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Chapter 24
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Abstract

We use ther-matrix formulation to show the integrability of geodesic flow on an
N-dimensional space with coordinatesqk, with k = 1, . . . ,N, equipped with the co-
metricgi j = e−|qi−q j |(2−e−|qi−q j |). This flow is canonically generated by a quadratic
conserved quantity of the integrable partial differential equationmt + umx + 3mux =
0, m= u−α2uxx (α is a constant). The isospectral eigenvalue problem associated with
this equation is used to find a Lax matrix for the geodesic flow. By employing this Lax
matrix we obtain its dynamicalr-matrix.
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structure.

1 Introduction

The b = 3 Peakon Equation and Its Isospectral Problem

We begin with the caseb = 3 of theb−weighted peakon equation. This is the evolutionary
equation defined on the real line as,

mt +umx +bmux = 0, m= u−α2uxx, lim
|x|→∞

m= 0, (1.1)

in which the subscripts denote partial derivatives with respect to the independent variables
x andt. For any values of the dimensionless constantb > 1 and constant lengthscaleα, this
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equation admits stable exactN-peakon solutions

u(x, t) =
N

∑
i=1

pi(t)e−|x−qi(t)|/α , (1.2)

in which the2N time-dependent functionspi(t) andqi(t), i = 1,2, . . . ,N, satisfy a system
of ordinary differential equations whose character depends on the value of the bifurcation
parameterb. The caseb = 2 in (1.1) is the dispersionless limit of the integrable Camassa-
Holm (CH) equation that was discovered for shallow water waves in [2]. Later, the CH
equation is generalized to the CH integrable hierarchy in [6], which presents the relationship
between the CH hierarchy of PDEs and finite-dimensional integrable systems and gives
algebraic-geometric solutions on some symplectic sub-manifold. A general idea is provided
to generate the integrable hierarchy in [8]. Very recently, we found new cusp and smooth
soliton solutions for the CH equation [10].

An equation equivalent to the caseb = 3 of the peakon equation (1.1) was singled out
for special attention among a family of related equations by Degasperis and Procesi in [3].
The peakon equation (1.1) was shown to be completely integrable for the caseb = 3 in [4].
The Lax pair consists of a third order eigenvalue problem and a second-order evolutionary
equation for the eigenfunction,

ψxxx =
1

α2 ψx−λmψ, (1.3)

ψt = − 1
α2λ

ψxx−uψx +(ux +
2
3λ

)ψ. (1.4)

Compatibilityψxxxt = ψtxxx implies Eq. (1.1) withb = 3 provideddλ/dt = 0. Thus, equa-
tion (1.1) withb = 3, namely, the Degasperis-Procesi (DP) equation [3]

mt +umx +3mux = 0, m= u−α2uxx, (1.5)

was shown to be integrable by the inverse spectral transform for the isospectral eigenvalue
problem (1.3) and to possess an infinite sequence of conservation laws. Recently, the DP
equation is extended to two different integrable hierarchies, which are restricted to3× 3
constrained finite-dimensional integrable systems and have exact solutions in parametric
form [7, 9]. Similar to the CH nonlocal solitons, we also found new peakons, cuspon and
smooth soliton solutins for the DP equation [12].

Henceforth, we shall setα = 1 for the sake of simplicity in notation (The length scale
α is easily restored by using dimensional considerations.)

The first few conservation laws are given in the notation of [4] withα = 1 by

H−1 = 1
6

R
u3dx, H0 =

R
mdx,

H1 = 1
2

R
(v2

xx+5v2
x +4v2)dx, H5 =

R
m1/3dx.

