then, by a lengthy and straightforward calculation we obtain the following theorem.

Theorem 5.8. The following Lax representations

LGx = [MG, L
G] (5.71)

and

LQx = [MQ, L
Q] , (5.72)
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where the first one is restricted to the surface M1 = {(p, q) ∈ R2N |〈p, q〉 = 0,

〈Λq, q〉〈p, p〉 + 〈Λq, p〉 = 0} in the space R2N , respectively produce the finite-

dimensional systems:
qx =

1

α
(−Λq + (〈p, p〉 − 〈Λq, q〉)p)− p ,

px =
1

α
(Λp+ (〈p, p〉 − 〈Λq, q〉)Λq) + Λq ,

(5.73)

and 
qx = Λq +

1

β
〈Λq, q〉p+

1

2β2
〈p, p〉〈Λq, q〉q ,

px = −Λp− 1

β
〈p, p〉Λq − 1

2β2
〈p, p〉〈Λq, q〉p .

(5.74)

Equations (5.73) and (5.74) turn out to be the spectral problem studied by Geng

(simply called G-spectral problem) [22]

yx =

(
−λu v − 1

λ(v + 1) λu

)
y (5.75)

with the constraint condition

u =
1

α
=

1√
(〈p, p〉 − 〈Λq, q〉)2 − 4〈Λq, p〉

,

v =
〈p, p〉 − 〈Λq, q〉

α
=

〈p, p〉 − 〈Λq, q〉√
(〈p, p〉 − 〈Λq, q〉)2 − 4〈Λq, p〉

,

λ = λj , y = (qj , pj)
T , and the spectral problem proposed by Qiao (simply called

Q-spectral problem) [38]

yx =

λ− 1

2
uv u

λv −λ+
1

2
uv

 y (5.76)

with the constraint condition

u =
〈Λq, q〉
β

=
〈Λq, q〉

1− 〈q, p〉 ,

v =
−〈p, p〉
β

= − 〈p, p〉
1− 〈q, p〉 ,

λ = λj , y = (qj , pj)
T , respectively.
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So, Eqs. (5.73) and (5.74) are the constrained Geng (c-G) flow and the con-

strained Qiao (c-Q) flow, and they have the same non-dynamical r-matrix:

r12(λ, µ) =
2

µ− λP −
2

µ
S, S =


0 0 0 0

0 0 0 0

0 1 0 0

0 0 0 0

 = σ− ⊗ σ+ . (5.77)

Here, the r-matrix r12(λ, µ) can be also chosen as

r12(λ, µ) =
2

µ− λP −
2

µ
S + I ⊗ S̃ . (5.78)

Equation (5.77) is the simplest case: S̃ = 0 of (5.78).

We have already seen that the r-matrix r12(λ, µ) satisfying the fundamental

Poisson bracket is not unique (in fact, infinitely many) and is usually composed

of two parts, the first one being their main term, and the second one being the

common term I ⊗ S̃. Usually, to prove the integrability we choose their main term

as the simplest r-matrix.

6. An Equivalent Pair with Different r-Matrices

This section reveals the following interesting fact: a pair of constrained systems,

produced by two gauge equivalent spectral problems, possesses different r-matrices.

In 1992, Geng introduced the following spectral problem [23]

φx = Mφ, M =

(
iλ− iβuv u

v −iλ+ iβuv

)
, i2 = −1 (6.1)

where u and v are two scalar potentials, λ is a spectral parameter and β is a

constant, and discussed its evolution equations and Hamiltonian structure. Equa-

tion (6.1) is apparently an extension of the AKNS spectral problem (5.45). Two

years later the author considered an extension of the Dirac spectral problem (5.46)

[40]

ψx = M̄ψ, M̄ =

(
−is λ+ r + β(s2 − r2)

−λ+ r − β(s2 − r2) is

)
, (6.2)

where r, s are two potentials, and obtained a finite dimensional involutive system

being not equivalent to that one in Ref. [23]. But, the spectral problems (6.1) and

(6.2) are gauge equivalent via the following transformation [50]

ψ = Gφ, G =

(
1 1

i −i

)
, (6.3)

v = i(r − s), u = −i(r + s). In Ref. [50], Wadati and Sogo discussed the gauge

transformations of some spectral problems like Eq. (5.63).
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Now, we discuss their r-matrices. Let us consider the following two Lax matrices:

LGX = LGX(λ, p, q) =

(
1 + 2iβ〈p, q〉 0

0 −1− 2iβ〈p, q〉

)
− iL0 , (6.4)

LQZ = LQZ(λ, p, q)

=

 0
1

2
− β(〈p, p〉+ 〈q, q〉)

−1

2
+ β(〈p, p〉+ 〈q, q〉) 0

+ L0 . (6.5)

Then calculating their determinants leads to the following Hamiltonian systems
qx =

