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Abstract

By use of nonlinearization method about spectral problem, a classical
completely integrable system associated with the Harry-Dym (H D) hi-
erarchy is obtained. Furthermore, the involutive solution of each equation
in the HD hierarchy is presented, in particular, the involutive solution
of the well-known H D equation u; = (u’%)mz is given.

1 Introduction

The Harry-Dym (H D) equation uy = (u_%)mx is celebrated for its cuspidal
soliton equation. The isospectral property the HD hierarchy has been dis-
cussed in [1, 2]. Recently, Cao Cewen [3] has studied the nonlinearization of
the Lax pair for the HD equation u; = (u_%)mm, and considered the station-
ary HD equation and its relation with geodesics on ellipsoid. In this paper,
we shall study the H D hierarchy of nonlinear evolution equations, which con-
tains the HD equation u; = (u_%)wm The whole paper is divided into four
sections. In the next section, the commutator (or Lax) representation of each
H D hierarchy is secured. In Sec. 3, using the "nonlinearization” [4-8] of spec-
tral problem by which many completely integrable systems in the Liouville’s
sense have been found [7-19] in recent years, we present a classical completely
integrable system in the Liouville’s sense and an involutive functional sys-
tem. Section 4 gives a discription about the involutive solutions of the HD
hierarchy, particularly, the involutive solution of the well-known H D equation
u = (U™ 2) 44, is obtained.
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2 Commutator (or Lax) representations of the HD hierarchy

Consider the spectral problem
_ (W _(—iA (u—1)A
Yoz = My, y—<y2>, M—(_)\ i (2.1)

which is the special case of the WKI spectral problem [20]

_ _(»n _ [ —tA gA

asq=u—1, r=—1. Here, i> = —1, y, = Oy/0z, u is a scalar potential, \ is a
spectral parameter, x € Q (2 = (—o00, +00) or (0,7)). It is easy to know that
(2.1) is equivalent to the well-know Sturm-Liouville equation —t,, = pui) via
the transformation y; = i) — A1, y2 =, p = A2 and its inverse.
Proposition 2.1 Let )\ be a spectral parameter of (2.1). Then the spectral
gradient 7\ of spectral A\ with regart to the potential u is

A= — =
v ou

-1
M3 ([@ings - wh — ) (2:2)
Q

where (y1,%2)7 is the spectral function of (2.1) corresponding to .
Proof. See Ref. 4 Sec. II.

Choosing the operator K and J : K = 93, J = 2(0u + ud), (here 0 =
0/0x), we immediately have
Proposition 2.2 Let )\ be a spectral parameter of (2.1). Then the spectral
gradient 7\ defined by (2.2) satisfies the linear relation

KgA=M-JyA\ (2.3)

Proof. In virtue of (2.1) and 0~ udy3 = 2iy1ys + y5 — v, directly calculate.
The operators K and J which satisfy (2.3) are called the pair of Lenard’s
operators of (2.1). Now, recursively define the Lenard’s gradient sequence

{Ga;}:
KGQ(j_l) == JGQJ', j = 0, 1,2, ceey

G_o =u"? € KerJ. (2.4)

Xm(u) = JGom (m = 0,1,2,...) are called the HD vector fields which pro-
duces the isospectral hierarchy of equations of (2.1)

ut,, = Xm(u), m=0,1,2,..., (2.5)
with the representative equation

U = Xo(u> =JGyg=KG_9 = (u71/2)$$x, to=1
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which is exactly the well-known Harry-Dym (H D) equation. Thus, the isospec-
tral hierarchy of equations (2.5) of (2.1) yields the HD hierarchy. (2.1) can

be written as
i 1—u
Ly=Luy =Xy, L=L(u)= <1 _ > 0. (2.6)

S

The Gateaux derivative of L in the direction ¢ is

Liu+ £€) 5(:; _.1)(9:75(8 :i)L (2.7)

e=0 - u? ]