(1.6)

We shall pay special attention to the quadratic conservation lawH1, in which the quantityv
is defined as

v := (4−∂2
x)
−1u≡ (4−∂2

x)
−1(1−∂2

x)
−1m. (1.7)
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Lax Matrix for N-Peakon Dynamics

Substituting theN-peakon solution,

u(x, t) =
N

∑
j=1

p j(t)e−|x−q j (t)|, m(x, t) = 2
N

∑
j=1

p j(t)δ(x−q j(t)), (1.8)

into the isospectral eigenvalue problem (1.3) yields

1
λ

ψ(x, t) =
1
2

N

∑
j=1

[
1+sgn(x−q j(t))

(
1−e−|x−q j (t)|

)]
p jψ(q j(t)) . (1.9)

Settingψ(qi(t), t) = ψi(t) then gives the following matrix eigenvalue problem,

2
λ

ψi =
N

∑
j=1

L̃i j ψ j , (1.10)

where

L̃i j =
[
1+sgn(qi−q j)

(
1−e−|qi−q j |

)]
p j . (1.11)

Let L̃ denote theN×N matrix L̃i j . One can use the two conserved quantities trL̃ and tr̃L2

to solve the 2-peakon subdynamics of the theN-peakon dynamicsqk, pk, with k = 1, . . . ,N,
α = 1, satisfying

ṗ j = 2 ∑N
k=1 p j pk sgn(q j −qk)e−|q j−qk|,

q̇ j = ∑N
k=1 pke−|q j−qk| .

(1.12)

Two-peakon interaction has explicit formulas for its phase shifts as functions of the asymp-
totic speeds [4].

2 A Geodesic Pulson Flow Related toB = 3 Peakons

The quantity used for determining the two-peakonN = 2 collision laws,

H1 =
1
2

trL̃2 =
1
2

N

∑
i, j=1

pi p je
−|qi−q j |

(
2−e−|qi−q j |

)
, (2.1)

is also the quadratic conservation lawH1 in (1.6) for theb= 3 peakon equation (1.5), when
H1 is evaluated on theN−peakon solution (1.8).

The dynamics (1.12) is a non-canonical Hamiltonian system. However, the canonical
Hamiltonian dynamics generated byH1 is geodesic motion on anN-dimensional space with
co-metricgi j = e−|qi−q j |(2−e−|qi−q j |). As we shall show by finding itsr−matrix structure
in the remainder of the present paper, the geodesic motion canonically generated by the
conservation lawH1 = TrL̃2 in (2.1) provides a new2N-dimensional integrable system,

q̇k =
∂H1

∂pk
=

N

∑
j=1

p je
−|qk−q j |

(
2−e−|qk−q j |

)
, (2.2)

ṗk = −∂H1

∂qk
=−2pk

N

∑
j=1

p jsgn(q j −qk)e−|qk−q j |
(

1−e−|qk−q j |
)

. (2.3)
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We emphasize that these canonical geodesicH1-dynamics forpk,qk, are not the same as
the non-canonicalN−peakon dynamics in (1.12). Rather, this is the geodesic flow for the
dynamics of “pulson solutions” associated with the HamiltonianH1 in (1.6). In fact, the
canonical geodesic flow (2.2-2.3) is obtained by substituting theN−pulson solution

v(x, t) =
N

∑
j=1

p j(t)e−|x−q j (t)|
(

2−e−|x−q j (t)|
)

(2.4)

into the 5th-order evolutionary equation defined on the real line by,

mt =−vmx−2mvx =−(m∂x +∂xm)
δH1

δm
, m= (4−∂2

x)(1−∂2
x)v. (2.5)

Being in the pulson family of integral PDEs, the initial value problem for (2.5) is dominated
by the pulson solutions (2.4), as shown in Figure 1. Moreover, these pulsons scatter elasti-
cally amongst themselves, as shown in Figure 2. The remainder of the paper is devoted to
showing integrability of the canonical dynamics in (2.2) and (2.3) produced by Hamiltonian
(2.1).
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Figure 1: Pulson solutions (2.4) of equation (2.5) emerge from a Gaussian of unit area and
width σ = 5 centered aboutx = 33 on a periodic domain of lengthL = 100. The fastest
pulson crosses the domain four times and collides elastically with the slower ones