∂HGX

∂p
= Λq + iβ

〈p, p〉〈q, q〉
(1 + 2iβ〈p, q〉)2

q − 〈q, q〉
1 + 2iβ

p ,

px = −∂HGX

∂q
= −Λp− iβ 〈p, p〉〈q, q〉

(1 + 2iβ〈p, q〉)2
p+

〈p, p〉
1 + 2iβ

q ,

(6.6)

and

qx =
∂HQZ

∂p

= Λp− β 4〈p, q〉2 + (〈p, p〉 − 〈q, q〉)2

(1− 2β(〈p, p〉+ 〈q, q〉))2
p− 2〈p, q〉q + (〈p, p〉 − 〈q, q〉)p

1− 2β(〈q, q〉+ 〈p, p〉) ,

px = −∂HQZ

∂q

= −Λq + β
4〈p, q〉2 + (〈p, p〉 − 〈q, q〉)2

(1 − 2β(〈p, p〉+ 〈q, q〉))2
q +

2〈p, q〉p− (〈p, p〉 − 〈q, q〉)q
1− 2β(〈q, q〉+ 〈p, p〉) ,

(6.7)

with the Hamiltonian functions

HGX = i〈Λq, p〉 − 〈p, p〉〈q, q〉
2(1 + 2iβ〈p, q〉) (6.8)

and

HQZ =
1

2
〈Λp, p〉+

1

2
〈Λq, q〉 − 4〈p, q〉2 + (〈p, p〉 − 〈q, q〉)2

4− 8β(〈p, p〉+ 〈q, q〉) . (6.9)

Obviously, Eqs. (6.6) and (6.7) become Eqs. (6.1) and (6.2) with the constrants

u = − 〈q, q〉
1 + 2iβ〈p, q〉 , v =

〈p, p〉
1 + 2iβ〈p, q〉 , (6.10)

λ = λj , φ = (qj , pj)
T , j = 1, . . . , N ; and the constraints

s =
−2i〈p, q〉

1− 2β(〈q, q〉+ 〈p, p〉) , r =
−〈p, p〉+ 〈q, q〉

1− 2β(〈q, q〉+ 〈p, p〉) , (6.11)

λ = λj , ψ = (qj , pj)
T , j = 1, . . . , N , respectively. Thus, the finite dimensional

Hamiltonian systems (6.6) and (6.7) are respectively the constrained flows of the
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spectral problems (6.1) and (6.2). Since they have Lax matrices (6.4) and (6.5),

then the r-matrices of Eqs. (6.6) and (6.7) are respectively:

r12(λ, µ) =
2

µ− λP + 4iβS, S =


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

 , (6.12)

and

r12(λ, µ) =
2

µ− λP + 2βS, S =


0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0

 , (6.13)

which are apparently different.

7. New Integrable Systems

In this section, three new integrable systems are generated as the representatives

from our generalized r-matrix structure.

(1) The first system is given by Case 6 in Sec. 4. The corresponding r-matrix

and involutive systems are respectively

r12(λ, µ) =
2

µ− λP +
2

µ
S, S =


1 0 0 0

0 0 0 0

0 1 0 0

0 0 0 1

 , (7.1)

and

E1
j = 2(〈p, q〉+ c)λ−1

j pjqj + 〈q, q〉λ−1
j p2

j − Γj , j = 1, . . . , N , (7.2)

where c ∈ R. Thus, the finite dimesional Hamiltonian systems (F 1
m) defined by

F 1
m =

∑N
j=1 λ

m
j E

1
j , m = 0, . . ., i.e.

F 1
m = 2(〈p, q〉+ c)〈λm−1

j p, q〉+ 〈q, q〉〈λm−1
j p, p〉

−
∑

i+j=m−1

(〈Λiq, q〉〈Λjp, p〉 − 〈Λiq, p〉〈Λjp, q〉) (7.3)

are completely integrable. Particularly, with m = 2 the Hamiltonian system (F 1
2 ):

qx =
∂F 1

2

∂p
= 2cΛq − 2〈Λq, q〉p+ 4〈Λp, q〉q + 4〈p, q〉Λq ,

px = −∂F
1
2

∂q
= −2cΛp+ 2〈p, p〉Λq − 4〈Λp, q〉p− 4〈p, q〉Λp ,

(7.4)
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is a new integrable system, which becomes the following spectral problem

φx =

(
(2c+ 4v)λ+ 4u −2w

2sλ −(2c+ 4v)λ− 4u

)
φ (7.5)

with the constraint conditions u = 〈Λp, q〉, v = 〈p, q〉, w = 〈Λq, q〉, s = 〈p, p〉, and

λ = λj , φ = (qj , pj)
T , j = 1, . . . , N . Apparently, the spectral problem (7.5) is new.

