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Chapter 24

R-MATRIX STRUCTURE AND A NEW INTEGRABLE
PEAKON EQUATION

Zhijun Qiao*
Department of Mathematics
The University of Texas — Pan American
1201 W University Dr, Edinburg, TX 78541, USA

Abstract

We use the-matrix formulation to show the integrability of geodesic flow on an
N-dimensional space with coordinatgg with k = 1,... N, equipped with the co-
metricg! = e~19-4il (2 e~19=4il). This flow is canonically generated by a quadratic
conserved quantity of the integrable partial differential equatipa um, + 3mu =
0, m=u—a2uyy (o is a constant). The isospectral eigenvalue problem associated with
this equation is used to find a Lax matrix for the geodesic flow. By employing this Lax
matrix we obtain its dynamicatmatrix.
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1 Introduction

The b = 3 Peakon Equation and Its Isospectral Problem

We begin with the casle = 3 of theb—weighted peakon equation. This is the evolutionary
equation defined on the real line as,

m-+umc+bmu=0, m=u—ouy, lim m=0, (1.1)

[X| =00

in which the subscripts denote partial derivatives with respect to the independent variables
x andt. For any values of the dimensionless constantl and constant lengthscate this
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equation admits stable exddtpeakon solutions
N
u(x,t) = Zpi (tye Fabl/a, (1.2)
i=

in which the2N time-dependent functiong (t) andq;(t), i = 1,2,...,N, satisfy a system
of ordinary differential equations whose character depends on the value of the bifurcation
parameteb. The casd = 2in (1.1) is the dispersionless limit of the integrable Camassa-
Holm (CH) equation that was discovered for shallow water waves in [2]. Later, the CH
equation is generalized to the CH integrable hierarchy in [6], which presents the relationship
between the CH hierarchy of PDEs and finite-dimensional integrable systems and gives
algebraic-geometric solutions on some symplectic sub-manifold. A general idea is provided
to generate the integrable hierarchy in [8]. Very recently, we found new cusp and smooth
soliton solutions for the CH equation [10].

An equation equivalent to the cabe- 3 of the peakon equation (1.1) was singled out
for special attention among a family of related equations by Degasperis and Procesi in [3].
The peakon equation (1.1) was shown to be completely integrable for thb ea3én [4].
The Lax pair consists of a third order eigenvalue problem and a second-order evolutionary
equation for the eigenfunction,

1
L|»'xxx = @lle—AmllJ? (1-3)
1 2

Compatibility Wxxxt = Wixxx implies Eq. (1.1) withb = 3 provideddA /dt = 0. Thus, equa-
tion (1.1) withb = 3, namely, the Degasperis-Procesi (DP) equation [3]

m+um+3mu, =0, m=u—aUyy, (1.5)

was shown to be integrable by the inverse spectral transform for the isospectral eigenvalue
problem (1.3) and to possess an infinite sequence of conservation laws. Recently, the DP
equation is extended to two different integrable hierarchies, which are restricBed 30
constrained finite-dimensional integrable systems and have exact solutions in parametric
form [7, 9]. Similar to the CH nonlocal solitons, we also found new peakons, cuspon and
smooth soliton solutins for the DP equation [12].

Henceforth, we shall set = 1 for the sake of simplicity in notation (The length scale
o is easily restored by using dimensional considerations.)

The first few conservation laws are given in the notation of [4] witk 1 by

Hoi = %[uddx, Ho = [mdx

Hi = 3[(Z+52+42%)dx, Hs = [mY3dx. (1.6)

We shall pay special attention to the quadratic conservatiotdigwn which the quantity
is defined as

vi=(4-02)"tu=(4-02)"1(1-02) Im. (1.7)
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Lax Matrix for N-Peakon Dynamics

Substituting theN-peakon solution,

N N
uxt) =y pi(t)e 9L mxt) =25 pj(t)3(x—qj(t)), (1.8)
=1 =1
into the isospectral eigenvalue problem (1.3) yields
1 1
= - = —da _ g Ix=qi®) . .
SWit) = ;[1+sgmx 6;(t)) (1 - 901)] pw(g;(t)). (L9)
Settingy(g;i(t),t) = Wi(t) then gives the following matrix eigenvalue problem,
2 N o
TV =) Lijyy, (1.10)
AT le i@
where
Lij = [1+sgn(q —q;) (1—e*|q“qi‘>] p; . (1.11)

Let L denote theN x N matrix Lj;. One can use the two conserved quantitiésatnd ti2
to solve the 2-peakon subdynamics of thefhpeakon dynamice, pk, withk=1,... N,
o =1, satisfying

5 = 23N pipes — e i

pl - Nkal pjﬁgj %E(qj Ok) (1.12)

dj = 2k=1P«€ .
Two-peakon interaction has explicit formulas for its phase shifts as functions of the asymp-
totic speeds [4].

