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Abstract

By use of nonlinearization method about spectral problem, a classical
completely integrable system associated with the Harry-Dym (HD) hi-
erarchy is obtained. Furthermore, the involutive solution of each equation
in the HD hierarchy is presented, in particular, the involutive solution
of the well-known HD equation ut = (u−

1
2 )xxx is given.

1 Introduction

The Harry-Dym (HD) equation ut = (u−
1
2 )xxx is celebrated for its cuspidal

soliton equation. The isospectral property the HD hierarchy has been dis-
cussed in [1, 2]. Recently, Cao Cewen [3] has studied the nonlinearization of
the Lax pair for the HD equation ut = (u−

1
2 )xxx, and considered the station-

ary HD equation and its relation with geodesics on ellipsoid. In this paper,
we shall study the HD hierarchy of nonlinear evolution equations, which con-
tains the HD equation ut = (u−

1
2 )xxx. The whole paper is divided into four

sections. In the next section, the commutator (or Lax) representation of each
HD hierarchy is secured. In Sec. 3, using the ”nonlinearization” [4–8] of spec-
tral problem by which many completely integrable systems in the Liouville’s
sense have been found [7–19] in recent years, we present a classical completely
integrable system in the Liouville’s sense and an involutive functional sys-
tem. Section 4 gives a discription about the involutive solutions of the HD
hierarchy, particularly, the involutive solution of the well-known HD equation
ut = (u−

1
2 )xxx is obtained.
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2 Commutator (or Lax) representations of the HD hierarchy

Consider the spectral problem

yx = My, y =
(
y1

y2

)
, M =

(
−iλ (u− 1)λ
−λ iλ

)
(2.1)

which is the special case of the WKI spectral problem [20]

yx = My, y =
(
y1

y2

)
, M =

(
−iλ qλ
rλ iλ

)
as q = u−1, r = −1. Here, i2 = −1, yx = ∂y/∂x, u is a scalar potential, λ is a
spectral parameter, x ∈ Ω (Ω = (−∞,+∞) or (0, T )). It is easy to know that
(2.1) is equivalent to the well-know Sturm-Liouville equation −ψxx = µuψ via
the transformation y1 = iψ − λ−1ψx, y2 = ψ, µ = λ2 and its inverse.
Proposition 2.1 Let λ be a spectral parameter of (2.1). Then the spectral
gradient 5λ of spectral λ with regart to the potential u is

5λ =
δλ

δu
= λy2

2 ·
(∫

Ω

(2iy1y2 − uy2
2 − y2

1)dx
)−1

, (2.2)

where (y1, y2)T is the spectral function of (2.1) corresponding to λ.
Proof. See Ref. 4 Sec. II.

Choosing the operator K and J : K = ∂3, J = 2(∂u + u∂), (here ∂ =
∂/∂x), we immediately have
Proposition 2.2 Let λ be a spectral parameter of (2.1). Then the spectral
gradient 5λ defined by (2.2) satisfies the linear relation

K 5 λ = λ2 · J 5 λ. (2.3)

Proof. In virtue of (2.1) and ∂−1u∂y2
2 = 2iy1y2 + y2

2 − y2
1, directly calculate.

The operators K and J which satisfy (2.3) are called the pair of Lenard’s
operators of (2.1). Now, recursively define the Lenard’s gradient sequence
{G2j}:

KG2(j−1) = JG2j , j = 0, 1, 2, ... ,

G−2 = u−1/2 ∈ KerJ. (2.4)

Xm(u) = JG2m (m = 0, 1, 2, ...) are called the HD vector fields which pro-
duces the isospectral hierarchy of equations of (2.1)

utm = Xm(u), m = 0, 1, 2, ..., (2.5)

with the representative equation

ut = X0(u) = JG0 = KG−2 = (u−1/2)xxx, t0 = t
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which is exactly the well-known Harry-Dym (HD) equation. Thus, the isospec-
tral hierarchy of equations (2.5) of (2.1) yields the HD hierarchy. (2.1) can
be written as

Ly ≡ L(u)y = λy, L ≡ L(u) =
1
u

(
i 1− u
1 −i

)
∂. (2.6)

