A completely integrable system associated with the Harry-Dym hierarchy

ZHIJUN QIAO, Department of Mathematics University, Shenyang 110036, China
Submitted by W.FUSHCHYCH
Received September 26, 1993

Abstract

By use of nonlinearization method about spectral problem, a classical completely integrable system associated with the Harry-Dym (HD) hierarchy is obtained. Furthermore, the involutive solution of each equation in the $H D$ hierarchy is presented, in particular, the involutive solution of the well-known $H D$ equation $u_{t}=\left(u^{-\frac{1}{2}}\right)_{x x x}$ is given.

1 Introduction

The Harry-Dym $(H D)$ equation $u_{t}=\left(u^{-\frac{1}{2}}\right)_{x x x}$ is celebrated for its cuspidal soliton equation. The isospectral property the $H D$ hierarchy has been discussed in [1, 2]. Recently, Cao Cewen [3] has studied the nonlinearization of the Lax pair for the $H D$ equation $u_{t}=\left(u^{-\frac{1}{2}}\right)_{x x x}$, and considered the stationary $H D$ equation and its relation with geodesics on ellipsoid. In this paper, we shall study the $H D$ hierarchy of nonlinear evolution equations, which contains the $H D$ equation $u_{t}=\left(u^{-\frac{1}{2}}\right)_{x x x}$. The whole paper is divided into four sections. In the next section, the commutator (or Lax) representation of each $H D$ hierarchy is secured. In Sec. 3, using the "nonlinearization" [4-8] of spectral problem by which many completely integrable systems in the Liouville's sense have been found [7-19] in recent years, we present a classical completely integrable system in the Liouville's sense and an involutive functional system. Section 4 gives a discription about the involutive solutions of the $H D$ hierarchy, particularly, the involutive solution of the well-known $H D$ equation $u_{t}=\left(u^{-\frac{1}{2}}\right)_{x x x}$ is obtained.

2 Commutator (or Lax) representations of the HD hierarchy

Consider the spectral problem

$$
y_{x}=M y, \quad y=\binom{y_{1}}{y_{2}}, \quad M=\left(\begin{array}{cc}
-i \lambda & (u-1) \lambda \tag{2.1}\\
-\lambda & i \lambda
\end{array}\right)
$$

which is the special case of the WKI spectral problem [20]

$$
y_{x}=M y, \quad y=\binom{y_{1}}{y_{2}}, \quad M=\left(\begin{array}{cc}
-i \lambda & q \lambda \\
r \lambda & i \lambda
\end{array}\right)
$$

as $q=u-1, r=-1$. Here, $i^{2}=-1, y_{x}=\partial y / \partial x, u$ is a scalar potential, λ is a spectral parameter, $x \in \Omega(\Omega=(-\infty,+\infty)$ or $(0, T))$. It is easy to know that (2.1) is equivalent to the well-know Sturm-Liouville equation $-\psi_{x x}=\mu u \psi$ via the transformation $y_{1}=i \psi-\lambda^{-1} \psi_{x}, y_{2}=\psi, \mu=\lambda^{2}$ and its inverse.
Proposition 2.1 Let λ be a spectral parameter of (2.1). Then the spectral gradient $\nabla \lambda$ of spectral λ with regart to the potential u is

$$
\begin{equation*}
\nabla \lambda=\frac{\delta \lambda}{\delta u}=\lambda y_{2}^{2} \cdot\left(\int_{\Omega}\left(2 i y_{1} y_{2}-u y_{2}^{2}-y_{1}^{2}\right) d x\right)^{-1}, \tag{2.2}
\end{equation*}
$$

where $\left(y_{1}, y_{2}\right)^{T}$ is the spectral function of (2.1) corresponding to λ.
Proof. See Ref. 4 Sec. II.
Choosing the operator K and $J: K=\partial^{3}, J=2(\partial u+u \partial)$, (here $\partial=$ $\partial / \partial x)$, we immediately have
Proposition 2.2 Let λ be a spectral parameter of (2.1). Then the spectral gradient $\nabla \lambda$ defined by (2.2) satisfies the linear relation

$$
\begin{equation*}
K \nabla \lambda=\lambda^{2} \cdot J \nabla \lambda . \tag{2.3}
\end{equation*}
$$

Proof. In virtue of (2.1) and $\partial^{-1} u \partial y_{2}^{2}=2 i y_{1} y_{2}+y_{2}^{2}-y_{1}^{2}$, directly calculate.
The operators K and J which satisfy (2.3) are called the pair of Lenard's operators of (2.1). Now, recursively define the Lenard's gradient sequence $\left\{G_{2 j}\right\}$:

$$
\begin{gather*}
K G_{2(j-1)}=J G_{2 j}, \quad j=0,1,2, \ldots \\
G_{-2}=u^{-1 / 2} \in \operatorname{Ker} J \tag{2.4}
\end{gather*}
$$