T de

and L, is an injective homomorphism.
Assume G(x) is an arbitary smooth function. For the spectral problem
(2.6), we construct an operator equation of operator V = V(G)

[V,L) = L. (KG)L™' — L.(JG)L, (2.8)

where [, ] is the Lie bracket, K and J are the pair of Lenard’s operators.
Theorem 2.1 The operator equation (2.8) posesses the operator solution

V:V(G):Gm<0 1>+Gx(1 _Qi)L+(—2G)(j 1_.“>L2. (2.9)

0 0 0 -1 —
Proof. Let
-t u—1 0 1
1 -2 i 1—u
e (b ), wene(l Y. e

It is not difficult to calculate the commutator [V, L] of V = Vi + V4 L + Vo L?
and L (note L = W~19) :

V,L]=VL—-LV = -W Wy, + (Vo - W VoW — W1V, ) L+

(Vi =W ViW — W Wo, ) L2 + (Vo — WV W) L3, (2.11)

Substituting (2.10) into the right-hand side of (2.11) and carefully calculating,
it is found to be equivalent to the right-hand side of (2.8).
Theorem 2.2 Let Gy; be the Lenard’s recursive sequence, and V; =V (Ga;).

m .
Then the operator Wy, = > Vj_lLZ(m*J)Jrl satisfies
§=0

[Win, L] = Ly(X;n), m=0,1,2,..., (2.12)

i.e., Wy, is the Lax operator [21] of the HD wvector field X, (u).
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Proof.

(W, L] = [Vj_l,L]Lz(m—j)“ —

o

<
Il
o

(Lu (K Gy L2 = LI Gy LA 72) =

NE

[
Il
o

L.(X).

Theorem 2.3 The HD Hierarchy of equation uy,, = X,,(u) have the commu-
tator representations

Lt,, = [Wm, L], m=0,1,2,.., (2.13)

i.e., uy,, = Xpm(u) is the natural compatible condition of Ly = Ay and y;,, =
Wny.

Proof. Ltm = L*(utm) — Ltm — [Wm,L] = L*(utm) — L*(Xm) = L*(Utm —
Xm). Ly is injective, so Ly, = [Wy,, L] <= uy,, = Xin(u).

Corollary 2.1 The potential u satisfies a stationary HD system

XNyey Xn—1+--+enXo=0, N=0,1,2,.., (2.14)

iff
[WN+01WN_1 + -+ CNW(),L] =0, (2.15)

where cq, ...,cy are constants.
3 An integrable system and involutive functional system

Let A; (j =1,..., N) be N different spectral values of (2.1), and y = (pj, ¢;)*
be the associated spectral functions. Introduce the Bargmann constraint [5]

as follows
N
j=1
which is equivalent to
u=(Ap,p)~2, (3.2)

where p = (p1,...,pn)T, A = diag(A1,...,An), (-,-) stands for the standard
inner-product in RN,

Under the Bargmann constraint (3.2), (2.1) is nonlinearized as a Hamilto-
nian system (here ¢ = (q1, ..., qn)7)

= —iA Ap,p)2-1Ap = 9
() {q iAg + ( p,p} )Ap o (3.3)
pr = —Ag +iAp = —%
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with . . 1

A natural problem is whether (H) is completely integrable in the Liouville
sense or not? In order to answer this question, we consider a functional system

{Fm} :
F = (A*™%3p, p) (Ap,p) '+
<A2j+2p,p> <A2j+1p,p> <A2j+3q q) <A2j+2p q>
_"_ m_~ b) m_‘ )

S| (a2misy ) (A2 (A2m=)F2p_q) (A=) Flp, p)

m (A27+2p q)(A2T+3p q)
9 | | C m=0,1,2,.... (3.5)

3=0| (A2m=1)+1p ) (A2m=0)+2p 1)

The Poisson bracket of two functions E, F' in the symplectic space (R?Y, dp A
dq) is defined by [22]

_ JOE OF\ ,OE OF

N OFE OF OE OF
) =oe ) 5 a0)

)= 3Gy, ~ om0

J=1

(3.6)

which is skew-symmetric, bilinear, satisfies the Jacobi identity and Leibniz
rule: (EF,H) = F(E,H) + E(F,H). E,F are called involutive [22], if
(E,F)=0.