The Gateaux derivative of L in the direction ξ is

L∗(ξ) =
d

dε

∣∣∣
ε=0

L(u+ εξ) =
ξ

u2

(
−i −1
−1 i

)
∂ =

ξ

u

(
0 −i
0 −1

)
L (2.7)

and L∗ is an injective homomorphism.
Assume G(x) is an arbitary smooth function. For the spectral problem

(2.6), we construct an operator equation of operator V = V (G)

[V,L] = L∗(KG)L−1 − L∗(JG)L, (2.8)

where [·, ·] is the Lie bracket, K and J are the pair of Lenard’s operators.
Theorem 2.1 The operator equation (2.8) posesses the operator solution

V = V (G) = Gxx

(
0 1
0 0

)
+Gx

(
1 −2i
0 −1

)
L+(−2G)

(
i 1− u
1 −i

)
L2. (2.9)

Proof. Let

W =
(
−i u− 1
−1 i

)
, V0 = Gxx

(
0 1
0 0

)
,

V1 = Gx

(
1 −2i
0 −1

)
, V2 = −2G

(
i 1− u
1 −i

)
. (2.10)

It is not difficult to calculate the commutator [V,L] of V = V0 + V1L+ V2L
2

and L (note L = W−1∂) :

[V,L] = V L− LV = −W−1V0x + (V0 −W−1V0W −W−1V1x)L+

(V1 −W−1V1W −W−1V2x)L2 + (V2 −W−1V2W )L3. (2.11)

Substituting (2.10) into the right-hand side of (2.11) and carefully calculating,
it is found to be equivalent to the right-hand side of (2.8).
Theorem 2.2 Let G2j be the Lenard’s recursive sequence, and Vj = V (G2j).

Then the operator Wm =
m∑

j=0
Vj−1L

2(m−j)+1 satisfies

[Wm, L] = L∗(Xm), m = 0, 1, 2, ..., (2.12)

i.e., Wm is the Lax operator [21] of the HD vector field Xm(u).
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Proof.

[Wm, L] =
m∑

j=0

[Vj−1, L]L2(m−j)+1 =

m∑
j=0

(L∗(KG2(j−1))L
2(m−j) − L∗(JG2(j−1))L

2(m−j)+2) =

L∗(Xm).

Theorem 2.3 The HD Hierarchy of equation utm = Xm(u) have the commu-
tator representations

Ltm = [Wm, L], m = 0, 1, 2, ..., (2.13)

i.e., utm = Xm(u) is the natural compatible condition of Ly = λy and ytm =
Wmy.
Proof. Ltm = L∗(utm) =⇒ Ltm − [Wm, L] = L∗(utm) − L∗(Xm) = L∗(utm −
Xm). L∗ is injective, so Ltm = [Wm, L] ⇐⇒ utm = Xm(u).
Corollary 2.1 The potential u satisfies a stationary HD system

XN+c1XN−1 + · · ·+ cNX0 = 0, N = 0, 1, 2, ..., (2.14)

iff
[WN+c1WN−1 + · · ·+ cNW0, L] = 0, (2.15)

where c1, ..., cN are constants.

3 An integrable system and involutive functional system

Let λj (j = 1, ..., N) be N different spectral values of (2.1), and y = (pj , qj)T

be the associated spectral functions. Introduce the Bargmann constraint [5]
as follows

G−2 =
N∑

j=1

5λj (3.1)

which is equivalent to
u = 〈Λp, p〉−2, (3.2)

where p = (p1, ..., pN )T , Λ = diag(λ1, ..., λN ), 〈·, ·〉 stands for the standard
inner-product in RN .