$X_{m}(u)=J G_{2 m}(m=0,1,2, \ldots)$ are called the $H D$ vector fields which produces the isospectral hierarchy of equations of (2.1)

$$
\begin{equation*}
u_{t_{m}}=X_{m}(u), \quad m=0,1,2, \ldots \tag{2.5}
\end{equation*}
$$

with the representative equation

$$
u_{t}=X_{0}(u)=J G_{0}=K G_{-2}=\left(u^{-1 / 2}\right)_{x x x}, \quad t_{0}=t
$$

which is exactly the well-known Harry- $\operatorname{Dym}(H D)$ equation. Thus, the isospectral hierarchy of equations (2.5) of (2.1) yields the $H D$ hierarchy. (2.1) can be written as

$$
L y \equiv L(u) y=\lambda y, \quad L \equiv L(u)=\frac{1}{u}\left(\begin{array}{cc}
i & 1-u \tag{2.6}\\
1 & -i
\end{array}\right) \partial .
$$

The Gateaux derivative of L in the direction ξ is

$$
L_{*}(\xi)=\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} L(u+\varepsilon \xi)=\frac{\xi}{u^{2}}\left(\begin{array}{cc}
-i & -1 \tag{2.7}\\
-1 & i
\end{array}\right) \partial=\frac{\xi}{u}\left(\begin{array}{cc}
0 & -i \\
0 & -1
\end{array}\right) L
$$

and L_{*} is an injective homomorphism.
Assume $G(x)$ is an arbitary smooth function. For the spectral problem (2.6), we construct an operator equation of operator $V=V(G)$

$$
\begin{equation*}
[V, L]=L_{*}(K G) L^{-1}-L_{*}(J G) L, \tag{2.8}
\end{equation*}
$$

where $[\cdot, \cdot]$ is the Lie bracket, K and J are the pair of Lenard's operators.
Theorem 2.1 The operator equation (2.8) posesses the operator solution

$$
V=V(G)=G_{x x}\left(\begin{array}{ll}
0 & 1 \tag{2.9}\\
0 & 0
\end{array}\right)+G_{x}\left(\begin{array}{cc}
1 & -2 i \\
0 & -1
\end{array}\right) L+(-2 G)\left(\begin{array}{cc}
i & 1-u \\
1 & -i
\end{array}\right) L^{2} .
$$

Proof. Let

$$
\begin{gather*}
W=\left(\begin{array}{cc}
-i & u-1 \\
-1 & i
\end{array}\right), \quad V_{0}=G_{x x}\left(\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right), \\
V_{1}=G_{x}\left(\begin{array}{cc}
1 & -2 i \\
0 & -1
\end{array}\right), \quad V_{2}=-2 G\left(\begin{array}{cc}
i & 1-u \\
1 & -i
\end{array}\right) . \tag{2.10}
\end{gather*}
$$

It is not difficult to calculate the commutator $[V, L]$ of $V=V_{0}+V_{1} L+V_{2} L^{2}$ and L (note $L=W^{-1} \partial$):

$$
\begin{align*}
{[V, L] } & =V L-L V=-W^{-1} V_{0 x}+\left(V_{0}-W^{-1} V_{0} W-W^{-1} V_{1 x}\right) L+ \\
& \left(V_{1}-W^{-1} V_{1} W-W^{-1} V_{2 x}\right) L^{2}+\left(V_{2}-W^{-1} V_{2} W\right) L^{3} \tag{2.11}
\end{align*}
$$

Substituting (2.10) into the right-hand side of (2.11) and carefully calculating, it is found to be equivalent to the right-hand side of (2.8).
Theorem 2.2 Let $G_{2 j}$ be the Lenard's recursive sequence, and $V_{j}=V\left(G_{2 j}\right)$. Then the operator $W_{m}=\sum_{j=0}^{m} V_{j-1} L^{2(m-j)+1}$ satisfies

$$
\begin{equation*}
\left[W_{m}, L\right]=L_{*}\left(X_{m}\right), \quad m=0,1,2, \ldots \tag{2.12}
\end{equation*}
$$

i.e., W_{m} is the Lax operator [21] of the HD vector field $X_{m}(u)$.