R-Matrix Results for the GeodesicH1-Dynamics

To show integrability of the canonical dynamics in (2.2) and (2.3) produced by Hamiltonian
(2.1), we shall use ther-matrix method, which reveals thattrLn for a certain Lax matrixL
are constants in involution [1]. HereL is the Lax matrix for the geodesic pulson dynamics
in (2.2-2.3). We emphasize that the two dynamical systems are completely different and the
geodesic pulson flow (2.2-2.3) does not commute with the peakon dynamics (1.12).
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Figure 2: Two rear-end collisions of pulson solutions (2.4) of equation (2.5). The initial
positions arex = 25 andx = 75. The faster pulson moves at twice the speed of the slower
one. For this ratio of speeds, both collisions result in a phase shift to the right for the faster
space-time trajectory, but no phase shift for the slower one

To find ther-matrix structure for these canonicalH1-dynamics forpk,qk, we shall start
with a Lax matrix in [8] for the peakon dynamics of Eqn. (1.5),

L =
N

∑
i, j=1

Li j Ei j , (2.6)

where

Li j =
√

pi p jAi j , (2.7)

Ai j = A(qi−q j) =
√

(2−e−|qi−q j |)e−|qi−q j |. (2.8)

The Lax matrix (2.6) also satisfies,

H1 =
1
2

trL2 =
1
2

N

∑
i, j=1

pi p je
−|qi−q j |

(
2−e−|qi−q j |

)
, (2.9)

which is the Hamiltonian for the canonical dynamics in Eqs. (2.2) and (2.3). In Eq. (2.8),
we have

A(x) =
√

(2−e−|x|)e−|x|, (2.10)

and the functionA(x) satisfies the following relations,

A′(x) = −sgn(x)
1−e−|x|

2−e−|x|
A(x), (2.11)

Ai j = A ji , Aii = 1, (2.12)

A′i j = A′(qi−q j) = −A′(q j −qi) =−A′ji , A′ii = 0, (2.13)

(
∂
∂x

+
∂
∂y

)A(x)A(y) = A′(x)A(y)+A(x)A′(y)



348 Zhijun Qiao

=−A(x)A(y)

[
sgn(x)

1−e−|x|

2−e−|x|
+sgn(y)

1−e−|y|

2−e−|y|

]
, (2.14)

( ∂
∂x

+
∂
∂y

)
A(x)A(−x) = 0. (2.15)

We shall work in the canonical matrix basisEi j ,

(Ei j )kl = δikδ jl , i, j,k, l = 1, . . . ,N.

To find ther-matrix structure for theH1-dynamics in Eqs. (2.2) and (2.3), we consider the
so-called fundamental Poisson bracket [5]:

{L1,L2} = [r12,L1]− [r21,L2], (2.16)

where

L1 = L⊗1 =
N

∑
i, j=1

Li j Ei j ⊗1,

L2 = 1⊗L =
N

∑
k,l=1

Lkl1⊗Ekl,

r12 =
N

∑
i, j,s,t

r i j ;stEi j ⊗Est,

r21 =
N

∑
i, j,s,t

r i j ;stEst⊗Ei j ,

{L1,L2} =
N

∑
i, j,k,l=1

{Li j ,Lkl}Ei j ⊗Ekl.

Here{Li j ,Lkl} is the standard Poisson bracket of two functions,1 is theN×N unit ma-
trix, and the quantitiesr i j ;st are to be determined. In Eq. (2.16),[·, ·] denotes the usual
commutator of matrices.