2 A Geodesic Pulson Flow Related t8 = 3 Peakons

The quantity used for determining the two-peakos- 2 collision laws,

_1 ”2_1 c N e 19— —10i—0j
Hy = St _Ei;p,pje o] (Z—e | J\), (2.1)
is also the quadratic conservation l&lvin (1.6) for theb = 3 peakon equation (1.5), when

H; is evaluated on thBl—peakon solution (1.8).

The dynamics (1.12) is a non-canonical Hamiltonian system. However, the canonical
Hamiltonian dynamics generated Hy is geodesic motion on ad-dimensional space with
co-metricg! = e~l%-4l(2—e~a=dil). As we shall show by finding its—matrix structure
in the remainder of the present paper, the geodesic motion canonically generated by the
conservation law; = Tri.2in (2.1) provides a ne@N-dimensional integrable system,

S aHl_ i - a—ok—ajl —|ok—;]
o = a—pk_glpje J(2—e l), (2.2)

P = _OHy —opx k pisgn(q; — g e il (1_e—\qk—qj'\) ' (2.3)
aqk JZL J J
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We emphasize that these canonical geodEsidynamics forpy, gk, are not the same as
the non-canonicdl—peakon dynamics in (1.12). Rather, this is the geodesic flow for the
dynamics of “pulson solutions” associated with the Hamiltortignin (1.6). In fact, the
canonical geodesic flow (2.2-2.3) is obtained by substituting\theulson solution

N
vix,t) =S pjt)e a2 e x-ai®)l (2.4)
3P ( )
into the 5th-order evolutionary equation defined on the real line by,
oH
m = —Vim— 2my = —(max+axm)6—r:, m= (4—02)(1—02)v. (2.5)

Being in the pulson family of integral PDEs, the initial value problem for (2.5) is dominated
by the pulson solutions (2.4), as shown in Figure 1. Moreover, these pulsons scatter elasti-
cally amongst themselves, as shown in Figure 2. The remainder of the paper is devoted to
showing integrability of the canonical dynamics in (2.2) and (2.3) produced by Hamiltonian
(2.1).

10 20 30 40 50 60 70 80 90 100

Figure 1: Pulson solutions (2.4) of equation (2.5) emerge from a Gaussian of unit area and
width o = 5 centered about = 33 on a periodic domain of length = 100. The fastest
pulson crosses the domain four times and collides elastically with the slower ones

R-Matrix Results for the GeodesicH;-Dynamics

To show integrability of the canonical dynamics in (2.2) and (2.3) produced by Hamiltonian
(2.1), we shall use thematrix method, which reveals thal." for a certain Lax matrix.

are constants in involution [1]. Heteis the Lax matrix for the geodesic pulson dynamics

in (2.2-2.3). We emphasize that the two dynamical systems are completely different and the
geodesic pulson flow (2.2-2.3) does not commute with the peakon dynamics (1.12).
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Figure 2. Two rear-end collisions of pulson solutions (2.4) of equation (2.5). The initial
positions arex = 25 andx = 75. The faster pulson moves at twice the speed of the slower
one. For this ratio of speeds, both collisions result in a phase shift to the right for the faster
space-time trajectory, but no phase shift for the slower one

To find ther-matrix structure for these canonidd]-dynamics forpg, gk, we shall start
with a Lax matrix in [8] for the peakon dynamics of Eqn. (1.5),

N
L = LiiEij, (2.6)
mz:l jEij
where
Lij = VPipiA;j, 2.7)
Aj = A(qi—qj):\/(Z—e‘Mi‘q”)e“Qi‘ql". (2.8)

The Lax matrix (2.6) also satisfies,
Hy = Sl = % pipje 4l (2—9"‘“““”) (2.9)
2 24,7 ’
which is the Hamiltonian for the canonical dynamics in Egs. (2.2) and (2.3). In Eq. (2.8),

we have
AX) =1/ (2—e X)e X, (2.10)

and the functiorA(x) satisfies the following relations,

1—e X

A(X) = —sgnXx) mA(x), (2.11)
Aj = Ay, Ai=1, (2.12)
A =A—q) = —A(dj—q)=—Aj, Ai=0, (2.13)

(et 30 ACOAY) = ROOAY)+ AA(Y)
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e—|X| 1—e v

= ~AXAY) [ 5o +say) o (2.14)

(:}(+£/>A(X)A(—x) - 0 (2.15)

We shall work in the canonical matrix bagis,
(Bij =0dji, 1,j,kI=1,...,N.