Proof.

$$
\begin{aligned}
{\left[W_{m}, L\right]=} & \sum_{j=0}^{m}\left[V_{j-1}, L\right] L^{2(m-j)+1}= \\
& \sum_{j=0}^{m}\left(L_{*}\left(K G_{2(j-1)}\right) L^{2(m-j)}-L_{*}\left(J G_{2(j-1)}\right) L^{2(m-j)+2}\right)= \\
& L_{*}\left(X_{m}\right) .
\end{aligned}
$$

Theorem 2.3 The HD Hierarchy of equation $u_{t_{m}}=X_{m}(u)$ have the commutator representations

$$
\begin{equation*}
L_{t_{m}}=\left[W_{m}, L\right], \quad m=0,1,2, \ldots \tag{2.13}
\end{equation*}
$$

i.e., $u_{t_{m}}=X_{m}(u)$ is the natural compatible condition of $L y=\lambda y$ and $y_{t_{m}}=$ $W_{m} y$.
Proof. $L_{t_{m}}=L_{*}\left(u_{t_{m}}\right) \Longrightarrow L_{t_{m}}-\left[W_{m}, L\right]=L_{*}\left(u_{t_{m}}\right)-L_{*}\left(X_{m}\right)=L_{*}\left(u_{t_{m}}-\right.$ $\left.X_{m}\right) . L_{*}$ is injective, so $L_{t_{m}}=\left[W_{m}, L\right] \Longleftrightarrow u_{t_{m}}=X_{m}(u)$.
Corollary 2.1 The potential u satisfies a stationary HD system

$$
\begin{equation*}
X_{N+c_{1}} X_{N-1}+\cdots+c_{N} X_{0}=0, \quad N=0,1,2, \ldots \tag{2.14}
\end{equation*}
$$

iff

$$
\begin{equation*}
\left[W_{N+c_{1}} W_{N-1}+\cdots+c_{N} W_{0}, L\right]=0 \tag{2.15}
\end{equation*}
$$

where c_{1}, \ldots, c_{N} are constants.

3 An integrable system and involutive functional system

Let $\lambda_{j}(j=1, \ldots, N)$ be N different spectral values of (2.1), and $y=\left(p_{j}, q_{j}\right)^{T}$ be the associated spectral functions. Introduce the Bargmann constraint [5] as follows

$$
\begin{equation*}
G_{-2}=\sum_{j=1}^{N} \nabla \lambda_{j} \tag{3.1}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
u=\langle\Lambda p, p\rangle^{-2}, \tag{3.2}
\end{equation*}
$$

where $p=\left(p_{1}, \ldots, p_{N}\right)^{T}, \Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right),\langle\cdot, \cdot\rangle$ stands for the standard inner-product in R^{N}.

Under the Bargmann constraint (3.2), (2.1) is nonlinearized as a Hamiltonian system (here $q=\left(q_{1}, \ldots, q_{N}\right)^{T}$)

$$
(H):\left\{\begin{array}{lccc}
q_{x} & = & -i \Lambda q+\left(\langle\Lambda p, p\rangle^{-2}-1\right) \Lambda p & = \tag{3.3}\\
p_{x}= & \frac{\partial H}{\partial p} \\
p_{x} & -\Lambda q+i \Lambda p & = & -\frac{\partial H}{\partial q}
\end{array}\right.
$$

with

$$
\begin{equation*}
H=-i\langle\Lambda p, q\rangle+\frac{1}{2}\langle\Lambda q, q\rangle-\frac{1}{2}\langle\Lambda p, p\rangle-\frac{1}{2}\langle\Lambda p, p\rangle^{-1} \tag{3.4}
\end{equation*}
$$

A natural problem is whether (H) is completely integrable in the Liouville sense or not? In order to answer this question, we consider a functional system $\left\{F_{m}\right\}$:

$$
F_{m}=\left\langle\Lambda^{2 m+3} p, p\right\rangle\langle\Lambda p, p\rangle^{-1}+
$$

$\sum_{j=0}^{m}\left|\begin{array}{cc}\left\langle\Lambda^{2 j+2} p, p\right\rangle & \left\langle\Lambda^{2 j+1} p, p\right\rangle \\ \left\langle\Lambda^{2(m-j)+3} p, p\right\rangle & \left\langle\Lambda^{2(m-j)+2} p, p\right\rangle\end{array}\right|+\left|\begin{array}{cc}\left\langle\Lambda^{2 j+3} q, q\right\rangle & \left\langle\Lambda^{2 j+2} p, q\right\rangle \\ \left\langle\Lambda^{2(m-j)+2} p, q\right\rangle & \left\langle\Lambda^{2(m-j)+1} p, p\right\rangle\end{array}\right|+$
$2 i \sum_{j=0}^{m}\left|\begin{array}{c}\left\langle\Lambda^{2 j+2} p, q\right\rangle\left\langle\Lambda^{2 j+3} p, q\right\rangle \\ \left\langle\Lambda^{2(m-j)+1} p, p\right\rangle\left\langle\Lambda^{2(m-j)+2} p, p\right\rangle\end{array}\right|, \quad m=0,1,2, \ldots$.
The Poisson bracket of two functions E, F in the symplectic space $\left(R^{2 N}, d p \wedge\right.$ $d q)$ is defined by [22]