(2) The second system is produced by Case 7(i) in Sec 4. The corresponding

r-matrix and involutive systems are respectively

r12(λ, µ) =
2

µ− λP +
2

µ
S, S =


0 g′2 0 0

f ′2 0 −1 0

0 −1 0 0

0 0 0 0

 , (7.6)

and

E2
j = 2cλ−1

j pjqj + (〈q, q〉+ g2)λ−1
j p2

j

+ (〈p, p〉 − f2)λ−1
j q2

j − Γj , j = 1, . . . , N, (7.7)

where c ∈ R, f2 = f2(〈p, q〉), g2 = g2(〈p, q〉) ∈ C∞(R). Hence, the Hamiltonian

system (F 2
2 ) defined by F 2

2 =
∑N
j=1 λ

2
jE

2
j , i.e.

F 2
2 = 2c〈Λp, q〉+ 2〈Λp, q〉〈p, q〉

+ g2〈Λp, p〉 − f2〈Λq, q〉 (7.8)

is completely integrable. Meanwhile the Hamiltonian system (F 2
2 ):

qx =
∂F 2

2

∂p
= 2cΛq + 2〈Λq, p〉q + 2〈p, q〉Λq

+ 2g2Λp+ 〈Λp, p〉g′2q − 〈Λq, q〉f ′2q , (7.9)

px = −∂F
2
2

∂q
= −2cΛp− 2〈Λq, p〉p− 2〈p, q〉Λp

−〈Λp, p〉g′2p+ 2f2Λq − 〈Λq, q〉f ′2p , (7.10)

can be also related to a new 2×2 spectral problem with some constraint conditions.

(3) The third system is derived by Case 7(iv) in Sec. 4. The corresponding

r-matrix and involutive systems are respectively

r12(λ, µ) =
2

µ− λP −
2

µ
S, S =


1 0 0 0

0 0 0 0

0 1 0 0

0 0 c′−1 1

 , (7.11)
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and

E3
j = 2(−〈p, q〉+ c)λ−1

j pjqj + 〈q, q〉λ−1
j p2

j − c−1λ
−1
j q2

j − Γj (7.12)

where c ∈ R and c−1 = c−1(〈p, q〉) ∈ C∞(R). The following Hamiltonian system

(F 3
2 ): 

qx =
∂F 3

2

∂p
= 2cΛq − 〈Λq, q〉(c′−1q + 2p) ,

px = −∂F
3
2

∂q
= −2cΛp+ 2(c−1 + 〈p, p〉)Λq + c−1〈Λq, q〉p ,

(7.13)

is one of their products, where

F 3
2 = 2c〈Λp, q〉 − 〈Λq, q〉(c−1 + 〈p, p〉) . (7.14)

In general, with any c−1 Eq. (7.13) can’t be changed to a 2×2 spectral problem with

some constraints. But with two special c−1: c−1 = 0 and c−1 = 〈p, q〉, Eq. (7.13)

can respectively become the spectral problem [31]

φx =

(
2cλ −2v

2uλ −2cλ

)
φ (7.15)

with the constraint conditions u = 〈p, p〉, v = 〈Λq, q〉, and the spectral problem

φx =

(
2cλ− v −2v

2uλ −2cλ+ v

)
φ (7.16)

with the constraint conditions u = 〈p, q + p〉, v = 〈Λq, q〉. Here in Eqs. (7.15) and

(7.16) λ = λj , φ = (qj , pj)
T , j = 1, . . . , N are set. Equation (7.16) is a new spectral

problem.

We can consider further new integrable systems generated by Theorem 3.1.

The above procedure actually gives an approach how to connect an r-matrix of

finite dimensional system with a spectral problem, which is closely associated with

integrable NLEEs.

8. Algebro-Geometric Solutions

In this section, we connect the integrable NLEEs with the finite dimesional in-

tegrable flows, and solve them with a form of algebro-geometric solutions. Here,

we take two examples: one being the periodic or infinite Toda lattice equation,

the other the AKNS equation with the condition of decay at infinity or periodic

boundary.

8.1. Toda lattice equation

The Toda hierarchy associated with Eq. (5.13) is derived as follows:(
un

vn

)
tj

= JGnj , j = 0, 1, 2, . . . (8.1)
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where {Gnj = J−1KGnj−1}∞j=0 is the Lenard sequence, Gn−1 = (αu−1
n , β)T ∈ Ker J ,

for all α = α(tj), β = β(tj) ∈ C∞(R), the two symmetric operators K, J are

K =

 1

2
un(E − E−1)un un(E − 1)vn

vn(1− E−1)un 2(u2
nE − E−1u2

n)

 ,

J =

(
0 un(E − 1)

(1− E−1)un 0

)
. (8.2)

In particular, with j = 0, β = 1, Eq. (8.1) reads as the Toda lattice

u̇n = un(vn+1 − vn) , v̇n = 2(u2
n − u2

n−1), (8.3)

which can be changed to

ẍn = 2(e2(xn+1−xn) − e2(xn−xn−1)) (8.4)

via the following transformation

un = exn+1−xn , vn = ẋn . (8.5)

It is easy to prove the following theorem.