After a lengthy calculation for both sides of Eq. (2.16), we obtain the following key
equalities (whose detailed verification is given in the Appendix):

[r ll ,L]ll = 0,

[r j j ,L]ll = [r ll ,L] j j , j 6= l ,[
r jl ,L

]
l j =

[
r l j ,L

]
l j = 0,

[r ll ,L]l j = [r ll ,L] jl =−√p j pl A
′
jl ,[

r l j ,L
]

ll =
[
r jl ,L

]
ll =−√p j pl A

′
jl ,

[r ll ,L]k j =
[
r jl ,L

]
kk = 0, j 6= l ,k;k 6= l ,

[
r jl ,L

]
lk =

[
r l j ,L

]
kl =

1
2
√

pkp j(A jl Alk)′, j 6= l ,k;k 6= l ,

[
r jl ,L

]
kl =

[
r l j ,L

]
lk =

1
2
√

pkp j(A jl Alk)′, j 6= l ,k;k 6= l ,
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[rst,L] jl = 0, for different s, t, j, l .

wherer jl = ∑k,mrkm; jl Ekm, r ll = ∑k,mrkm;ll Ekm, are twoN×N matrices whose entries are
to be determined,L is the Lax matrix, and[·,L]kl stands for thek-th row and thel -th colum
element of[·,L].

In matrix notation, all the above equalities can be rewritten as
[
r jl ,L

]
= B jl , j 6= l , (2.17)

[r ll ,L] = Bll , (2.18)

whereB jl ,Bll are the following twoN×N matrices:

B jl =




0 · · · 1
2
√

p1pl (Al j A j1)′ · · · 1
2
√

p1p j (A jl Al1)′ · · · 0
...

...
...

...
...

...
...

1
2
√

p1pl (Al j A j1)′ · · · −√p j pl A′l j · · · 0 · · · 1
2
√

pN pl (Al j A jN)′
...

...
...

. . .
...

...
...

1
2
√

p1p j (A jl Al1)′ · · · 0 · · · −√p j pl A′jl · · · 1
2
√

pN p j (A jl AlN)′
...

...
...

...
...

. ..
...

0 · · · 1
2
√

pN pl (Al j A jN)′ · · · 1
2
√

pN p j (A jl AlN)′ · · · 0




,

and

Bll =




0 · · · −√p1pl A′1l · · · 0
...

...
...

...
...

−√p1pl A′1l · · · 0 · · · −√pN pl A′Nl
...

...
...

...
...

0 · · · −√pN pl A′Nl · · · 0




.

By solving Eqs. (2.17) and (2.18), we have the followingr-matrix structure:

r12 =
N

∑
j,l=1

(
A′l j

Al j
E jl ⊗ (E jl +El j )+

A′l j

Al j
Ell ⊗E j j

)

+
1
2

N

∑
j,k,l=1

√
pk

p j

(
A′k jAkl

Ak jAl j
+

(A jkAl j )′

Al j

)
Ell ⊗E jk. (2.19)

Perhaps not unexpectedly, this non-contantr-matrix for the geodesicH1-dynamics dif-
fers from the constantr-matrix associated with the CH equation (b = 2) discovered by
Ragnisco and Bruschi in [11]. According to ther-matrix method [1], the auxiliary matrix
M corresponding toL may be also constructed. But, in our case ther-matrix is dynami-
cal, and therefore the construction ofM is a rather complicated process, which we defer to
another time.

Concluding Remarks

In this paper, we found ther-matrix formulation for the integrable geodesic motion gener-
ated canonically by the quadratic quantityH1 in (2.1). This quantity arises by restriction to
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the peakon sector of a quadratic conservation law in the hierarchy of integrable equations
associated with the isospectral problem for the 1+1 integrable partial differential equation
(1.5). This equation was singled out in [3] and was proven to be completely integrable by
the isospectral transform in [4]. Remarkably, the quantityH1 appears as a conservation
law in two different finite-dimensional integrable dynamical systems, namely, equations
(1.12) and (2.2-2.3). We emphasize that these two systems are quite different: one is non-
canonical peakon dynamics; the other is canonical geodesic flow for pulsons. However,
the two systems have the integrals∑ p j and∑ p j pkA2

jk in common, and they are both inte-
grable but for different reasons: the first because it is a finite-dimensional reduction of an
integrable PDE, the second because it has anr−matrix.
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Appendix

The following computations are needed in verifying Eq. (2.16).
First, we calculate the left hand side of Eq. (2.16).