$$
\begin{equation*}
(E, F)=\sum_{j=1}^{N}\left(\frac{\partial E}{\partial q_{j}} \frac{\partial F}{\partial p_{j}}-\frac{\partial E}{\partial p_{j}} \frac{\partial F}{\partial q_{j}}\right)=\left\langle\frac{\partial E}{\partial q}, \frac{\partial F}{\partial p}\right\rangle-\left\langle\frac{\partial E}{\partial p}, \frac{\partial F}{\partial q}\right\rangle \tag{3.6}
\end{equation*}
$$

which is skew-symmetric, bilinear, satisfies the Jacobi identity and Leibniz rule: $\quad(E F, H)=F(E, H)+E(F, H) . \quad E, F$ are called involutive [22], if $(E, F)=0$.

Write F_{m} as $F_{m}=U_{m}+S_{m}+T_{m}+2 i R_{m}$ where

$$
\begin{gather*}
U_{m}=\left\langle\Lambda^{2 m+3} p, p\right\rangle\langle\Lambda p, p\rangle^{-1} \tag{3.7}\\
S_{m}=\sum_{j=0}^{m}\left(\left\langle\Lambda^{2 j+2} p, p\right\rangle\left\langle\Lambda^{2(m-j)+2} p, p\right\rangle-\left\langle\Lambda^{2 j+1} p, p\right\rangle\left\langle\Lambda^{2(m-j)+3} p, p\right\rangle\right) \tag{3.7}\\
T_{m}=\sum_{j=0}^{m}\left(\left\langle\Lambda^{2 j+3} q, q\right\rangle\left\langle\Lambda^{2(m-j)+1} p, p\right\rangle-\left\langle\Lambda^{2 j+2} p, q\right\rangle\left\langle\Lambda^{2(m-j)+2} p, q\right\rangle\right) \tag{3.7}\\
R_{m}=\sum_{j=0}^{m}\left(\left\langle\Lambda^{2 j+2} p, q\right\rangle\left\langle\Lambda^{2(m-j)+2} p, p\right\rangle-\left\langle\Lambda^{2 j+3} p, q\right\rangle\left\langle\Lambda^{2(m-j)+1} p, p\right\rangle\right) \tag{3.7}
\end{gather*}
$$

Lemma 3.1

$$
\begin{equation*}
\left(U_{m}, U_{n}\right)=\left(S_{m}, S_{n}\right)=\left(U_{m}, S_{n}\right)=\left(T_{m}, T_{n}\right)=\left(R_{m}, R_{n}\right)=0, \quad \forall m, n \in Z^{+} \tag{3.8}
\end{equation*}
$$

Proof. $\left(U_{m}, U_{n}\right)=\left(S_{m}, S_{n}\right)=\left(U_{m}, S_{n}\right)=0$ is obvious.

$$
\begin{equation*}
\frac{\partial T_{m}}{\partial q}=2 \sum_{j=0}^{m}\left(\left\langle\Lambda^{2(m-j)+1} p, p\right\rangle \Lambda^{2 j+3} q-\left\langle\Lambda^{2(m-j)+2} p, q\right\rangle \Lambda^{2 j+2} p\right) \tag{3.9}
\end{equation*}
$$

$$
\begin{align*}
& \frac{\partial T_{n}}{\partial p}=2 \sum_{j=0}^{n}\left(\left\langle\Lambda^{2 k+3} q, q\right\rangle \Lambda^{2(n-k)+1} p-\left\langle\Lambda^{2 k+2} p, q\right\rangle \Lambda^{2(n-k)+2} q\right) \tag{3.9}\\
& \frac{\partial R_{m}}{\partial q}=\sum_{j=0}^{m}\left(\left\langle\Lambda^{2(m-j)+2} p, p\right\rangle \Lambda^{2 j+2} p-\left\langle\Lambda^{2(m-j)+1} p, p\right\rangle \Lambda^{2 j+3} p\right) \tag{3.10}\\
& \frac{\partial R_{n}}{\partial q}=2 \sum_{j=0}^{n}\left(\left\langle\Lambda^{2 k+2} p, q\right\rangle \Lambda^{2(n-k)+2} p-\left\langle\Lambda^{2 k+3} p, q\right\rangle \Lambda^{2(n-k)+1} p\right)+ \\
& \sum_{j=0}^{n}\left(\left\langle\Lambda^{2(n-k)+2} p, p\right\rangle \Lambda^{2 k+2} q-\left\langle\Lambda^{2(n-k)+1} p, p\right\rangle \Lambda^{2 k+3} q\right) \tag{3.10}
\end{align*}
$$

