A NOTE ON r-MATRIX of the Peakon Dynamics

Zhijun Qiao ${ }^{*}$
Department of Mathematics
The University of Texas Pan-American
1201 West University Drive, Edinburg, TX 78539, USA

Abstract

This paper deals with the r-matrix of the peakon dynamical systems. Our result shows that there does not exist constant r-matrix for the peakon dynamical system.

Keywords: r-matrix Structure, Peakon Systems.
AMS Subject: 35Q53; 58F07; 35Q35
PACS: 03.40.Gc; 03.40Kf; 47.10.+g
In 1993, Camassa and Holm proposed a shallow water equation and discussed the peaked-soliton (peakon) solution of the equation [1]. Later in 1996, Ragnisco and Bruschi [2] showed the integrability of the finite-dimensional peakon system through constructing a constant r-matrix. Their starting point is the following Lax matrix (1). The r-matrix is usually dynamical in the framework of the r-matrix approach located in the fundamental Poisson bracket [3]. Ragnisco and Bruschi claimed that for a particular choice of the relevant parameters in the Hamiltonian (the one corresponding to the pure peakons case) the r-matrix becomes essentially constant [2]. In ref. [4], Qiao extended the Camassa-Holm (CH) equation to the whole integrable CH hierarchy, including positive and negative members in the hierarchy, and studied r-matrix structures of the constrained CH systems and algebraic-geometric solutions on a symplectic submanifold through using the constraint approach [5]. In this note, what we want to show is no constant r-matrix for the CH peakon system. Let us discuss below.

For the peakon system, let us consider the Lax matrix which is given in ref. [2]:

$$
\begin{equation*}
L=\sum_{i, j=1}^{N} L_{i j} E_{i j} \tag{1}
\end{equation*}
$$

where

$$
\begin{align*}
L_{i j} & =\sqrt{p_{i} p_{j}} A_{i j} \tag{2}\\
A_{i j} & =A\left(q_{i}-q_{j}\right)=e^{-\frac{1}{2}\left|q_{i}-q_{j}\right|} \tag{3}
\end{align*}
$$

[^0]In Eq. (3),

$$
\begin{equation*}
A(x)=e^{-\frac{1}{2}|x|} \tag{4}
\end{equation*}
$$

and $A(x)$ has the following properties:

$$
\begin{aligned}
A^{\prime}(x) & =-\frac{1}{2} \operatorname{sgn}(x) A(x), \\
A_{i j} & =A_{j i}, A_{i i}=1, \\
A_{i j}^{\prime} & =A^{\prime}\left(q_{i}-q_{j}\right)=-A^{\prime}\left(q_{j}-q_{i}\right)=-A_{j i}^{\prime}, A_{i i}^{\prime}=0, \\
\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}\right) A(x) A(y) & =A^{\prime}(x) A(y)+A(x) A^{\prime}(y) \\
& =-\frac{1}{2} A(x) A(y)[\operatorname{sgn}(x)+\operatorname{sgn}(y)], \\
\left.\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}\right) A(x) A(y)\right|_{y=-x} & =0 .
\end{aligned}
$$

We work with the matrix basis $E_{i j}$:

$$
\left(E_{i j}\right)_{k l}=\delta_{i k} \delta_{j l}, i, j, k, l=1, \ldots, N
$$

To have the r-matrix structure, we consider the so-called fundamental Poisson bracket [3]:

$$
\begin{equation*}
\left\{L_{1}, L_{2}\right\}=\left[r_{12}, L_{1}\right]-\left[r_{21}, L_{2}\right], \tag{5}
\end{equation*}
$$

where

$$
\begin{aligned}
L_{1} & =L \otimes \mathbf{1}=\sum_{i, j=1}^{N} L_{i j} E_{i j} \otimes \mathbf{1}, \\
L_{2} & =\mathbf{1} \otimes L=\sum_{k, l=1}^{N} L_{k l} \mathbf{1} \otimes E_{k l}, \\
r_{12} & =\sum_{l, k=1}^{N} r_{l k} E_{l k} \otimes\left(E_{l k}+E_{k l}\right), \\
r_{21} & =\sum_{l, k=1}^{N} r_{l k}\left(E_{l k}+E_{k l}\right) \otimes E_{l k}, \\
\left\{L_{1}, L_{2}\right\} & =\sum_{i, j, k, l=1}^{N}\left\{L_{i j}, L_{k l}\right\} E_{i j} \otimes E_{k l} .
\end{aligned}
$$

Here $\left\{L_{i j}, L_{k l}\right\}$ is of sense under the standard Poisson bracket of two functions, $\mathbf{1}$ is the $N \times N$ unit matrix, and $r_{l k}$ are to be determined. In Eq. (5), $[, \cdot$,$] means the usual commutator$ of matrix.

