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Abstract – In this paper, we report an interesting integrable equation that has both solitons and
kink solutions. The integrable equation we study is (−uxx

u
)t = 2uux, which actually comes from

the negative KdV hierarchy and could be transformed to the Camassa-Holm equation through
a gauge transform. The Lax pair of the equation is derived to guarantee its integrability, and
furthermore the equation is shown to have classical solitons, periodic soliton and kink solutions.

Copyright c© EPLA, 2011

Introduction. – Soliton theory and integrable systems
play an important role in the study of nonlinear water
wave equations. They have many significant applications
in fluid mechanics, nonlinear optics, classical and quantum
fields theories etc. Particularly in recent years, more
focuses have been pulled to integrable systems with non-
smooth solitons, such as peakons, cuspons, since the study
of the remarkable Camassa-Holm (CH) equation with
peakon solutions [2]. Henceforth, much progress have been
made in the study of non-smooth solitons for integrable
equations [3–30].
In this paper, we consider the following integrable

equation:
(−uxx
u

)

t

= 2uux, (1)

which is actually the first member in the nega-
tive KdV hierarchy [26]. Equation (1) is proven
equivalent to the Camassa-Holm (CH) equation:
mt+mxu+2mux = 0,m= u−uxx through a gauge
transform (see Remark 1 in the paper). Therefore, we
find a simpler reduced form of the CH equation. The Lax
pair of the eq. (1) is derived to guarantee its integrability,
and furthermore the equation is shown to have classical
solitons, periodic solitons and kink solutions.

(a)E-mail: qiao@utpa.edu

Derivation of eq. (1) and Lax representation. –
Let us consider the Schrödinger-KdV spectral problem:

Lψ≡ψxx+ vψ= λψ, (2)

where λ is an eigenvalue, ψ is the eigenfunction corre-
sponding to the eigenvalue λ, and v is a potential function.
One can easily get the following Lenard operator relation:

K∇λ= λJ∇λ, (3)

where ∇λ≡ δλ
δv
=ψ2 is the functional gradient of the

spectral problem (2) with respect to v, K = 14∂
3+ 12 (v∂+

∂v) and J = ∂ are two Hamiltonian operators as known in
the literature [1].
By setting v=−uxx

u
, we have the product form of

operators K, L, L and their inverses

K =
1

4
u−2∂u2∂u2∂u−2, K−1 = 4u2∂−1u−2∂−1u−2∂−1u2,

L= 1
4
∂−1u−2∂u2∂u2∂u−2,

L−1 = 4u2∂−1u−2∂−1u−2∂−1u2∂,
L= ∂2+ v= u−1∂u2∂u−1, L−1 = u∂−1u−2∂−1u,

where L= J−1K and its inverse L−1 =K−1J are the
recursion operators for the positive-order and negative-
order KdV hierarchy that we study below.
Now, according to Lenard’s operators K and J , we

construct the entire KdV hierarchy, and then we show
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the integrability of the hierarchy through solving a key
operator equation.
Let G0 ∈Ker J = {G∈C∞(R)|JG= 0} and G−1 ∈

Ker K = {G∈C∞(R)|KG= 0}. We define Lenard’s
sequence

Gj =

{

LjG0, j ∈Z,
Lj+1G−1, j ∈Z,

(4)

where L,L−1 are defined by eq. (2). Therefore we generate
a hierarchy of nonlinear evolution equations (NLEEs):

vtk = JGk =KGk−1, ∀k ∈Z, (5)

which is called the entire KdV hierarchy. We will see below
that the positive order (k� 0) gives the regular KdV hier-
archy usually mentioned in the literature [1], while the
negative order (k < 0) produces some interesting equa-
tions gauge-equivalent to the Camassa-Holm equation [2].
Apparently, this hierarchy possesses the bi-Hamiltonian
structure because of the Hamiltonian properties of K,J .
Let us now give special equations in the entire KdV
hierarchy (5).

– Choosing G0 = 2∈Ker J (therefore G1 = u) leads to
the second positive member of the hierarchy (5)

vt2 =
1

2
vxxx+

3

2
vvx, (6)

which is exactly the well-known KdV equation. Here
there is nothing new. Therefore, the positive order
(k� 0) in the hierarchy (5) yields the regular KdV
hierarchy usually studied in the literature [1].