Substituting $(3.9)_{1},(3.9)_{2}$ and $(3.10)_{1},(3.10)_{2}$ into the inner-product $\left\langle\frac{\partial T_{m}}{\partial q}, \frac{\partial T_{n}}{\partial p}\right\rangle$ and $\left\langle\frac{\partial R_{m}}{\partial q}, \frac{\partial R_{n}}{\partial p}\right\rangle$, respectively, through a lengthy calculation we may know that $\left\langle\frac{\partial T_{m}}{\partial q}, \frac{\partial T_{n}}{\partial p}\right\rangle$ and $\left\langle\frac{\partial R_{m}}{\partial q}, \frac{\partial R_{n}}{\partial p}\right\rangle$ are symmetrical about m.n. s_{0},

$$
\begin{aligned}
\left(T_{m}, T_{n}\right) & =\left\langle\frac{\partial T_{m}}{\partial q}, \frac{\partial T_{n}}{\partial p}\right\rangle-\left\langle\frac{\partial T_{m}}{\partial p}, \frac{\partial T_{n}}{\partial q}\right\rangle=0 \\
\left(R_{m}, R_{n}\right) & =\left\langle\frac{\partial R_{m}}{\partial q}, \frac{\partial R_{n}}{\partial p}\right\rangle-\left\langle\frac{\partial R_{m}}{\partial p}, \frac{\partial R_{n}}{\partial q}\right\rangle=0
\end{aligned}
$$

Lemma $3.2\left(U_{m}, T_{n}\right),\left(U_{m}, R_{n}\right),\left(S_{m}, T_{n}\right),\left(S_{m}, R_{n}\right)$ and $\left(T_{m}, R_{n}\right)$ are symmetrical about $m, n \in Z^{+}$, i.e.,

$$
\begin{align*}
& \left(U_{m}, T_{n}\right)=\left(U_{n}, T_{m}\right), \quad\left(U_{m}, R_{n}\right)=\left(U_{n}, R_{m}\right), \quad\left(S_{m}, T_{n}\right)=\left(S_{n}, T_{m}\right) \\
& \left(S_{m}, R_{n}\right)=\left(S_{n}, R_{m}\right), \quad\left(T_{m}, R_{n}\right)=\left(T_{n}, R_{m}\right), \quad \forall m, n \in Z^{+} \tag{3.11}
\end{align*}
$$

Proof. Here we prove $\left(U_{m}, T_{n}\right)=\left(U_{n}, T_{m}\right)$. Other equalities can be proved in the same way.

$$
\begin{gather*}
\frac{\partial U_{m}}{\partial p}=-2\left\langle\Lambda^{2 m+3} p, p\right\rangle\langle\Lambda p, p\rangle^{-2} \Lambda p+2\langle\Lambda p, p\rangle^{-1} \Lambda^{2 m+3} p \tag{3.12}\\
\frac{\partial T_{n}}{\partial q}=2 \sum_{j=0}^{n}\left(\left\langle\Lambda^{2(n-j)+1} p, p\right\rangle \Lambda^{2 j+3} q-\left\langle\Lambda^{2(n-j)+2} p, q\right\rangle \Lambda^{2 j+2} p\right) \tag{3.13}
\end{gather*}
$$

According to (3.6), we have

$$
\begin{equation*}
\left(U_{m}, T_{n}\right)=-\left\langle\frac{\partial U_{m}}{\partial p}, \frac{\partial T_{n}}{\partial q}\right\rangle \tag{3.14}
\end{equation*}
$$

Substituting (3.12) and (3.13) into the right-hand side of (3.14) and carefully calculating the inner-product $\left\langle\frac{\partial U_{m}}{\partial p}, \frac{\partial T_{n}}{\partial q}\right\rangle$, we find that $\left\langle\frac{\partial U_{m}}{\partial p}, \frac{\partial T_{n}}{\partial q}\right\rangle$ is symmetrical about m, n. Thus $\left(U_{m}, T_{n}\right)=\left(U_{n}, T_{m}\right)$.