Now, let us calculate the left hand side of Eq. (5).

$$
\begin{gathered}
\frac{\partial L_{i j}}{\partial q_{m}}=\sqrt{p_{i} p_{j}} A_{i j}^{\prime}\left(\delta_{i m}-\delta_{j m}\right) \\
\frac{\partial L_{k l}}{\partial p_{m}}=\frac{A_{k l}}{2 \sqrt{p_{k} p_{l}}}\left(p_{l} \delta_{k m}+p_{k} \delta_{l m}\right) \\
\left\{L_{i j}, L_{k l}\right\}=\sum_{m=1}^{N}\left(\frac{\partial L_{i j}}{\partial q_{m}} \frac{\partial L_{k l}}{\partial p_{m}}-\frac{\partial L_{k l}}{\partial q_{m}} \frac{\partial L_{i j}}{\partial p_{m}}\right) \\
=\frac{1}{2} \sum_{m=1}^{N}\left[\sqrt{p_{i} p_{j} A_{i j}^{\prime}} \frac{A_{k l}}{\sqrt{p_{k} p_{l}}}\left(\delta_{i m}-\delta_{j m}\right)\left(p_{p l} \delta_{k m}+p_{k} \delta_{l m}\right)\right. \\
\left.=-\sqrt{p_{k} p_{l}} A_{k l}^{\prime} \frac{A_{i j}}{\sqrt{p_{i} p_{j}}}\left(\delta_{k m}-\delta_{l m}\right)\left(p_{j} \delta_{i m}+p_{i} \delta_{j m}\right)\right] \\
=\frac{1}{2} \sqrt{p_{j} p_{l}} \delta_{i k}\left(\sqrt{\frac{p_{i}}{p_{k}}} A_{i j}^{\prime} A_{k l}-\sqrt{\frac{p_{k}}{p_{i}}} A_{k l}^{\prime} A_{i j}\right)+\frac{1}{2} \sqrt{p_{j} p_{k}} \delta_{i l}\left(\sqrt{\frac{p_{i}}{p_{l}}} A_{i j}^{\prime} A_{k l}+\sqrt{\frac{p_{l}}{p_{i}}} A_{k l}^{\prime} A_{i j}\right) \\
\\
-\frac{1}{2} \sqrt{p_{i} p_{l}} \delta_{j k}\left(\sqrt{\frac{p_{j}}{p_{k}}} A_{i j}^{\prime} A_{k l}+\sqrt{\frac{p_{k}}{p_{j}}} A_{k l}^{\prime} A_{i j}\right)-\frac{1}{2} \sqrt{p_{i} p_{k}} \delta_{j l}\left(\sqrt{\frac{p_{j}}{p_{j}}} A_{i j}^{\prime} A_{k l}-\sqrt{\frac{p_{l}}{p_{j}}} A_{k l}^{\prime} A_{i j}\right),
\end{gathered}
$$

where the supscript / means $A^{\prime}(x)$ with the argument.
Thus, we obtain

$$
\begin{aligned}
\left\{L_{1}, L_{2}\right\}= & \sum_{i, j, k, l=1}^{N}\left\{L_{i j}, L_{k l}\right\} E_{i j} \otimes E_{k l} \\
= & \frac{1}{2} \sum_{j, k, l=1}^{N}\left[\sqrt{p_{k} p_{j}} A_{k l}^{\prime} A_{j l}\left(E_{j l} \otimes E_{k l}-E_{k l} \otimes E_{j l}\right)\right. \\
& +\sqrt{p_{k} p_{j}} A_{l k}^{\prime} A_{l j}\left(E_{l k} \otimes E_{l j}-E_{l j} \otimes E_{l k}\right) \\
& \left.+\sqrt{p_{k} p_{j}}\left(A_{l k} A_{j l}\right)^{\prime}\left(E_{l k} \otimes E_{j l}-E_{j l} \otimes E_{l k}\right)\right] .
\end{aligned}
$$

Next, we compute the right hand side of Eq. (5). Before doing that, let us give some simple tensor product of the matrix basis $E_{i j}$:

$$
\begin{aligned}
\left(E_{i j} \otimes E_{s t}\right)\left(E_{k l} \otimes \mathbf{1}\right) & =\delta_{j k} E_{i l} \otimes E_{s t}, \\
\left(E_{k l} \otimes \mathbf{1}\right)\left(E_{i j} \otimes E_{s t}\right) & =\delta_{i l} E_{k j} \otimes E_{s t}, \\
\left(E_{i j} \otimes E_{s t}\right)\left(\mathbf{1} \otimes E_{k l}\right) & =\delta_{t k} E_{i j} \otimes E_{s l}, \\
\left(\mathbf{1} \otimes E_{k l}\right)\left(E_{i j} \otimes E_{s t}\right) & =\delta_{l s} E_{i j} \otimes E_{k t}, \\
E_{k l} E_{s t} & =\delta_{l s} E_{k t} .
\end{aligned}
$$