∂Li j

∂qm
=

√
pi p jA

′
i j (δim−δ jm),

∂Lkl

∂pm
=

Akl

2
√

pkpl
(pl δkm+ pkδlm),

{Li j ,Lkl} =
N

∑
m=1

(
∂Li j

∂qm

∂Lkl

∂pm
− ∂Lkl

∂qm

∂Li j

∂pm

)

=
1
2

N

∑
m=1

[√
pi p jA

′
i j

Akl√
pkpl

(δim−δ jm)(pl δkm+ pkδlm)

−√pkpl A
′
kl

Ai j√
pi p j

(δkm−δlm)(p jδim + piδ jm)
]

=
1
2

[√
pi pk(−A′i j Ak j +A′k jAi j )δ jl +

√
pl p j(A′i j Ail −A′il Ai j )δik

−√pi pl (Ai j A jl )′δk j +
√

pkp j(Ai j Aki)′δil
]

=
1
2

[√
pkpi(Ak jA ji )′δ jl +

√
pl p j(Ali Ai j )′δik

+
√

pi pl (Al j A ji )′δk j +
√

pkp j(AkiAi j )′δil
]
,

where the superscript′ means Eq. (2.14) with the argument.
Thus, we obtain the following formula,

{L1,L2} =
N

∑
i, j,k,l=1

{Li j ,Lkl}Ei j ⊗Ekl

=
1
2

N

∑
j,k,l=1

[√
pkp j(AklAl j )′E jl ⊗Ekl +

√
pkp j(AklAl j )′El j ⊗Elk

+
√

pkp j(AklAl j )′E jl ⊗Elk +
√

pkp j(AklAl j )′El j ⊗Ekl
]

=
1
2

N

∑
j,k,l=1

√
pkp j(AklAl j )′

[
E jl ⊗Ekl +El j ⊗Elk +E jl ⊗Elk +El j ⊗Ekl

]
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=
1
2

N

∑
j,k,l=1, j 6=k,l ;k6=l

√
pkp j(AklAl j )′

(
E jl +El j

)⊗ (Ekl +Elk)

+
N

∑
k,l=1

√
pkpl A

′
kl (Ell ⊗ (Ekl +Elk)− (Ekl +Elk)⊗Ell ) . (2.20)

Next, we compute the right hand side of Eq. (2.16),

[r12,L1]− [r21,L2]

=
N

∑
i, j,s,t,k,l=1

r i j ;stLkl [(Ei j ⊗Est)(Ekl⊗1)− (Ekl⊗1)(Ei j ⊗Est)

−(Est⊗Ei j )(1⊗Ekl)+(1⊗Ekl)(Est⊗Ei j )]

=
N

∑
i, j,s,k,l=1

[
r i j ;sk

(
L jl (Eil ⊗Esk)−Lli (El j ⊗Esk)

)

−r i j ;ssLkl ((Ess⊗Ei j Ekl)− (Ess⊗EklEi j ))]

=
N

∑
i, j,s,k,l=1

[
r i j ;sk

(
L jl (Eil ⊗Esk)−Lli (El j ⊗Esk)

)]

+
N

∑
i, j,s,l=1

[−r ji ;ssLil (Ess⊗E jl )+ r i j ;ssLli (Ess⊗El j )
]

= ∑
i, j,s,t,l ,s6=t, j 6=l

[
r ji ;stLil (E jl ⊗Est)− r i j ;stLli (El j ⊗Est)

]

+ ∑
i, j,s,l ,s6= j,l , j 6=l

[
r ji ;ssLil (E jl ⊗Ess−Ess⊗E jl )− r i j ;ssLli (El j ⊗Ess−Ess⊗El j )

+ (rsi;l j Lis− r is;l j Lsi)Ess⊗El j )
]