To find ther-matrix structure for théd;-dynamics in Egs. (2.2) and (2.3), we consider the
so-called fundamental Poisson bracket [5]:

{L1,Lo} = [ri2,L1] —[ra1, L2, (2.16)

where

L1 = L®l= LijEj®1,
|le
N

L, = 1®L= Z Ll ® Ew,
kI=

N
ry = Z ij:stEij ® Est,
i,],5t
N
a1 = ) TijsEst®Ej,
ijst
{L1, Lo} = {I—Iijkl}Elj@Ekl

IJ77

Here {Lij,Lw } is the standard Poisson bracket of two functiahss theN x N unit ma-
trix, and the quantities;j.; are to be determined. In Eq. (2.16),:] denotes the usual
commutator of matrices.

After a lengthy calculation for both sides of Eq. (2.16), we obtain the following key
equalities (whose detailed verification is given in the Appendix):

[ri,Lly = 0

i Ly = [rs Ly, B #0,
ri,L]y; = [ngsLy; =0,

ru,Ly = iUy = —/PipA;,

L], = [risL], = —v/PipA;,

i Ll = [r”,L]kk—O i#Lkk#£],
rinLly = [NisLg=5vekPi(AjAK), j# 1L Kk#L
ity = [nistye= 5 vaPi(AnAw)’s § # 1Lk #1,
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[rst,L]jI = 0, fordifferent st,j,I.

wherer i = Sy mlkmjl Ekm, i = Ykmlkmil Ekm, are twoN x N matrices whose entries are
to be determined. is the Lax matrix, and, L],, stands for thé-th row and thé-th colum
element of|-, L].

In matrix notation, all the above equalities can be rewritten as

[ri,L] = B, j#£1, (2.17)
ri,L] = B, (2.18)

whereB!' | B' are the following twaN x N matrices:

0 e 3YPIRAGAL) o S UPIPT(AIAL) 0
/PP (AjAL) —/PiPA 0 3 /PNPI(AAN)
Bll ; ; ; .. ; : :
3PP (AjAL) 0 —/PiPA; o 5/PNPT(AAN)
0 o SV/PNPIAGAN) e 3yPNPTATAN) 0
and
0 e —PIPAy - 0
B! = —/PLPA, - 0 o —/PNPIA
0 e —/PNPIAY - 0

By solving Egs. (2.17) and (2.18), we have the followragnatrix structure:

N A Aj
e = Z <A|JEJI®(EJ|+E|J)+A|E“®EJJ>

AkAkI AJkA“')/
= Bl ® Ei. 2.19
+2j7k; \/><AKA|J A Il ® Ejk (2.19)

Perhaps not unexpectedly, this non-contamtatrix for the geodesikl;-dynamics dif-
fers from the constant-matrix associated with the CH equatidn £ 2) discovered by
Ragnisco and Bruschi in [11]. According to thenatrix method [1], the auxiliary matrix
M corresponding td. may be also constructed. But, in our case ithreatrix is dynami-
cal, and therefore the constructionMfis a rather complicated process, which we defer to
another time.

Concluding Remarks

In this paper, we found thematrix formulation for the integrable geodesic motion gener-
ated canonically by the quadratic quantity in (2.1). This quantity arises by restriction to
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the peakon sector of a quadratic conservation law in the hierarchy of integrable equations
associated with the isospectral problem for the 1+1 integrable partial differential equation
(1.5). This equation was singled out in [3] and was proven to be completely integrable by
the isospectral transform in [4]. Remarkably, the quartiiyappears as a conservation

law in two different finite-dimensional integrable dynamical systems, namely, equations
(1.12) and (2.2-2.3). We emphasize that these two systems are quite different: one is non-
canonical peakon dynamics; the other is canonical geodesic flow for pulsons. However,
the two systems have the integrdl; andy p; pkAjZk in common, and they are both inte-
grable but for different reasons: the first because it is a finite-dimensional reduction of an
integrable PDE, the second because it has-anatrix.
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Appendix

The following computations are needed in verifying Eq. (2.16).
First, we calculate the left hand side of Eq. (2.16).

oLij
0. = VPPIA;(Bm—3jm),
Om
Ol Axi
= Okm—+ PkOim),
30m 2\/W(pl km+ PkOim)
N /0L 0Ly 0Ly oL
Lii,L — J _ J)
i b nZl(aCImapm 00m 9Pm

N
z |:\/p'7A'J\/7(5'm 6J'm>(p|6km"|'pk6|m)

Ajj
v/ PiPj

= %[F( — A A+ AGA B+ /PrD; (A Al — A Aij) Sik
PP (A Al B + /PP (A Axi)' Bl
= % [/PRBi (AA;)Bi1 + /Prp; (A AT} Six
+ VPPN (AGAG) B + /PrP; (A ) S|

where the superscripimeans Eq. (2.14) with the argument.
Thus, we obtain the following formula,