Theorem 8.1.

(1) Let Ĝn = (Ĝ
(1)
n , Ĝ

(2)
n )T , ∀ Ĝ(1)

n , Ĝ
(2)
n ∈ C∞(R). Then the operator equation

[V (Ĝn), L] = L∗(KĜn)− L∗(JĜn)L

possesses the operator solution

V (Ĝn) = −(E−1un)Ĝ(2)
n E−1 +

1

2
((E−1unĜ

(1)
n )− unĜ(1)

n ) + unĜ
(2)
n E (8.6)

where [· , ·] is the usual commutator; the operator L is defined by Eq. (5.13);

L∗(ξ) = E−1ξ1 + ξ2 + ξ1E , ∀ ξ = (ξ1, ξ2)T , ξ1, ξ2 ∈ C∞(R).

(2) Let us choose the special Ĝn = Gnj , j = −1, 0, 1, . . . , then the Toda hierarchy

(8.1) has the following Lax representation of operator form

Ltj = [W (Gnj ), L] , j = 0, 1, 2, . . . , (8.7)

where the operator W (Gnj ) =
∑j

k=0 V (Gnk−1)Lj−k.

Particularly, the standard Toda Equation (8.4) possesses the Lax representation

of operator form Lt = [W (Gn0 ), L], where the operator W (Gn0 ) = exn+1−xnE −
exn−xn−1E−1, and un, vn in L are substituted by Eq. (8.5).

We have shown that the c-Toda flow and the c-CKdV flow share a common

nondynamical r-matrix, and in particular, this ensures the integrability of their

flows. A calculation of determinant yields their common N -involutive systems

Eα = λαpαqα − p2
α − 〈p, q〉q2

α −
N∑

β 6=α,β=1

(qαpβ − pαqβ)2

λα − λβ
, α = 1, . . . , N, (8.8)
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which are independent and invariant (i.e. Eα(λ, p, q) = Eα(λ, p′, q′)). Apparently,

the functions Fs =
∑N
α=1 λ

s
αEα, s = 0, 1, 2, . . . , are given by

Fs = 〈Λs+1p, q〉 − 〈Λsp, p〉 − 〈p, q〉〈Λsq, q〉

−
∑

j+k=s−1

(〈Λjp, p〉〈Λkq, q〉 − 〈Λjp, q〉〈Λkq, p〉) (8.9)

and {Fm, Fl} = 0, ∀m, l ∈ Z+ implies the Hamiltonian systems (Fs) are completely

integrable.

Let (p0(ts), q0(ts))
T be a solution of the initial problem

∂

∂ts

(
p

q

)
=

(
−∂Fs/∂q
∂Fs/∂p

)
,

(
p

q

)
ts=0

=

(
p0

q0

)
. (8.10)

Set (
pn(ts)

qn(ts)

)
= Hn

T

(
p0(ts)

q0(ts)

)
(8.11)

where HT is defined by Eq. (5.11). Now, we rewrite Eq. (5.12) as a map f : R2N →
R2 defined by

f : (pn, qn)T 7→ (un, vn)T . (8.12)

Then, we have the following theorem.

Theorem 8.2. (un(ts), vn(ts))
T = f(pn(ts), qn(ts)) satisfies the Toda hierarchy

d

dts

(
un

vn

)
= JGns , s = 0, 1, . . . . (8.13)

Particularly, with s = 0 the following calculable method(
p0

q0

)
F0→
(
p0(t)

q0(t)

)
Hn→
(
pn(t)

qn(t)

)
f→
(
un(t)

vn(t)

)
(8.14)

produces a solution of the Toda lattice Equation (8.3). Thus, the standard Toda

Equation (8.4) has the following formal solution

xn(t) =

∫
〈qn(t), qn(t)〉dt . (8.15)

We shall concretely give the expression 〈qn(t), qn(t)〉.
Let us rewrite the element CTC(λ) of Eq. (5.1) as

CTC(λ) ≡ −Q(λ)

K(λ)
, K(λ) =

N∏
α=1

(λ− λα) , (8.16)

and choose N distinct real zero points µ1, . . . , µN of Q(λ). Then, we have

Q(λ) =

N∏
j=1

(λ− µj) , 〈q, q〉 =

N∑
α=1

λα −
N∑
j=1

µj . (8.17)



May 18, 2001 14:25 WSPC/148-RMP 00075

Generalized r-Matrix Structure and Algebro-Geometric Solution 577

Let

πj = ATC(µj) , (8.18)

then it is easy to prove the following proposition.