+ ∑
i, j,l , j 6=l

[
(r li ;l j Lil − r il ;l j Lli + r i j ;ll Lli − r li ;ll Li j )Ell ⊗El j

+(r li ; jl Lil − r il ; jl Lli − r ji ;ll Lil + r il ;ll L ji )Ell ⊗E jl

+(r ji ;ll Lil − r il ;ll L ji )(E jl ⊗Ell −Ell ⊗E jl )
−(r i j ;ll Lli − r li ;ll Li j )(El j ⊗Ell −Ell ⊗El j )

]

+ ∑
i, j,l , j 6=l

[
(r li ; j j Lil − r il ; j j Lli + r i j ;ll L ji − r ji ;ll Li j )Ell ⊗E j j

+ (r li ; j j Lil − r il ; j j Lli )(Ell ⊗E j j −E j j ⊗Ell )
]

+∑
i,l

4(r li ;ll Lil − r il ;ll Lli )Ell ⊗Ell (2.21)

The first term of Eq. (2.21) is:

∑
i, j,s,t,l ,s6=t, j 6=l

(r ji ;stLil − r il ;stL ji )E jl ⊗Est

= ∑
i, j,s,t,l ;s6=t, j,l ;t 6= j,l ; j 6=l

(r ji ;stLil − r il ;stL ji )E jl ⊗Est

+ ∑
i, j,k,l , j 6=k,l ;k6=l

[(
r li ;klLi j − r i j ;klLli

)
El j ⊗Ekl +

(
rki;l j Lil − r il ;l j Lki

)
Ekl⊗El j
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+
(
r ji ;klLil − r il ;klL ji

)
E jl ⊗Ekl +

(
r li ;lkLi j − r i j ;lkLli

)
El j ⊗Elk

]

+2 ∑
i, j,l , j 6=l

[(
r li ; jl Li j − r i j ; jl Lli

)
El j ⊗E jl +

(
r li ;l j Li j − r i j ;l j Lli

)
El j ⊗El j

]
.

Therefore, we have

[r12,L1]− [r21,L2]
= ∑

i, j,s,t,l ;s6=t, j,l ;t 6= j,l ; j 6=l

(r ji ;stLil − r il ;stL ji )E jl ⊗Est

+ ∑
i, j,k,l , j 6=k,l ;k6=l

[(
r li ;klLi j − r i j ;klLli

)
El j ⊗Ekl +

(
r ji ;lkLil − r il ;lkL ji

)
E jl ⊗Elk

+
(
r ji ;klLil − r il ;klL ji

)
E jl ⊗Ekl +

(
r li ;lkLi j − r i j ;lkLli

)
El j ⊗Elk

]

+ ∑
i, j,k,l ;k6= j,l , j 6=l

[
(−r ji ;kkLil + r il ;kkL ji + rki; jl Lik− r ik; jl Lki)Ekk⊗E jl

+ (r ji ;kkLil − r il ;kkL ji )E jl ⊗Ekk
]

+ ∑
i, j,l ; j 6=l

[
(r li ;l j Lil − r il ;l j Lli +2

(
r i j ;ll Lli − r li ;ll Li j

)
)Ell ⊗El j

+
(
r li ; jl Lil − r il ; jl Lli +2(−r ji ;ll Lil + r il ;ll L ji )

)
Ell ⊗E jl

+
(
r li ;ll Li j − r i j ;ll Lli

)
El j ⊗Ell +2

(
r li ; jl Li j − r i j ; jl Lli

)
El j ⊗E jl

+
(
r ji ;ll Lil − r il ;ll L ji

)
E jl ⊗Ell +2

(
r li ;l j Li j − r i j ;l j Lli

)
El j ⊗El j

]

+2 ∑
i, j,l , j 6=l

(
r li ; j j Lil − r il ; j j Lli − r ji ;ll Li j + r i j ;ll L ji

)
Ell ⊗E j j

+4∑
i,l

(r li ;ll Lil − r il ;ll Lli )Ell ⊗Ell

= {L1,L2} by Eqs. (2.20) and (2.21). This finishes the proof of Eq. (2.16).
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