Under the Bargmann constraint (3.2), (2.1) is nonlinearized as a Hamilto-
nian system (here q = (q1, ..., qN )T )

(H) :

{
qx = −iΛq + (〈Λp, p〉−2 − 1)Λp = ∂H

∂p

px = −Λq + iΛp = −∂H
∂q

(3.3)
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with
H = −i〈Λp, q〉+

1
2
〈Λq, q〉 − 1

2
〈Λp, p〉 − 1

2
〈Λp, p〉−1. (3.4)

A natural problem is whether (H) is completely integrable in the Liouville
sense or not? In order to answer this question, we consider a functional system
{Fm} :

Fm = 〈Λ2m+3p, p〉 〈Λp, p〉−1+

m∑
j=0

∣∣∣∣∣∣
〈Λ2j+2p, p〉 〈Λ2j+1p, p〉

〈Λ2(m−j)+3p, p〉 〈Λ2(m−j)+2p, p〉

∣∣∣∣∣∣ +
∣∣∣∣ 〈Λ2j+3q, q〉 〈Λ2j+2p, q〉
〈Λ2(m−j)+2p, q〉 〈Λ2(m−j)+1p, p〉

∣∣∣∣ +

2i
m∑

j=0

∣∣∣∣∣∣
〈Λ2j+2p, q〉〈Λ2j+3p, q〉

〈Λ2(m−j)+1p, p〉〈Λ2(m−j)+2p, p〉

∣∣∣∣∣∣ , m = 0, 1, 2, ... . (3.5)

The Poisson bracket of two functions E, F in the symplectic space (R2N , dp∧
dq) is defined by [22]

(E,F ) =
N∑

j=1

(∂E
∂qj

∂F

∂pj
− ∂E

∂pj

∂F

∂qj

)
=

〈∂E
∂q

,
∂F

∂p

〉
−

〈∂E
∂p

,
∂F

∂q

〉
(3.6)

which is skew-symmetric, bilinear, satisfies the Jacobi identity and Leibniz
rule: (EF,H) = F (E,H) + E(F,H). E,F are called involutive [22], if
(E,F ) = 0.

Write Fm as Fm = Um + Sm + Tm + 2iRm where

Um = 〈Λ2m+3p, p〉 〈Λp, p〉−1, (3.7)1

Sm =
m∑

j=0

(
〈Λ2j+2p, p〉 〈Λ2(m−j)+2p, p〉 − 〈Λ2j+1p, p〉 〈Λ2(m−j)+3p, p〉

)
, (3.7)2

Tm =
m∑

j=0

(
〈Λ2j+3q, q〉 〈Λ2(m−j)+1p, p〉 − 〈Λ2j+2p, q〉 〈Λ2(m−j)+2p, q〉

)
, (3.7)3

Rm =
m∑

j=0

(
〈Λ2j+2p, q〉 〈Λ2(m−j)+2p, p〉 − 〈Λ2j+3p, q〉 〈Λ2(m−j)+1p, p〉

)
. (3.7)4

Lemma 3.1

(Um, Un) = (Sm, Sn) = (Um, Sn) = (Tm, Tn) = (Rm, Rn) = 0, ∀m,n ∈ Z+.
(3.8)

Proof. (Um, Un) = (Sm, Sn) = (Um, Sn) = 0 is obvious.

∂Tm

∂q
= 2

m∑
j=0

(
〈Λ2(m−j)+1p, p〉Λ2j+3q − 〈Λ2(m−j)+2p, q〉Λ2j+2p

)
, (3.9)1
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∂Tn

∂p
= 2

n∑
j=0

(
〈Λ2k+3q, q〉Λ2(n−k)+1p− 〈Λ2k+2p, q〉Λ2(n−k)+2q

)
, (3.9)2

∂Rm

∂q
=

m∑
j=0

(
〈Λ2(m−j)+2p, p〉Λ2j+2p− 〈Λ2(m−j)+1p, p〉Λ2j+3p

)
, (3.10)1

∂Rn

∂q
= 2

n∑
j=0

(
〈Λ2k+2p, q〉Λ2(n−k)+2p− 〈Λ2k+3p, q〉Λ2(n−k)+1p

)
+

n∑
j=0

(
〈Λ2(n−k)+2p, p〉Λ2k+2q − 〈Λ2(n−k)+1p, p〉Λ2k+3q

)
. (3.10)2

Substituting (3.9)1, (3.9)2 and (3.10)1, (3.10)2 into the inner-product 〈∂Tm
∂q ,