Proposition 8.1.

{µi, µj} = {πi, πj} = 0 , {πj , µi} = δij , i, j = 1, 2, . . . , N , (8.19)

i.e. πj , µj are conjugated, and thus they are the seperated variables [46].

Write detLTC(λ) = −A2
TC(λ) − BTC(λ)CTC (λ) = − 1

4λ
2 −

∑N
α=1

Eα
λ−λα =

− P (λ)
K(λ) , where Eα is defined by Eq. (8.8), and P (λ) is an N + 2 order polyno-

mial of λ whose first term’s coefficient is 1
4 , then π2

j =
P (µj)
K(µj)

, j = 1, . . . , N. Now,

we choose the generating function

W =

N∑
j=1

Wj(µj , {Eα}Nα=1) =

N∑
j=1

∫ µj(n)

µj(0)

√
P (λ)

K(λ)
dλ (8.20)

where µj(0) is an arbitrarily given constant. Let us view Eα (α = 1, . . . , N) as

actional variables, then angle-coordinates Qα are chosen as

Qα =
∂W

∂Eα
, α = 1, . . . , N,

i.e.

Qα =

N∑
k=1

∫ µk(n)

µk(0)

ω̃α , ω̃α =

∏N
k 6=α,k=1(λ− λk)

2
√
K(λ)P (λ)

dλ , α = 1, . . . , N . (8.21)

Hence, on the symplectic manifold (R2N , dEα ∧ dQα) the Hamiltonian function

F0 =
∑N

α=1Eα produces a linearized flow Q̇α =
∂F0

∂Eα
,

Ėα = 0 .

(8.22)

Thus Qα(n) = Q0
α + t+ cαn , cα =

∑N
k=1

∫ µk(n+1)

µk(n)
ω̃α ,

Eα(n) = Eα(n− 1) ,
(8.23)

where cα are dependent on actional variables {Eα}Nα=1, and independent of t; Q0
α

is an arbitrarily fixed constant.

Choose a basic system of closed paths αi, βi, i = 1, . . . , N of Riemann surface

Γ̄: µ2 = P (λ)K(λ) with N handles. ω̃j (j = 1, . . . , N) are exactly N linearly

independent holomorphic differentials of the first kind on this Riemann surface Γ̄.

ω̃j are normalized as ωj =
∑N
l=1 rj,lω̃l, i.e. ωj satisfy∮

αi

ωj = δij ,

∮
βi

ωj = Bij ,
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where B = (Bij)N×N is symmetric and the imaginary part ImB of B is a positive

definite matrix.

By Riemann Theorem [25] we know: µk(n) satisfies
∑N

k=1

∫ µk(n)

µk(0)
ωj = φj , φj =

φj(n, t)
4
=
∑N

l=1 rj,l(Q
0
l + t + cln), j = 1, . . . , N , if and only if µk(n) are the

zero points of the Riemann-Theta function Θ̃(P ) = Θ(A(P ) − φ − K) which

has exactly N zero points, where A(P ) = (
∫ P
P0
ω1, . . . ,

∫ P
P0
ωN )T , φ = φ(n, t) =

(φ1(n, t), . . . , φN (n, t))T , K ∈ CN is the Riemann constant vector, P0 is an

arbitrarily given point on Riemann surface Γ̄.

Because of [18]

1

2πi

∮
γ

λd ln Θ̃(P ) = C1(Γ̄) (8.24)

where the constant C1(Γ̄) has nothing to do with φ; γ is the boundary of simple

connected domain obtained through cutting the Riemann surface Γ̄ along closed

paths αi, βi. Thus, we have a key equality

N∑
k=1

µk(n) = C1(Γ̄)− Resλ=∞1λd ln Θ̃(P )− Resλ=∞2λd ln Θ̃(P ) (8.25)

where ∞1 := (0,
√
P (z−1)K(z−1)|z=0), ∞2 := (0,−

√
P (z−1)K(z−1)|z=0).

Through a lengthy careful calculation and combining Eq. (8.17), we obtain

〈qn(t), qn(t)〉 =
N∑
α=1

λα − C1(Γ̄) +
d

dt

(
ln

Θ(φ(n, t) +K + η1)

Θ(φ(n, t) +K + η2)

)
(8.26)

where the jth component of ηi (i = 1, 2) is ηi,j =
∫ P0

∞i
ωj . By the Riemann surface

properties, we can also have
∑N

l=1 rj,lcl =
∫∞1

∞2
ωj =

∑N
l=1 rj,l

∫∞1

∞2
ω̃l which implies

cl =
∫∞1

∞2
ω̃l =

∫∞1

P0

∏N
i6=l,i=1(λ−λi)√
P (λ)K(λ)

dλ. So, the standard Toda Equation (8.4) has the

following explicit solution, called algebro-geometric solution

xn(t) = ln
Θ(Un+ V t+ Z)