So, we have

$$
\begin{aligned}
& {\left[r_{12}, L_{1}\right]-\left[r_{21}, L_{2}\right] } \\
= & \sum_{i, j, k, l=1}^{N} r_{l k} L_{i j}\left(\left[E_{l k} \otimes\left(E_{l k}+E_{k l}\right), E_{i j} \otimes \mathbf{1}\right]-\left[\left(E_{l k}+E_{k l}\right) \otimes E_{l k}, \mathbf{1} \otimes E_{i j}\right]\right)
\end{aligned}
$$

$$
\begin{aligned}
= & \sum_{i, j, k, l=1}^{N} r_{l k} L_{i j}\left(\delta_{i k} E_{l j} \otimes\left(E_{l k}+E_{k l}\right)-\delta_{i k}\left(E_{l k}+E_{k l}\right) \otimes E_{l j}\right. \\
& \left.+\delta_{j l}\left(E_{l k}+E_{k l}\right) \otimes E_{i k}-\delta_{j l} E_{i k} \otimes\left(E_{l k}+E_{k l}\right)\right) \\
= & \sum_{j, k, l=1}^{N} r_{l k} L_{k j}\left(E_{l j} \otimes\left(E_{l k}+E_{k l}\right)-\left(E_{l k}+E_{k l}\right) \otimes E_{l j}\right) \\
& +\sum_{j, k, l=1}^{N} r_{k l} L_{j k}\left(-E_{j l} \otimes\left(E_{l k}+E_{k l}\right)+\left(E_{l k}+E_{k l}\right) \otimes E_{j l}\right) \\
= & \sum_{j, k, l=1}^{N} r_{l k} L_{j k}\left(\left(E_{l j}+E_{j l}\right) \otimes\left(E_{l k}+E_{k l}\right)-\left(E_{l k}+E_{k l}\right) \otimes\left(E_{l j}+E_{j l}\right)\right),
\end{aligned}
$$

where we set $r_{l k}=-r_{k l}$ and used $L_{j k}=L_{k j}$.
After comparing both sides of the fundamental Poisson bracket (5), we should have the following 2 equalities:

$$
\begin{align*}
r_{l k} & =\frac{1}{2} \frac{A_{k l}^{\prime} A_{j l}}{A_{j k}} \tag{6}\\
r_{l j}-r_{l k} & =\frac{1}{2} \frac{\left(A_{l k} A_{j l}\right)^{\prime}}{A_{j k}} \tag{7}
\end{align*}
$$

In fact, the 2 nd one is a natural result derived from the 1st one. Thus, for the $\mathbf{C H}$ peakons case we have

$$
\begin{align*}
r_{l k} & =\frac{1}{2} \frac{A_{k l}^{\prime} A_{j l}}{A_{j k}} \\
& =-\frac{1}{4} \operatorname{sgn}\left(q_{k}-q_{l}\right) \frac{A_{k l} A_{j l}}{A_{j k}} \\
& =\frac{1}{4} \operatorname{sgn}\left(q_{l}-q_{k}\right) e^{-\frac{1}{2}\left(\left|q_{l}-q_{k}\right|+\left|q_{j}-q_{l}\right|-\left|q_{j}-q_{k}\right|\right)}, \forall \mathbf{j} \in \mathbf{Z}^{+} \tag{8}
\end{align*}
$$

This equality holds for arbitrary $j \in Z^{+}$. Obviously, only in the cases of $j>l>k$ or $j<l<k$ Eq. (8) becomes constant, namely, $\pm \frac{1}{4}$. But for other j, apparently Eq. (8) is NOT constant.

So, we think that the constant matrix given in ref. [2]

$$
r_{12}=a \sum_{l, k=1}^{N} \operatorname{sgn}\left(q_{l}-q_{k}\right) E_{l k} \otimes\left(E_{l k}+E_{k l}\right), a=\mathrm{constant}
$$

is not an r-matrix for the CH peakon dynamical system.
Discussions for more general case of Lax matrix are seen in ref. [6].

Acknowledgments

This work has been supported by the UTPA-FRC.

References

[1] R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett. 71(1993), 1661-1664.
[2] O. Ragnisco and M. Bruschi, Peakons, r-matrix and Toda Lattice, Physica A 228(1996), 126-149.
[3] L. D. Faddeev and L. A. Takhtajan, Hamiltonian Methods in the Theory of Solitons (Springer-Verlag, Berlin, 1987).
[4] Zhijun Qiao, The Camassa-Holm hierarchy, N-dimensional integrable systems, and algebro-geometric solution on a symplectic submanifold, Comm. Math. Phys. 239, 309-341.
[5] Zhijun Qiao, Generalized r-matrix structure and algebro-geometric solutions for integrable systems, Rev. Math. Phys. 13(2001), 545-586.
[6] Zhijun Qiao, r-matrix structure for general even functions in finite-dimensional Hamiltonian systems, preprint, 2008.

[^0]: *E-mail address: qiao@utpa.edu