∂Tn
∂p 〉

and 〈∂Rm
∂q , ∂Rn

∂p 〉, respectively, through a lengthy calculation we may know that
〈∂Tm

∂q ,
∂Tn
∂p 〉 and 〈∂Rm

∂q , ∂Rn
∂p 〉 are symmetrical about m.n. s0,

(Tm, Tn) =
〈∂Tm

∂q
,
∂Tn

∂p

〉
−

〈∂Tm

∂p
,
∂Tn

∂q

〉
= 0,

(Rm, Rn) =
〈∂Rm

∂q
,
∂Rn

∂p

〉
−

〈∂Rm

∂p
,
∂Rn

∂q

〉
= 0.

Lemma 3.2 (Um, Tn), (Um, Rn), (Sm, Tn), (Sm, Rn) and (Tm, Rn) are sym-
metrical about m, n ∈ Z+, i.e.,

(Um, Tn) = (Un, Tm), (Um, Rn) = (Un, Rm), (Sm, Tn) = (Sn, Tm),

(Sm, Rn) = (Sn, Rm), (Tm, Rn) = (Tn, Rm), ∀m,n ∈ Z+. (3.11)

Proof. Here we prove (Um, Tn) = (Un, Tm). Other equalities can be proved in
the same way.

∂Um

∂p
= −2〈Λ2m+3p, p〉〈Λp, p〉−2Λp+ 2〈Λp, p〉−1Λ2m+3p, (3.12)

∂Tn

∂q
= 2

n∑
j=0

(
〈Λ2(n−j)+1p, p〉Λ2j+3q − 〈Λ2(n−j)+2p, q〉Λ2j+2p

)
. (3.13)

According to (3.6), we have

(Um, Tn) = −
〈∂Um

∂p
,
∂Tn

∂q

〉
. (3.14)

Substituting (3.12) and (3.13) into the right-hand side of (3.14) and carefully
calculating the inner-product 〈∂Um

∂p , ∂Tn
∂q 〉, we find that 〈∂Um

∂p , ∂Tn
∂q 〉 is symmet-

rical about m,n. Thus (Um, Tn) = (Un, Tm).
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Theorem 3.1
(Fm, Fn) = 0, ∀m,n ∈ Z+. (3.15)

Proof. In virtue of Lemma 3.1, Lemma 3.2 and the property of Poisson
bracket, we get

(Fm, Fn) = (Um, Tn) + 2i(Um, Rn) + (Sm, Tn) +
2i(Sm, Rn) + (Tm, Un) + (Tm, Sn) + 2i(Tm, Rn) +
2i(Rm, Un) + 2i(Rm, Sn) + 2i(Rm, Tn) = 0. (3.16)

Theorem 3.2 (H,Fm) = 0, ∀m ∈ Z+.

Proof.

∂Fm

∂q
= 2

m∑
j=0

(
〈Λ2(m−j)+1p, p〉Λ2j+3q − 〈Λ2(m−j)+2p, q〉Λ2j+2p

)
+

2i
m∑

j=0

(
〈Λ2(m−j)+2p, p〉Λ2j+2p− 〈Λ2(m−j)+1p, p〉Λ2j+3p

)
, (3.17)1

∂Fm

∂p
= −2〈Λ2m+3p, p〉〈Λp, p〉−2Λp+ 2〈Λp, p〉−1Λ2m+3p+

4
m∑

j=0

〈Λ2(m−j)+2p, p〉Λ2j+2p−

2
m∑

j=0

(
〈Λ2j+1p, p〉Λ2(m−j)+3〈Λ2(m−j)+3p, p〉Λ2j+1p

)
+

2
m∑

j=0

(
〈Λ2j+3q, q〉Λ2(m−j)+1p− 〈Λ2j+2p, q〉Λ2(m−j)+2q

)
+

4i
m∑

j=0

(
〈Λ2j+2p, q〉Λ2(m−j)+2p− 〈Λ2j+3p, q〉Λ2(m−j)+1p

)
+

2i
m∑

j=0

(
〈Λ2(m−j)+2p, p〉Λ2j+2q − 〈Λ2(m−j)+1p, p〉Λ2j+3q

)
. (3.17)2

Substitute (3.3), (3.17)1 and (3.17)2 into the following formula

(H,Fm) =
〈∂H
∂q

,
∂Fm

∂p

〉
−

〈∂H
∂p

,
∂Fm

∂q

〉
. (3.18)

Through a series of careful calculations, we can obtain (3.16).