Θ(U(n+ 1) + V t+ Z)
+ Cn+Rt+ const . (8.27)

where U = R̂Ĉ, V = R̂Ĵ , Z = R̂Q0 + K + η1 with Ĉ = (c1, . . . , cN)T , Ĵ =

(1, . . . , 1)T , Q0 = (Q0
1, . . . , Q

0
N)T , R =

∑N
α=1 λα − C1(Γ̄), while matrix R̂ =

(rj,l)N×N is determined by the relation
∑N

l=1 rj,l
∮
αi
ω̃l = δij , and C is certain

constant which can be determined by the algebro-geometric properties on the

Riemann surface Γ̄ [16]. The symmetric matrix B = (Bij)N×N in Θ function is

determined by
∑N

l=1 rj,l
∮
βi
ω̃l = Bij .

Hence, the algebro-geometric solution of Toda lattice Equation (8.3) is
un(t) = exn+1−xn = eC · Θ2(U(n+ 1) + V t+ Z)

Θ(U(n+ 2) + V t+ Z)Θ(Un+ V t+ Z)
,

vn(t) = ẋn = R+
d

dt
ln

Θ(Un+ V t+ Z)

Θ(U(n+ 1) + V t+ Z)
.

(8.28)
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Obviously, the algebro-geometric solution un(t) and vn(t) given by Eq. (8.28) are

quasi-periodic functions, and they are periodic iff U = M
N , where M is a N -

dimensional integer column vector. It is easy to see that Eq. (8.28) is the finite-band

solution of Toda lattice Equation (8.3) if λ1, . . . , λN are chosen as the eigenvalues

of Toda spectral problem (5.13).

8.2. AKNS equation

In Sec. 5.3 we have shown that the constrained AKNS flow shares a common

r-matrix with the constrained Dirac flow, therefore they are integrable. Now, we

derive the algebro-geometric solution for the second order AKNS Equation (8.31).

It is well-known that the AKNS hierarchy is given by(
u

v

)
tj

= JGj , j = 0, 1, 2, . . . , (8.29)

where {Gj = J−1KGj−1}∞j=0 is the Lenard sequence, with G−1 = (0, 0)T and

G0 = (v, u)T , the two symmetric operators K, J are (∂ = ∂
∂x , ∂∂

−1 = ∂−1∂ = 1).

K =

(
2u∂−1u ∂ − 2u∂−1v

∂ − 2v∂−1u −2v∂−1v

)
, J = 2

(
0 −1

1 0

)
. (8.30)

A representative equation (j = 2) of Eq. (8.29) is

ut = −1

2
uxx + u2v, vt =

1

2
vxx − v2u, t = t2 . (8.31)

The independentN -involutive system of the constrained AKNS flow is expressed

by Eq. (5.41). Similarly, we consider the following Hamiltonian functions

FAKNSs =

N∑
j=1

λsjE
AKNS
j

= 2〈Λsp, q〉 −
∑

j+k=s−1

(〈Λjp, p〉〈Λkq, q〉 − 〈Λjp, q〉〈Λkq, p〉) . (8.32)

Let (p(x, ts), q(x, ts))
T be the involutive solution of the consistent Hamiltonian

canonical equations (HAKNS), (FAKNSs ). Then, we have the following theorem.

Theorem 8.3. u = −〈q(x, tj), q(x, tj)〉, v = 〈p(x, tj), p(x, tj)〉, j = 0, 1, 2, . . . ,

satisfy the higher-order AKNS Equation (8.29). Particularly, Eq. (8.31) is solved

with the following solution:

u = −〈q(x, t2), q(x, t2)〉, v = 〈p(x, t2), p(x, t2)〉 , (8.33)

where (p(x, t2), q(x, t2))T is the involutive solution of the consistent Hamiltonian

systems (HAKNS), (FAKNS2 ).
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In the following procedure we shall express Eq. (8.33) in a form of algebro-

geometric solution. To do so, let us rewrite Eq. (5.35) as follows:

LAKNS =

(
AAKNS(λ) BAKNS(λ)

CAKNS(λ) −AAKNS(λ)

)
(8.34)

where

AAKNS(λ) = 1 +

N∑
j=1

1

λ− λj
pjqj , (8.35)

BAKNS(λ) = −
N∑
j=1

1

λ− λj
q2
j , (8.36)

CAKNS(λ) =

N∑
j=1

1

λ− λj
p2
j . (8.37)

Note that BAKNS(λ), CAKNS(λ) can be changed to the following fractional form:

BAKNS(λ) ≡ −〈q, q〉QB(λ)

K(λ)
, CAKNS(λ) ≡ 〈p, p〉QC(λ)

K(λ)
, (8.38)

where

〈q, q〉QB(λ) =
N∑
j=1

q2
j

N∏
k=1,k 6=j

(λ− λk) ,

〈p, p〉QC(λ) =
N∑
j=1

p2
j

N∏
k=1,k 6=j

(λ− λk) ,

K(λ) =
N∏
j=1

(λ− λj) .