NI =

- pkaAL (Okm— 6Im)(pjélm-i-ﬂéjm)}

N
{L1, L2} g_ {Lij, L } Eij ® Ex
i

[ /PP (AAG) Ejt © B + /PP (AwA ) Eij @ Ei

™=

NIk + NI &
> E
% i

1

Pi (AaA}) Ejl ® B+ /PP (AuAYj) Bl @ Ex]

PP} (AA;) [Ejl @ B + Ejj @ Ei + Ejy @ Ei + Eij @ Ex|

QT

=1
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N

Z PP} (AaA}) (Eji +Eij) ® (B + Ei)

jk| 157k kA

+ Z VPP A (B @ (B + Eik) — (B + Ei) @ En ). (2.20)
k=1

Next, we compute the right hand side of Eq. (2.16),

[r12,Lq] — [r21, Lo]
N
= Z Mjstbwi [(Bij ® Est) (B ® 1) — (B @ 1) (Eij ® Est)
i,j,stkl=1

—(Est®Eij)(1® Ex) + (1® Eq ) (Est @ Eij)]
N
= Z [rijsk (Lt (B @ Esk) — Li (Erj © Esk))
i,j,SK1=1

—Tij;sdkl ((Ess® EijEw) — (Ess® ExEij))]

N
= Z [Fij;sk (Lt (Eil © Esk) —Lii (Bij @ Esi)) ]
i,j,skl=1
N
+ 3 [iissi (Ess®Eji) +Tij;sehii (Bss® Eij)|
1L,],S1=

= Z [riizstLit (Eji ® Est) — rijsstbii (Bij @ Esy)]
i,j,st,l,s4t, j#I

+ 0y [Fii:ssdit (Eji @ Ess— Ess® Eji ) — rijssbi (Eij ® Ess— Ess® Eij)
i,j,sl,s7%],l,j#

+ (rsitjLis — Tis;lj Lsi) Ess® Eij) |

+ [(riii Lt = rivag L + rign L — rin Lij ) En @ By
i,j,1)#

+(rizj L =i L = rjin L +rin Lji ) En @ Ej

+(rjimLi —riaLi)(Ej @ By — By ®Ey)

—(rijnLi —riaLij) (B @ By — En @ Bj)]

+ [(riizji Lir = rirsji L + rigan Lji — rjin Lij ) En @ Ejj
i,j.0 )

+ (ni;jjLir — i L) (BEn @ Ejj —Ejj © By

+Z4(rli;|||-il — T Li ) En @ By (2.21)
I7

The first term of Eq. (2.21) is:

Z (rji:stkit —ristlji) Ejl ® Egt
i,],st.1,s4t, j#

Z (rji:stkit —ristLlji) Ejl ® Est
i,jstlisAt LIt il

+ Zk [(risaLiy = rijaaLii) Eij @ B + (N Lir — ity L) B @ By
i,j,k I, £k | k#l
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+ (rjisaLin = riaLi) Ejf @ B+ (riigebij — rijgeLii ) Bij @ Ei
+2 5 [ L = rijoi i) Bij @ Ejy + (g Lij — rijj L ) Bij @ By
i7j7 7]#'

Therefore, we have

[r12,La] —[r21,L2]
= (rjisstlil — rinstlji) Eji @ Est
i,1,StlsAGT it 1 j#
+ ;( [(riiaLij — rijsaLii) Ery @ B+ (rjiakLin — ikl i) Ej @ Ei
i, ]kl J £k kA

+ (FjiaLit — FiaLii) Ejp @ B+ (rigeLij — rijacLi) Eij © Ei]
+ ; [(= ikt + Firsiick ji =+ i ji Lik — Tk ji L) Exie @ Eji
i,k kA j#

+ (Lt = Fisilji ) Eji ® B
+ | [(riizi L = rivaj Lii + 2 (rijan L — i Lij ) ) En @ By

il )#
+ (i L = ringj L+ 2(=rjin Li + v Lji)) En @ Ejy
+ (riin Lij — rijon Lii ) Eij @ By + 2 (ri;jiLij —rij;jiLi ) By @ Ej
+ (rjl arLir —rir; IIle) Ej ®E) +2(r|l 1j Lij — rij; |jL|I)E|J ®E|j]
2 r|l;j]|—l| — rit;jjLii — Fiion L +rlj;|||—jl) En ® Ejj

_l’_

LI
(rli;ll Li —rinLi ) En @ By

= {Li,L2} byEgs. (2.20) and (2.21). This finishes the proof of Eq. (2.16).
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