– Now, let us find kernel elements G−1 ∈KerK in order
to get the negative member of the hierarchy (5). Due
to the product form of K and K−1, G−1 =K−10 has
the following three seed solutions:

G1−1 = f(tn)u
2, G2−1 = g(tn)u

2∂−1u−2,

G3−1 = h(tn)u
2∂−1u−2∂−1u−2,

where f(tn), g(tn), h(tn) are three arbitrarily given
functions with respect to the time variables tn, but
independent of x. They produce three iso-spectral
(λtk = 0) negative-order KdV hierarchies of eq. (5)

vtk = JLk+1 ·Gl−1, l= 1, 2, 3, k=−1,−2, . . . . (7)

When k=−1, their representative equations are
(

−uxx
u

)

t
−1

= 2f (tn)uux, (8)

(

−uxx
u

)

t
−1

= g (tn)
(

2uux∂
−1u−2+1

)

, (9)

(

−uxx
u

)

t
−1

= h (tn)
(

2uux∂
−1u−2∂−1u−2+ ∂−1u−2

)

.

(10)

Remark 1. Apparently, the first one is differential and
simpler and exactly recovers the eq. (1) after setting
f(tn) = 1, which we focus on in the current paper. Actu-
ally, these three representative equations (8), (9), and (10)
come from vt

−1
= JG−1 = JK−10 with v=−uxxu . Clearly,

vt
−1
= JK−10 is equivalent to KJ−1vt = 0 (t= t−1), that

is,
(vtxx
vx

)

x
+4
(vvt
vx

)

x
+2vt = 0. (11)

This equation is exactly the one studied by
Fuchssteiner [15] (see eqs. (7.1) and (7.22)) there.
Equations (7.1) in [15] has a typo and should be same
as (11). From [15], the Camassa-Holm (CH) equation
is gauge-equivalent to eq. (11) through some hodograph
transformations (7.11) and (7.12) in [15]. In our paper,
through using v=−uxx

u
we further reduce eq. (11) to a

more simple form (i.e. eq. (1)):
(

− uxx
u

)

t
= 2uux. (12)

In other words, we found a very interesting fact that
eq. (12) can be viewed as a reduction form of the CH
equation due to the above gauge-equivalence. In the next
section, we will solve this form.
In paper [18], the author dealt with equation (∂2+

4v+2vx∂
−1)vt = 0 by using the positive KdV hierarchy

approach, and all soliton solutions were given implicitly.
This equation could be transformed to (−uxx/u)t = 2uux
through v=−uxx/u, like we mentioned earlier in our
paper, but, this is only one of three reductions. So,
solutions of this equation cannot give all solitons of our
equation (−uxx/u)t = 2uux. In our paper, we present all
solitons and kink solutions in an explicit form. Also,
there is the connection of the first negative KdV equation
(∂2+4v+2vx∂

−1)vt = 0 with sine-Gordon [19]. But, the
equation (−uxx/u)t = 2uux we propose in the current
paper is not equivalent to the sine-Gordon equation,
because the sine-Gordon equation has only kink solution
while our equation has both kink solutions and classical
solitons.
Of course, we may generate higher-order nonlinear

equations by selecting different members in the hierarchy.
In the following, we will see that all equations in the KdV
hierarchy (5) are integrable. Particularly, the above three
eqs. (8), (9), and (10) are integrable.
Let us return to the spectral problem (2). Apparently,

the Gateaux derivative matrix L∗(ξ) of the spectral
operator L in the direction ξ ∈C∞(R) at point v is

L∗(ξ)
△
=
d

dǫ

∣

∣

∣

∣

ǫ=0

U(u+ ǫξ) = ξ, (13)

which is obviously an injective homomorphism, i.e.
U∗(ξ) = 0⇔ ξ = 0.
For any given C∞-function G, one may consider the

following operator equation [31] with respect to V = V (G)

[V,L] =L∗(KG)−L∗(JG)L. (14)

50003-p2



Negative-order KdV equation with both solitons and kink wave solutions

Theorem 1. For the spectral problem (2) and an arbi-
trary C∞-function G, the operator equation (14) has the
following solution:

V =−1
4
Gx+

1

2
G∂, (15)

where ∂ = ∂x =
∂
∂x
, and subscripts stand for the partial

derivatives in x.

Proof: A direct substitution will complete the proof.