Write F,, as Fp, = Uy, + Sy + Ty + 2iR,,, where

U = (A*"p, p) (Ap,p) ™", (3.7)1

Sm = f:(@\””p,m (A2m=0742p, p) — (AZTHDp, p) (A2 =I5, p) ) (3.7),
=0

T = i(<A2j +3q,q) (AXm=0*1p,p) — (A242p,g) (A2"D*2p, g, (3.7)3
7=0

Ry = i((AQj 2p, g) (A2mI42p ) — (A2 F5p, g) (A2=0¥Lp,p) ). (3.7)s
=0

Lemma 3.1

(Upm, Un) = (S, Sn) = (Upn, Sp) = (T, Tp) = (R, Ry) =0, Vm,n e Z7.
(3.8)
Proof. (Up,,Uy) = (Sm, Sn) = (Um, Sn) = 0 is obvious.

=2 ) (A, p) A% HSq — (A2 ) A2H2p) (3.9,
j=0
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n

Z( A2k+3 A2(n k)+ _ <A2k+2p’ q) A2(n7k)+2q)’ (3.9)2

agq = Z( (Am=0)42p, p) N2y — (A0 p) A2 D) (3.10),
=0
= A2k+2 A2(n k)42, (p\2k+3 A2(n—k)+1
Z ( P q) p)+
Z( (A2n=R)+2 oy AZKH2g (A 2n—k)+Ly, A2k+3q)‘ (3.10)2

Substituting (3.9)1, (3.9)2 and (3.10)1, (3.10)2 into the inner-product (%Lg’, 68%>

and (85%, 8£"> respectively, through a lengthy calculation we may know that
<8Tm 8Tn> and <8Rm OR,

) are symmetrical about m.n. so,

dq ’ Op dq * Op
oT,, 0T, o1, 0T,
(Tm’T"):< oq "’ 8p>_< op’ 8q>:0’
OR,, OR, OR,, OR,
(Rons B) = (505500 ) = (o 9 ) =0

Lemma 3.2 (U, T,), (Un, Rn), (Sm,Thn), (Sm, Ryn) and (T),, Ry,) are sym-
metrical about m, n € Z7, i.e

(Uman) = (UnaTm)a (Um7Rn) = (UnaRm)a (SmaTn) = (SnaTm)’

(Soms Bn) = (Sus Rin),  (Tiny Rp) = (T, Rip), Vmyme Z+.  (3.11)

Proof. Here we prove (Uy,,, T,,) = (U, T),). Other equalities can be proved in
the same way.

oU,, m _1A2m

o = 2(A*"3p, p)(Ap, p) "2 Ap + 2(Ap, p) AP Fp, (3.12)
oT, n . , o .
e 23 (A2, p) A% H3q — (NI ) A%IH2p) . (3.13)

According to (3.6), we have

oU,, 0T,
< )

(U, Tn) = — op  0q (3.14)

Substituting (3.12) and (3.13) into the right-hand side of (3.14) and carefully
calculating the inner-product (‘%;Dm aaTq ) we find that <aa%, 88%) is symmet-
rical about m,n. Thus (U, T),) = (Un, Trn).
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Theorem 3.1
(Fo, Fp) =0, VYm,n € Z,. (3.15)

Proof. In virtue of Lemma 3.1, Lemma 3.2 and the property of Poisson
bracket, we get

2i(Sm, Rn) + (T n) + (T, Sn) + 2i(Th, Ry) +
2i(Rum, Un) + 2i(Run, Sp) + 2i(Rom, T) = 0. (3.16)

Theorem 3.2 (H,F,,) =0, Yme ZT.