Theorem 3.1

$$
\begin{equation*}
\left(F_{m}, F_{n}\right)=0, \quad \forall m, n \in Z_{+} \tag{3.15}
\end{equation*}
$$

Proof. In virtue of Lemma 3.1, Lemma 3.2 and the property of Poisson bracket, we get

$$
\begin{align*}
\left(F_{m}, F_{n}\right)= & \left(U_{m}, T_{n}\right)+2 i\left(U_{m}, R_{n}\right)+\left(S_{m}, T_{n}\right)+ \\
& 2 i\left(S_{m}, R_{n}\right)+\left(T_{m}, U_{n}\right)+\left(T_{m}, S_{n}\right)+2 i\left(T_{m}, R_{n}\right)+ \\
& 2 i\left(R_{m}, U_{n}\right)+2 i\left(R_{m}, S_{n}\right)+2 i\left(R_{m}, T_{n}\right)=0 . \tag{3.16}
\end{align*}
$$

Theorem $3.2\left(H, F_{m}\right)=0, \quad \forall m \in Z^{+}$.

Proof.

$$
\begin{align*}
\frac{\partial F_{m}}{\partial q}= & 2 \sum_{j=0}^{m}\left(\left\langle\Lambda^{2(m-j)+1} p, p\right\rangle \Lambda^{2 j+3} q-\left\langle\Lambda^{2(m-j)+2} p, q\right\rangle \Lambda^{2 j+2} p\right)+ \\
& 2 i \sum_{j=0}^{m}\left(\left\langle\Lambda^{2(m-j)+2} p, p\right\rangle \Lambda^{2 j+2} p-\left\langle\Lambda^{2(m-j)+1} p, p\right\rangle \Lambda^{2 j+3} p\right) \tag{3.17}\\
\frac{\partial F_{m}}{\partial p}= & -2\left\langle\Lambda^{2 m+3} p, p\right\rangle\langle\Lambda p, p\rangle^{-2} \Lambda p+2\langle\Lambda p, p\rangle^{-1} \Lambda^{2 m+3} p+ \\
& 4 \sum_{j=0}^{m}\left\langle\Lambda^{2(m-j)+2} p, p\right\rangle \Lambda^{2 j+2} p- \\
& 2 \sum_{j=0}^{m}\left(\left\langle\Lambda^{2 j+1} p, p\right\rangle \Lambda^{2(m-j)+3}\left\langle\Lambda^{2(m-j)+3} p, p\right\rangle \Lambda^{2 j+1} p\right)+ \\
& 2 \sum_{j=0}^{m}\left(\left\langle\Lambda^{2 j+3} q, q\right\rangle \Lambda^{2(m-j)+1} p-\left\langle\Lambda^{2 j+2} p, q\right\rangle \Lambda^{2(m-j)+2} q\right)+ \\
& 4 i \sum_{j=0}^{m}\left(\left\langle\Lambda^{2 j+2} p, q\right\rangle \Lambda^{2(m-j)+2} p-\left\langle\Lambda^{2 j+3} p, q\right\rangle \Lambda^{2(m-j)+1} p\right)+ \\
& 2 i \sum_{j=0}^{m}\left(\left\langle\Lambda^{2(m-j)+2} p, p\right\rangle \Lambda^{2 j+2} q-\left\langle\Lambda^{2(m-j)+1} p, p\right\rangle \Lambda^{2 j+3} q\right) \tag{3.17}
\end{align*}
$$

Substitute (3.3), $(3.17)_{1}$ and $(3.17)_{2}$ into the following formula

$$
\begin{equation*}
\left(H, F_{m}\right)=\left\langle\frac{\partial H}{\partial q}, \frac{\partial F_{m}}{\partial p}\right\rangle-\left\langle\frac{\partial H}{\partial p}, \frac{\partial F_{m}}{\partial q}\right\rangle . \tag{3.18}
\end{equation*}
$$

Through a series of careful calculations, we can obtain (3.16).
Theorem 3.3 i) The Hamiltonian system (H) (or (3.3)) is completely integrable in the Liouville sense, and its involutive functional system is F_{m}.
ii) The Hamiltonian systems

$$
\begin{equation*}
\left(F_{m}\right): \quad q_{t_{m}}=\frac{\partial F_{m}}{\partial p}, \quad p_{t_{m}}=-\frac{\partial F_{m}}{\partial q}, \quad m=0,1,2, \ldots \tag{3.19}
\end{equation*}
$$

are completely integrable, too.