Theorem 3.3 i) The Hamiltonian system (H) (or (3.3)) is completely inte-
grable in the Liouville sense, and its involutive functional system is Fm.
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ii) The Hamiltonian systems

(Fm) : qtm =
∂Fm

∂p
, ptm = −∂Fm

∂q
, m = 0, 1, 2, ... (3.19)

are completely integrable, too.

4 The involutive solutions of the HD hierarchy

Since (H,Fm) = 0, ∀m ∈ Z+, the Hamiltonian systems (H) and (Fm) are
compatible [22]. Hence, the solution operators gX and gtm

m of initial problem
of (H) and (Fm) commute [22]. Define(

q(x, tm)
p(x, tm)

)
= gxgtm

m

(
q(0, 0)
p(0, 0)

)
, m = 0, 1, 2, ..., (4.1)

which are called the involutive solutions of compatible systems (H) and (Fm).
Theorem 4.1 Let (q(x, tm), p(x, tm))T be an involutive solution of compatible
systems (H) and (Fm). Then

u(x, tm) = 〈Λp, p〉−2 (4.2)

satisfies the higher-order HD equation

utm = Xm(u) = J(J−1K)m+1G−2, G−2 = u−1/2, m = 0, 1, 2, .... (4.3)

Proof. First note that

utm = −2〈Λp, p〉−3 · 2〈Λp, ptm〉 =

4〈Λp, p〉−3〈Λp, Fm

q
〉 =

8〈Λp, p〉−3(〈Λp, p〉〈Λ2m+4p, q〉 − 〈Λ2q, p〉〈Λ2m+3p, p〉+

i〈Λ2p, p〉〈Λ2m+3p, p〉 − i〈Λp, p〉〈Λ2m+4p, p〉
)
. (4.4)

Acting with the operator (J−1K)m+1 upon G−2 =
N∑

j=1
5λj and noticing (2.3),

we have

(J−1K)m+1G−2 =
N∑

j=1

λ
2(m+1)
J 5 λj = 〈Λ2m+3p, p〉. (4.5)

Note

ux = −4〈Λp, p〉−3〈Λp,−Λq + iΛp〉 =
4(〈Λp, p〉−3〈Λ2p, q〉 − i〈Λp, p〉−3〈Λ2p, p〉), (4.6)
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(〈Λ2m+3p, p〉)x = 2〈Λ2m+3p, px〉 =
2〈Λ2m+3p,−Λq + iΛp〉 =
2(i〈Λ2m+4p, p〉 − 〈Λ2m+4p, q〉), (4.7)

hence

(J−1K)m+1G−2 = −2(∂u+ u∂)〈Λ2m+3p, p〉 =
−2(ux + 2u∂)〈Λ2m+3p, p〉 =
−8(〈Λp, p〉−3〈Λ2p, q〉〈Λ2m+3p, p〉 −
i〈Λp, p〉−3〈Λ2p, p〉〈Λ2m+3p, p〉)−
8(i〈Λp, p〉−2〈Λ2m+4p, p〉 − 〈Λp, p〉−2〈Λ2m+4p, q〉). (4.8)

S0, u(x, tm) = 〈Λp, p〉−2 satisfies utm = J(J−1K)m+1G−2.
In Theorem 4.1, letting m = 0, we can obtain the involutive solution of

the HD equation ut = (u−1/2)xxx, t0 = t.
Corollary 4.1 Let (q(x, t), p(x, t))T be an involutive solution of the compat-
ible systems (H) and (F0). Then u(x, t) = 〈Λp, p〉−2 is a solution of the HD
equation ut = (u−1/2)xxx.