Respectively choosing N − 1 (N > 1) distinct real zero points µB1 , . . . , µ
B
N−1 and

µC1 , . . . , µ
C
N−1 of QB(λ) and QC(λ) leads to

N−1∑
k=1

µBk = A1 −
〈Λq, q〉
〈q, q〉 ,

N−1∑
k=1

µCk = A1 −
〈Λp, p〉
〈p, p〉 , (8.39)

(
A1 −

N−1∑
k=1

µBk

)2

−
N−1∑
k=1

(µBk )2 = 2A2 −A2
1 + 2

〈Λ2q, q〉
〈q, q〉 , (8.40)

(
A1 −

N−1∑
k=1

µCk

)2

−
N−1∑
k=1

(µCk )2 = 2A2 −A2
1 + 2

〈Λ2p, p〉
〈p, p〉 , (8.41)
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where A1 =
∑N
j=1 λj , A2 =

∑N
k,j=1,j<k λjλk are two constants. One hand, ux =

−2〈q, qx〉 = −2〈q, ∂HAKNS∂p 〉 = −2〈Λq, q〉 − 2uc0(t), here c0(t) is an arbitrarily fixed

function of t. Thus from Eq. (8.40) we have

∂

∂x
lnu = 2A1 − 2

N−1∑
k=1

µBk − 2c0(t) . (8.42)

On the other hand, ut2 = −2〈q, qt2〉 = −2〈q, ∂F
AKNS
2

∂p 〉 = −2〈Λ2q, q〉. This is com-

bined with Eq. (8.40) to give the equality

∂

∂t2
lnu =

(
A1 −

N−1∑
k=1

µBk

)2

−
N−1∑
k=1

(µBk )2 − 2A2 +A2
1 . (8.43)

So, we obtain

u(x, t) = u(x0, t0) exp

(∫ t

t0

[(
A1 −

N−1∑
k=1

µBk

)2

−
N−1∑
k=1

(µBk )2 − 2A2 +A2
1

]
dt

+

∫ x

x0

[
2A1 − 2

N−1∑
k=1

µBk − 2c0(t)

]
dx

)
, t = t2 , (8.44)

where x0, t0 are two fixed initial values. Similarly, v(x, t) has the following repre-

sentation

v(x, t) = v(x0, t0) exp

(
−
∫ t

t0

[(
A1 −

N−1∑
k=1

µCk

)2

−
N−1∑
k=1

(µCk )2 − 2A2 +A2
1

]
dt

−
∫ x

x0

[
2A1 − 2

N−1∑
k=1

µCk − 2c0(t)

]
dx

)
, t = t2 . (8.45)

Since Eqs. (8.44) and (8.45) solve the AKNS equation (8.31), then in order to

obtain their explicit form it needs calculating the four key expressions
∑N−1
k=1 (µJk )s,

J = B,C; s = 1, 2. For that purpose, we follow the approach in the case of Toda

lattice equation. For the present two set of Darboux coordinates µJj , J = B,C;

j = 1, . . . , N − 1, we have the following key equalities like Eq. (8.25)

N−1∑
j=1

(µJj )k = Ck(Γ)−
2∑
s=1

Resλ=∞sλ
kd ln Θ(A(P )− φ−KJ) , (8.46)

J = B,C; k = 1, . . . , N − 1 ,

where Ck(Γ) is a constant [36, 54] only determined by the compact Riemann

surface Γ (genus = N − 1): µ2 = PAKNS(λ)K(λ), PAKNS(λ) = K(λ) +∑N
j=1 E

AKNS
j

∏N
k 6=j,k=1(λ − λk); ∞1 = (0,

√
PAKNS(z−1)K(z−1)|z=0),∞2 =

(0,−
√
PAKNS(z−1)K(z−1)|z=0); A(P ) =

∫ P
P0
ω is an Abel map in which P0

is an arbitrarily fixed point on Γ, ω = (ω1, . . . , ωN−1)T , ωj =
∑N−1

l=1 rj,lω̃l =
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∑N−1
l=1 rj,l

∏N
k 6=l,k=1(λ−λk)

2
√
K(λ)PAKNS(λ)

dλ is a normalized holomorphic differential form, and rj,l

is the normalized factor; the jth component φj(x, t) of N − 1 dimensional vector φ

equals to
∑N−1

l=1 rj,l(Q
0
l + 1

2λlx+ 1
2λ

2
l t+Cl(t) + C̃l(x)) with the arbitrary constant

Q0
l and functions Cl(t), C̃l(x) ∈ C∞(R); KB, KC ∈ CN−1 are the two Riemann

constant vectors respectively associated with the Darboux coordinates µBj , µ
C
j ;

Riemann-Theta function [34] Θ(ξ) is defined on Riemann surface Γ.