4 The involutive solutions of the $H D$ hierarchy

Since $\left(H, F_{m}\right)=0, \forall m \in Z^{+}$, the Hamiltonian systems (H) and $\left(F_{m}\right)$ are compatible [22]. Hence, the solution operators g^{X} and $g_{m}^{t_{m}}$ of initial problem of (H) and $\left(F_{m}\right)$ commute [22]. Define

$$
\begin{equation*}
\binom{q\left(x, t_{m}\right)}{p\left(x, t_{m}\right)}=g^{x} g_{m}^{t_{m}}\binom{q(0,0)}{p(0,0)}, \quad m=0,1,2, \ldots, \tag{4.1}
\end{equation*}
$$

which are called the involutive solutions of compatible systems (H) and $\left(F_{m}\right)$. Theorem 4.1 Let $\left(q\left(x, t_{m}\right), p\left(x, t_{m}\right)\right)^{T}$ be an involutive solution of compatible systems (H) and $\left(F_{m}\right)$. Then

$$
\begin{equation*}
u\left(x, t_{m}\right)=\langle\Lambda p, p\rangle^{-2} \tag{4.2}
\end{equation*}
$$

satisfies the higher-order $H D$ equation

$$
\begin{equation*}
u_{t_{m}}=X_{m}(u)=J\left(J^{-1} K\right)^{m+1} G_{-2}, \quad G_{-2}=u^{-1 / 2}, \quad m=0,1,2, \ldots \tag{4.3}
\end{equation*}
$$

Proof. First note that

$$
\begin{align*}
u_{t_{m}}= & -2\langle\Lambda p, p\rangle^{-3} \cdot 2\left\langle\Lambda p, p_{t_{m}}\right\rangle= \\
& 4\langle\Lambda p, p\rangle^{-3}\left\langle\Lambda p, \frac{F_{m}}{q}\right\rangle= \\
& 8\langle\Lambda p, p\rangle^{-3}\left(\langle\Lambda p, p\rangle\left\langle\Lambda^{2 m+4} p, q\right\rangle-\left\langle\Lambda^{2} q, p\right\rangle\left\langle\Lambda^{2 m+3} p, p\right\rangle+\right. \\
& \left.i\left\langle\Lambda^{2} p, p\right\rangle\left\langle\Lambda^{2 m+3} p, p\right\rangle-i\langle\Lambda p, p\rangle\left\langle\Lambda^{2 m+4} p, p\right\rangle\right) . \tag{4.4}
\end{align*}
$$

Acting with the operator $\left(J^{-1} K\right)^{m+1}$ upon $G_{-2}=\sum_{j=1}^{N} \nabla \lambda_{j}$ and noticing (2.3), we have

$$
\begin{equation*}
\left(J^{-1} K\right)^{m+1} G_{-2}=\sum_{j=1}^{N} \lambda_{J}^{2(m+1)} \nabla \lambda_{j}=\left\langle\Lambda^{2 m+3} p, p\right\rangle . \tag{4.5}
\end{equation*}
$$

Note

$$
\begin{align*}
u_{x}= & -4\langle\Lambda p, p\rangle^{-3}\langle\Lambda p,-\Lambda q+i \Lambda p\rangle= \\
& 4\left(\langle\Lambda p, p\rangle^{-3}\left\langle\Lambda^{2} p, q\right\rangle-i\langle\Lambda p, p\rangle^{-3}\left\langle\Lambda^{2} p, p\right\rangle\right), \tag{4.6}
\end{align*}
$$

$$
\begin{align*}
\left(\left\langle\Lambda^{2 m+3} p, p\right\rangle\right)_{x}= & 2\left\langle\Lambda^{2 m+3} p, p_{x}\right\rangle= \\
& 2\left\langle\Lambda^{2 m+3} p,-\Lambda q+i \Lambda p\right\rangle= \\
& 2\left(i\left\langle\Lambda^{2 m+4} p, p\right\rangle-\left\langle\Lambda^{2 m+4} p, q\right\rangle\right) \tag{4.7}
\end{align*}
$$

hence

$$
\begin{align*}
\left(J^{-1} K\right)^{m+1} G_{-2}= & -2(\partial u+u \partial)\left\langle\Lambda^{2 m+3} p, p\right\rangle= \\
& -2\left(u_{x}+2 u \partial\right)\left\langle\Lambda^{2 m+3} p, p\right\rangle= \\
& -8\left(\langle\Lambda p, p\rangle^{-3}\left\langle\Lambda^{2} p, q\right\rangle\left\langle\Lambda^{2 m+3} p, p\right\rangle-\right. \\
& \left.i\langle\Lambda p, p\rangle^{-3}\left\langle\Lambda^{2} p, p\right\rangle\left\langle\Lambda^{2 m+3} p, p\right\rangle\right)- \\
& 8\left(i\langle\Lambda p, p\rangle^{-2}\left\langle\Lambda^{2 m+4} p, p\right\rangle-\langle\Lambda p, p\rangle^{-2}\left\langle\Lambda^{2 m+4} p, q\right\rangle\right) . \tag{4.8}
\end{align*}
$$

$S_{0}, u\left(x, t_{m}\right)=\langle\Lambda p, p\rangle^{-2}$ satisfies $u_{t_{m}}=J\left(J^{-1} K\right)^{m+1} G_{-2}$.
In Theorem 4.1, letting $m=0$, we can obtain the involutive solution of the $H D$ equation $u_{t}=\left(u^{-1 / 2}\right)_{x x x}, t_{0}=t$.
Corollary 4.1 Let $(q(x, t), p(x, t))^{T}$ be an involutive solution of the compatible systems (H) and $\left(F_{0}\right)$. Then $u(x, t)=\langle\Lambda p, p\rangle^{-2}$ is a solution of the $H D$ equation $u_{t}=\left(u^{-1 / 2}\right)_{x x x}$.