Theorem 2. Let G0 ∈Ker J , G−1 ∈Ker K, and let each
Gj be given through the Lenard sequence (4). Then,

1) each new vector field Xk = JGk, k ∈Z satisfies the
following commutator representation

L∗(Xk) = [Vk, L], ∀k ∈Z; (16)

2) the entire KdV hierarchy (5), i.e.

vtk =Xk = JGk, ∀k ∈Z, (17)

possesses the Lax representation

Ltk = [Vk, L], ∀k ∈Z, (18)

where

Vk =
∑

V (Gj)L
(k−j−1),

∑

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑k−1
j=0 , k > 0,

0, k= 0,

−∑−1j=k, k < 0,

(19)

and V (Gj) is given by eq. (15) with G=Gj .
Proof: Let us only prove the case for k < 0. We have

[Vk, L] = −
−1
∑

j=k

[V (Gj), L]L
k−j−1

= −
−1
∑

j=k

(L∗(KGj)−L∗(JGj)L)Lk−j−1

= −
−1
∑

j=k

L∗(KGj)L
(k−j−1)−L∗(KGj−1)Lk−j

= L∗(KGk−1)−L∗(KG−1)Lk

= L∗(KGk−1) =L∗(JGk)

= L∗(Xk).

Noticing Ltk =L∗(vtk), we have

Ltk − [Vk, L] =L∗(vtk −Xk).

The injectiveness of L∗ implies the second result holds.
So, the entire KdV hierarchy (5) has the Lax pair and

all equations in the hierarchy are therefore integrable.
In particular, the KdV equation (6) has the Lax pair
Lt1 = [W1, L] with L= ∂

2+ v and W1 = ∂
3+ 32v∂+

3
4vx,

which was well known in the literature [1]. An interesting

thing is that the first member (k=−1) in the negative-
order KdV hierarchy (7) has the standard Lax representa-
tion Lt

−1
= [V l−1, L] with V

l
−1 =

(

1
4G
l
−1,x− 12Gl−1∂

)

L−1,
l= 1, 2, 3, L= ∂2+ v= u−1∂u2∂u−1, and L−1 =
u∂−1u−2∂−1u. In particular, the negative KdV equa-
tion (8) possesses the following Lax form: Lt

−1
= [V 1−1, L]

with

V 1−1 =

(

1

4
G1−1,x−

1

2
G1−1∂

)

L−1

=
(1

2
uux−

1

2
u2∂
)

L−1

= −1
2
u∂−1u.

All of those negative members in the hierarchies (7) are
integrable.

All traveling-wave solutions of eq. (1). – Let us
now consider the traveling-wave solution of eq. (1) through
a generic setting u(x, t) =U(x− ct), where c is the wave
speed. Let ξ = x− ct, then u(x, t) =U(ξ). Substituting it
into eq. (1) yields

c

(

U ′′

U

)′
= 2UU ′. (20)

Integrating it once, we obtain the following standard cubic
Hamiltonian system for c �= 0:

dU

dξ
= y=

∂H

∂y
,

dy

dξ
= gU +

1

c
U3 =−∂H

∂U
, (21)

where g is an integral constant, and the Hamiltonian
function is

H(U, y) =
1

2
y2− 1

2
gU2− 1

4c
U4. (22)

When gc� 0, (21) has only one equilibrium point O(0, 0).
When gc < 0, (21) has three equilibrium points O(0, 0) and
E1,2(±

√

|cg|, 0). Write that

h0 =H(0, 0) = 0, h1 =H(±
√

|cg|, 0) = 1
4
cg2.

By qualitative analysis, we have the bifurcations of
phase portraits of (21) in the (c, g) parametric plane shown
in fig. 1(1-1)–(1-6).
Next, we present the exact traveling-wave solutions of

(1) in an explicit form.
Case 1 : c > 0, g= 0 (see fig. 1(1-1)).
In this case, corresponding to the saddle point O(0, 0)

(21) reads as y=± U2√
2c
. Using the first equation of (21)

and taking integration, we obtain

U(ξ) =∓
√
2c

ξ+ ξ0
, ξ = x− ct, (23)

where ξ0 is an initial value of ξ. Clearly, when ξ→
−ξ0, U(ξ)→∞. i.e., U(ξ) is unbounded at ξ = ξ0. Thus,
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Fig. 1: (Colour on-line) The change of phase portraits of (21) in the (c, g) parameter plane. (1-1) g= 0, c > 0. (1-2) g > 0, c > 0.
(1-3) g > 0, c < 0. (1-4) g= 0, c < 0. (1-5) g < 0, c > 0. (1-6) g < 0, c < 0.
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Fig. 2: The profiles of the functions (23) where ξ0 =−1.