A lengthy calculation of Residue at ∞s, s = 1, 2 for k = 1, 2 yields

N−1∑
j=1

µJj = C1(Γ)− ∂

∂x
ln

ΘJ
1

ΘJ
2

, (8.47)

N−1∑
j=1

(µJj )2 = C2(Γ) +
∂

∂t
ln

ΘJ
1

ΘJ
2

− ∂2

∂x2
ln ΘJ

1 ΘJ
2 , (8.48)

where ΘJ
s = Θ(φ + KJ +ηs), J = B,C, and ηs,j =

∫ P0

∞s
ωj , (s = 1, 2) is the jth

component of the N − 1 dimensional vector ηs.

Substituting the above equalities into Eqs. (8.44) and (8.45), and sorting them,

we obtain the explicit solution of the AKNS Equation (8.31):

u(x, t) = u(x0, t0)ea(t−t0)+2(b−c0(t))(x−x0) ΘB
1

ΘB
2

∣∣∣∣∣
t=t0

(
ΘB

2

ΘB
1

)2
∣∣∣∣∣
x=x0

× ΘB
1

ΘB
2

exp

(∫ t

t0

[
∂2

∂x2
ln ΘB

1 ΘB
2 +

(
b+

∂

∂x
ln

ΘB
1

ΘB
2

)2
]
dt

)
,

(8.49)

v(x, t) = v(x0, t0)e−a(t−t0)−2(b−c0(t))(x−x0) ΘC
2

ΘC
1

∣∣∣∣∣
t=t0

(
ΘC

1

ΘC
2

)2
∣∣∣∣∣
x=x0

× ΘC
2

ΘC
1

exp

(∫ t

t0

[
∂2

∂x2
ln ΘC

2 ΘC
1 +

(
b+

∂

∂x
ln

ΘC
2

ΘC
1

)2
]
dt

)
,

(8.50)

where a = A2
1 − C2(Γ) − 2A2, b = A1 − C1(Γ) are two constants, c0(t) ∈ C∞(R)

is an arbitrarily given function of t, and x0, t0 are the initial values. Therefore, we

have the following theorem.

Theorem 8.4. The AKNS Equation (8.31) has the explicit solution (8.49) and

(8.50) given by the form of Riemann-Theta function, which is called the algebro-

geometric solution of the AKNS equation (8.31).
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An analogous calculational process will lead to the algebro-geometric solution

of the higher-order AKNS Equation (8.29).

9. Conclusions and Problems

In finite dimensional case, Lax matrix is enough to provide many important

integrable properties like r-marix, Hamiltonian, integrability, Darboux coordinates,

and even later algebro-geometric solution. Therefore we specially stress to use the

Lax matrix instead of the Lax pair in finite dimensional case.

The generalized r-matrix structure is given to emphasize the classification and

united sketch of finite dimensional integrable systems. We have already seen that

only is there one concrete r-matrix structure, then the corresponding Hamiltonian

flows are surely integrable and even in some cases the associated spectral problems

are also new.

In the paper, we develope our generalized structure to become a kind of method

to solve some integrable equations with the algebro-geometric solutions. This is an

extension of nonlinearization methods [8]. It is found that this procedure can be

also applied into other integrable NLEEs [54, 53, 19]. In this sense, we successfully

realize a procedure from finite dimensional flows to infinite dimensional systems

when we have some constrained or restricted relation between them. Of course,

there are still other methods to solve integrable NLEEs. Recently, Deift, Its and

Zhou [15, 17] obtained the Θ-function solutions of some integrable NLEEs like the

KdV, MKdV, nonlinear Schrödinger equation by using Riemann–Hilbert asymp-

totic method. All these methods are still under the development.

It should be pointed out that our procedure is carried in the symplectic space

(R2N , dp ∧ dq) (i.e. corresponding to the Bargmann constraint). How about the

case restricted on a subsymplectic manifold in the space R2N (i.e. corresponding to

the C. Neumann constraint)? This is a difficult problem. Although r-matrix works

out [55], and there is no answer about the algebro-geometric solution up to now.

We have known that the c-Toda (or r-Toda) flow and the c-CKdV (or r-Toda)

flow share the same r-matrix as well as the common Lax matrix and involutive

conserved integrals in the whole space R2N (or on certain symplectic submanifold in

R2N ). Therefore a further conjecture is: whether any finite dimensional continuous

Hamiltonian flow can be associated with a finite dimensional discrete symplectic

map such that they share a common Lax matrix? If it is right, then the discrete

integrable systems will be mostly enlarged.
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