Proof.
OFy T s o .
B _ Qz(Az ])+1p p>A2]+3 <A2( ])+2p7q>A2g+2p>+
7=0
20 Y ((A2m=9742p, p) A2 — (A2 AP ) (3.17),
7=0
OFm (A3, p) (A, p)~2Ap + 2(Ap, p) A2+ 1
ap ) 7 7

Z A2(m 7)+2 D, p>A2]+2

((AZJHp p>A2(m ])+3<A2(m 5+ 3p7p>A2j+1p) +

Ms I

<
I
o

:

(<A2j+3q’ q>A2(m—j)+1p . <A2j+2p’ q>A2(m—j)+2q) +

=0
4i Y ((A¥F2p, ) A2 2 — (AXTH0p, g AP )
=0
212(<A2(m 9)+ 2p,p)A2j+2q _ <A2(m_j)+1p,p>/\2j+3q). (3.17)5

0

j
Substitute (3.3), (3.17)1 and (3.17)2 into the following formula

OH 0F,, OH 0F,,
)= )

H Fp)=(5-—F5— > 1
(. Fn) = (5050 ) = (50 o (3.18)

Through a series of careful calculations, we can obtain (3.16).

Theorem 3.3 i) The Hamiltonian system (H) (or (3.3)) is completely inte-
grable in the Liouville sense, and its involutive functional system is Fyy,.
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it) The Hamiltonian systems

oF,, Oy,

—_— = —— =0,1,2,.. 3.19
ap 9 Dty 8q ) m 5 Ly 4y ( )

(Fm) : qt,, =

are completely integrable, too.

4 The involutive solutions of the HD hierarchy

Since (H, F,,) = 0, Ym € Z*, the Hamiltonian systems (H) and (F,) are
compatible [22]. Hence, the solution operators g% and g’» of initial problem
of (H) and (F,,) commute [22]. Define

(1)) < gty (100) w012 )

which are called the involutive solutions of compatible systems (H) and (Fy,).
Theorem 4.1 Let (q(x,tm), p(z,tm))? be an involutive solution of compatible
systems (H) and (F,,). Then

u(@, tm) = (Ap,p)~> (4.2)
satisfies the higher-order HD equation
u, = Xm(u) = J(J'K)" Gy, Goo=u"?, m=0,1,2,... (4.3)
Proof. First note that
U, = —2(Ap,p)7° - 2(Ap,pr,,) =
4(Ap, p) > (Ap, };m> =

8(Ap, p) 2 ((Ap, p)(A*"Hp, q) — (A%q, p)(A*™p, p) +
i(A%, p)(A>"3p, p) — i(Ap, p) (A*™'p, ) ). (44)

N
Acting with the operator (J~1K)™* upon G_5 = 3~ 7\; and noticing (2.3),

j=1
we have
(J 1K m+1G_ Z )\ 2(m+1) <A2m+3p,p>. (45)
Note
uy = —A4(Ap,p)*(Ap, —Aq+iAp) =

4((Ap,p) > (A%, q) — i(Ap, p) > (A%p,p)), (4.6)
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(AP F3p p))e = 2(A™F3p p,) =
2<A2m+3p, —Agq + iAp) =
2(i(A*"+p, p) — (A*"Hp,q)), (4.7)
hence
(JIK)" Gy = —2(0u+ ud) (A 3p, p) =
—2(ug + 2U6)<A2m+3p7 p) =
—8((Ap,p) "3 (A%p, g) (AP F3p, p) —
i(Ap, p) " (A2p, p) (AP F3p, p)) —
8(i(Ap, p) " 2(A*™p, p) — (Ap,p) 2 (AT p,q)).  (4.8)
So, u(z,tm) = (Ap, p) 2 satisfies uz,, = J(J1K)"t1G 5.

In Theorem 4.1, letting m = 0, we can obtain the involutive solution of

the HD equation u; = (u_l/z)xm, to = t.

Corollary 4.1 Let (q(z,t), p(z,t))” be an involutive solution of the compat-
ible systems (H) and (Fp). Then u(x,t) = (Ap,p)~2 is a solution of the HD
equation u; = (u™12) 440
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