we have two unbounded breaking wave solutions shown in
fig. 2.
Case 2 : c > 0, g > 0 (see fig. 1(1-2)).
Corresponding to the saddle O(0, 0) (21) reads as y2 =

gU2+ 1
2cU

4. Using the first equation of (21) to take
integration, we obtain

U(ξ) =± 8Acg

A2e
√
g(ξ+ξ0)− 8cge−

√
g(ξ+ξ0)

, (24)

where A is an integrant constant. When A2 = 8cg, the
functions defined by (24) are discontinuous at ξ =−ξ0.
The profiles of (24) like fig. 2.
Case 3 : g > 0, c < 0 (see fig. 1(1-3)).
There exist three equilibrium points of (21) at E1,2 and

O(0, 0). O is a saddle point, E1,2 are center points.
Corresponding to two homoclinic orbits, defined by

H(U, y) = 0, we have the parametric representations

U(ξ) =±
√

2|c|g sech
√

|c|g
2
ξ. (25)

They give two soliton solutions of (1).
For h∈ (14cg2, 0), corresponding to two families of

periodic orbits of (21), defined by H(U, y) = h, i.e.,
y2 = 1

2|c| (4|c|h + 2g|c|U2 − U4) = 1
2|c| (r

2
1 −U2)(U2− r22),

where r21 = g|c|+
√

g2c2− 4|c|h, r22 = g|c| −
√

g2c2− 4|c|h,
we obtain the parametric representations of periodic wave
solutions of (1) as follows:

U(ξ) =±r1dn
(

r1
√

2|c|
ξ,

√

r21 − r22
r1

)

. (26)

For h∈ (0,∞), corresponding to the family of periodic
orbits of (21), enclosing three equilibrium points defined
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by H(U, y) = h, we have the following parametric repre-
sentation of periodic wave solutions of (1):

u(ξ) = r1cn

(

√

(r21 − r22)
2|c| ξ,

r1
√

r21 − r22

)

. (27)

Case 4 : g� 0, c < 0 (see fig. 1(1-4), (1-5)).
In this case, the origin O(0, 0) of (21) is an unique

equilibrium point, which is a center. There exists a family
of periodic orbits of (21), enclosing the origin. Equation (1)
has the same parametric representation of periodic wave
solutions as (27).
Case 5 : g < 0, c > 0 (see fig. 1(1-6)).
In this case, there exist three equilibrium points of (21)

at E1,2 and O(0, 0). O is a center, E1,2 are saddle points.
The heteroclinic orbits, defined by H(u, y) = h1, have the
parametric representations

U(ξ) =±
√

c|g| tanh
(

ξ
√

2|g|

)

, (28)

which gives a kink wave solution and an antikink wave
solution of (1).
We see from (22) that y2 = 1

2c (4ch+2cgU
2+U4.

For h∈ (0, h1), it can be written as y2 = 1
2c ((z

2
1 −

U2)(z22 −U2), where z21 = |g|c+
√

g2c2− 4ch, z22 = |g|c−
√

g2c2− 4ch, Thus, the family of periodic orbits, defined
by H(u, y) = h, has the parametric representation

u(ξ) =Z2sn

(

z1ξ√
2c
,
z2
z1

)

, (29)

which gives a family of periodic wave solutions of (1).

Conclusions. – In this paper, we reported an interest-
ing property of integrable system: solitons and kink solu-
tions can occur in the same integrable equation, and those
solutions are given explicitly. Within our knowledge, this
is probably the first integrable example possessing such
property. We found this equation in the negative-order
KdV hierarchy, which is gauge-equivalent to the CH equa-
tion. Since eq. (1) has the Lax pair, we may try to get the
r-matrix structure of the constrained system of Lax equa-
tions, and parametric and algebro-geometric solutions [25],
but that is beyond the scope of this paper. The symmetry
of eqs. (8), (9), and (10) were already discussed in [32].
Recently, a twofold integrable hierarchy associated with
the KdV equation was given in [33]. About other negative-
order integrable hierarchies, such as the AKNS, the Kaup-
Newell, the Harry-Dym, the Toda etc., one may see the
literature [26].
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