References

[1] Yishen Li, Dengyuan Cheng and Yunbo Zeng, Some equivalent classes of soliton equation, Proc. 1983 Beijing Symp. on Diff. Geom. and Diff. Equ's, Soience Press, Beijing, 1986, 359-368.
[2] Cewen Cao, An isospectral class for a generalized Hill's equation, Northeastern Math. J. 1986, V.2, N 1, 58-65.
[3] Cewen Cao, Stationary Harry-Dym aquation and its relation with geodesics ellipsoid, Acta Math. Sin. New Series. 1990, V.6, N 1, 35-45.
[4] Cewen Cao, Nonlinearization of the Lax system for AKNS hierarchy, Sci. China A. 1990, V.33, N 5, 528-536.
[5] Cewen Cao and Xianguo Geng, Classical integrable systems generated through nonlinearization of eigenvalue problems. In: Research reports in physics, Nonlinear physics, editor C. Gu, Y. Li and G. Tu, Springer, Berlin, 1990, 68-78.
[6] Antonowicz M. and Rauch-Wojciechwski S., How to construct finite-dimensional biHamiltonian systems from soliton equations: Jacobi-integrable, Phys. Lett. A. 1990, V.147, N 5, 455-461.
[7] Cewen Cao, A classical integrable system and the involutive representation of solution of the Kdv equation, Acta Math. Sin. New Series. 1991, V.7, N 3, 261-270.
[8] Cewen Cao and Xianguo Geng, C. Neumann and Bargmann systems associated with the coupled Kdv soliton hierarchy, J. Phys. A: Math. Gen. 1990, V.23, N 18, 4117-4125.
[9] Yunbo Zeng and Yishen Li, J. Math. Phys. 1989, V.30, N 4, 1679-1687.
[10] Antonowicz M. and Rauch-Wojciechwski S., Restricted flows of soliton hierarchies: coupled Kdv and Harry-Dym case, J. Phys. A: Math. Cen. 1991, V.24, N 21, 5043-5058.
[11] Antonowicz M. and Rauch-Wojciechwski S., Jacobi bi-Hamiltonian potetials from soliton equations, J. Math. Phys. 1992, V.33, N 6, 2115-2125.
[12] Konopelchenko B. and Strampp W., New reductions of the KP and two dimensional Toda lattice hierarchies via symmetry constraints, J. Math. Phys. 1992, V.33, N 11, 3676-3684.
[13] Yi Cheng, Constraints of the Kadometsev-Petviashvill hierarchy, J. Math. Phys. 1992, V.33, N 11, 3774-3790.
[14] Xianguo Geng, A hierarchy of nonlinear evolution equations, its Hamiltonian structure and classical integrable system, Physica A. 1992, V.182, N 2, 241-251.
[15] Xianguo Geng, A new hierarchy of nonlinear evolution equations, and corresponding finite-dimensional completely integrable systems, Phys. Lett. A. 1992, V.162, N 5, 375380.
[16] Baszak H. and Barasab H., Phys. Lett. A. 1992, V.171, N 1, 45-50.
[17] Zhijun Qiao, Two new integrable systems in the Liouville's sense, Phys. Lett. A. 1993, V.172, N 4, 224-228.
[18] Zhijun Qiao, A new completely integrable Liouville's system produced by the KaupNewell eigenvalue problem, J. Math. Phys. 1993, V.34, N 7.
[19] Zhijun Qiao, A Bargmann system and the involutive solutions of the Levi hierarchy, to appear in:J. Phys. A: Math. Gen. 1993, V.26, N 17.
[20] Boiti M., Pempinelli F. and Guizhang Tu, The nonlinear evolution equations related to the Wadati-Konno-Ichikawa spectral problem, Prog. of Theor. Phys. 1983, V.69, N 1, 48-64.
[21] Wenxiu Ma,The algebraic structure of isospectral Lax operator and applications to integrable equations, J. Phys. A: Math. Gen. 1992, V. 25.
[22] Arnol'd V.I., Mathematical Methods of Classical Mechanics, Springer-Verlag, 1978.