References

[1] Yishen Li, Dengyuan Cheng and Yunbo Zeng, Some equivalent classes of soliton equa-
tion, Proc. 1983 Beijing Symp. on Diff. Geom. and Diff. Equ’s, Soience Press, Beijing,
1986, 359–368.

[2] Cewen Cao, An isospectral class for a generalized Hill’s equation, Northeastern Math.
J. 1986, V.2, N 1, 58–65.

[3] Cewen Cao, Stationary Harry-Dym aquation and its relation with geodesics ellipsoid,
Acta Math. Sin. New Series. 1990, V.6, N 1, 35–45.

[4] Cewen Cao, Nonlinearization of the Lax system for AKNS hierarchy, Sci. China A.
1990, V.33, N 5, 528–536.

[5] Cewen Cao and Xianguo Geng, Classical integrable systems generated through nonlin-
earization of eigenvalue problems. In: Research reports in physics, Nonlinear physics,
editor C. Gu, Y. Li and G. Tu, Springer, Berlin, 1990, 68–78.

[6] Antonowicz M. and Rauch-Wojciechwski S., How to construct finite-dimensional bi-
Hamiltonian systems from soliton equations: Jacobi-integrable, Phys. Lett. A. 1990,
V.147, N 5, 455–461.

[7] Cewen Cao, A classical integrable system and the involutive representation of solution
of the Kdv equation, Acta Math. Sin. New Series. 1991, V.7, N 3, 261–270.

[8] Cewen Cao and Xianguo Geng, C. Neumann and Bargmann systems associated with
the coupled Kdv soliton hierarchy, J. Phys. A: Math. Gen. 1990, V.23, N 18, 4117–4125.

[9] Yunbo Zeng and Yishen Li, J. Math. Phys. 1989, V.30, N 4, 1679–1687.

[10] Antonowicz M. and Rauch-Wojciechwski S., Restricted flows of soliton hierarchies: cou-
pled Kdv and Harry-Dym case, J. Phys. A: Math. Cen. 1991, V.24, N 21, 5043–5058.



74 ZHIJUN QIAO

[11] Antonowicz M. and Rauch-Wojciechwski S., Jacobi bi-Hamiltonian potetials from soli-
ton equations, J. Math. Phys. 1992, V.33, N 6, 2115–2125.

[12] Konopelchenko B. and Strampp W., New reductions of the KP and two dimensional
Toda lattice hierarchies via symmetry constraints, J. Math. Phys. 1992, V.33, N 11,
3676–3684.

[13] Yi Cheng, Constraints of the Kadometsev-Petviashvill hierarchy, J. Math. Phys. 1992,
V.33, N 11, 3774–3790.

[14] Xianguo Geng, A hierarchy of nonlinear evolution equations, its Hamiltonian structure
and classical integrable system, Physica A. 1992, V.182, N 2, 241–251.

[15] Xianguo Geng, A new hierarchy of nonlinear evolution equations, and corresponding
finite-dimensional completely integrable systems, Phys. Lett. A. 1992, V.162, N 5, 375–
380.

[16] Baszak H. and Barasab H., Phys. Lett. A. 1992, V.171, N 1, 45–50.

[17] Zhijun Qiao, Two new integrable systems in the Liouville’s sense, Phys. Lett. A. 1993,
V.172, N 4, 224–228.

[18] Zhijun Qiao, A new completely integrable Liouville’s system produced by the Kaup-
Newell eigenvalue problem, J. Math. Phys. 1993, V.34, N 7.

[19] Zhijun Qiao, A Bargmann system and the involutive solutions of the Levi hierarchy, to
appear in:J. Phys. A: Math. Gen. 1993, V.26, N 17.

[20] Boiti M., Pempinelli F. and Guizhang Tu, The nonlinear evolution equations related to
the Wadati-Konno-Ichikawa spectral problem, Prog. of Theor. Phys. 1983, V.69, N 1,
48–64.

[21] Wenxiu Ma,The algebraic structure of isospectral Lax operator and applications to
integrable equations, J. Phys. A: Math. Gen. 1992, V.25.

[22] Arnol’d V.I., Mathematical Methods of Classical Mechanics, Springer-Verlag, 1978.


