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Under the constraint between the potentials and eigenfunctions, the Kaup- 
Newell eigenvalue problem is nonlinearized as a new completely integrable 
Hamiltonian system (R2N,dp A dq,H) : H=i(A2p,d +h,q) W-v>. 
Furthermore, the involutive solution of the high-order Kaup-Newell equation is 
obtained. Specifically, the involutive solution of the well-known derivative 
SchrGdinger equation u,=fiu,+f( u 1111 2)X is developed. 

I. INTRODUCTION 

It is a very important task to find out new finite-dimensional completely integrable systems 
in soliton theory. It is a celebrated fact that the Hill-Schrgdinger eigenvalue problem -qxr 
+uq=ilq is nonlinearized by the Mckcan-Trublowitz identity (q,q) = 1 to be a famous me- 
chanic system owing to the Neumann system 

-q,+eI=~q, ~=mhq)-GMIJ, (4,4)=19 

which is completely integrable in the Liouville sense and can be regarded as a harmonic 
N-oscillator constraint on sphere SN.lf2 In light of this thought, some classical integrable 
systems generated through the nonlinearization of the eigenvalue problems are obtained.3-5 In 
this article, we prove that the Kaup-Newell eigenvalue problem6 is nonlinearized to be a new 
finite-dimensional completely integrable Hamiltonian system under the Bargmann constraint. 

This article is divided into four sections. In the next section we present the commutator 
representation (or Lax representation) of the Kaup-Newell vector field. In Sec. III a new 
finite-dimensional involutive system {F,} is found out and moreover the nonlinearization of 
the Kaup-Newell eigenvalue problem under the Bargmann constraint is proven to be a new 
completely integrable Hamiltonian system. Section IV gives the description that the involutive 
solution of the compatible system (H) = (FO), (F,) is mapped by f:( u,u) T=f(q,p) which is 
determined by the Bargmann constraint u= - (Aq,q), u= (Ap,p) into the solution of the 
m+ lth Kaup-Newell equation and the involutive system {F,} is actually produced by the 
nonlinearized time part of the Lax pair of the high-order Kaup-Newell equation. Specifically, 
the involutive solution of the well-known derivative SchrGdinger equation u,=$u,+f( u 1 II 1 2)x 
is obtained. 

II. COMMUTATOR REPRESENTATION OF THE KAUP-NEWELL VECTOR FIELD 

Consider the Kaup-Newell eigenvalue problem6 

( -iA2 mu 
y,=My= h(x,t) iA 1 

y, i2=-1, (2.1) 

where A is an eigenparameter, y= (yI,y2) ‘, v,=@/&, u(W), and U(W) are potential func- 
tions, XE a. The underlying interval fl is ( - 00, + 03 ) or (0, T) under the decaying conditions 
at infinity or periodic condition, respectively. 
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Proposition 2. I: Let A be an eigenvalue of Eq. (2.1). Then the functional gradient VA of A 
is 

VA=(z)=( 2$) - ( Jfi (~~:+4iny~2-u~)d~)-1. 

Pmc$ See Ref. 7 Sec. II. 

(2.2 

Proposition 2.2: Let A. be an eigenvalue of Eq. (2.1). Then VA which is defined by Eq. (2.2 
satisfies 

KVA =A2 * JVA, (2.3) 

where 

K2 
( 

aua- ‘ua 
2 -ia2+&3-‘ud (2.4) 

a=a/ax, d- Id=%- ’ = 1. J is a symplectic operator. K and J are called the pair of Lenard’s 
operators of Eq. (2.1) . 

P?tx$ 

J- ‘j77: - i;;!;;‘ud 
va-*d 

2 ) ia+ua-ba * 

Equation (2.1) implies that uygti- vy,~+~= iii Cy~y~)~. So we have 

( -ic3+zkT’ud) (A$) +2x3-bd( --A$> =2A2. (Ad), 

ud-‘ud(~~) + (if3+u%‘ud) (-Ad) =2A2 * (-1~;). 

Thus J- ‘KVA =A2 * VA. 
Proposition 2.3: The eigenvalue problem (2.1) is equivalent to 

L( u,u,A))y=A2y 

in Eq. (2.5)) the differential operator L = L (u,v,A.) is 

( ill -Au 
L(u,u,A) = 

-A-‘ud -ic?+uv ) 

(2.5) 

(2.6) 

Prooj Directly calculate. 
Lemma 2.4: Let L( u,u,jl) be expressed as (2.6), then the differential mapping of L is 

L*&3 =$I 
0 

Uw+@ = 
( 

-UC, 

s=o -,A- ‘&;a $I+ 42 1 
(2.7) 

and L,, is an injective homomorphism. L,, is simply written as L, below. In Eq. (2.7), 
w=(u,u)T, g=(~,,~~)r, il=a/ax. 

Consider the commutator [V, L] of V= Vt + I’,c~ and L = L, + L24 here 
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A, B, C, D are four undetermined functions. 

0 iiluB+uvA-tit4,-idu,C 
= 0 ,‘I-‘vA,+iB,-i.h,D+ (uv),C 

--il-‘vA+ihD-iC, -2iA 
+ -a-‘vB- (uv) D-~2-1v,C+il-1vCx+iD, A2-‘VA-ihD+iC, a 

a2. (2.8) 

We hope 

[ V,L] = L,(KG) - L,(JG) L. (2.9) 

In Eq. (2.9), K and J are the pair of Lenard’s operators, G= (G”‘, GC2))=. G(‘)(x), Gc2’(x> 
are two arbitrarily smooth functions on 0. 

According to Eq. (2.7) and L = L, + L2a, through calculating Eq. (2.9) and sorting it out, 
we have [note c3L= L1,+ ( L1+ L&d+ L2#} 

-iA(K --U(JG)“) 0 
v(KG)“)+u(KG)‘~’ u(JG)(‘)+u(JG)(~) 0 

L 
lx 

0 -iI 
+ -,-1(KG)(2) u(JG)(~)+u(JG)(~) 

’ 

- 
o)cL1+Lb+( &l;JG)‘1’ ;),,,’ --#I-‘(JG)@) 0 

Equation (2. lo), i.e., 

-i,l(KG)“‘+ihv(JG)“’ 
v(KG)(‘)+u(KG)(2)-uuv(v(JG)(1)+u(JG)(2))-iu,(JG)(2) 

+ 

where ( * ) w (i= 1,2) is the ith component of ( * >, KG and JG are 

KG=- ; @$;;;-!$$$&), JG= (g:). 

(2.10) 

(2.11) 

(2.12) 
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Substitute Eq. (2.12) into IQ. (2.11) and compare the right-hand side of Eq. (2.8) with 
Eq. (2.11). We should choose 

A=@.G~2), B= -&G;‘), 
(2.13) 

~=~-‘(uG~“+~G~‘), D=$‘G;“. 

Thus, we have 
Theorem 2.5: Let G”‘(x), G”‘(x) be two arbitrarily smooth functions, G=(G”‘,G’2’)T. 

Let 

V=V(G)=f (; $;)+; (dl(~;;G’)’ ,-,,,,ip,+,,i,,,)~- (2 14) 
. 

Then 

[ V,L] = L,(KG) - L,(JG) L, (2.15) 

where A is an eigenvalue of Eq. (2.6), K, J are expressed as (2.4). 
hj We substitute Eq. (2.13) into the right-hand side of Eq. (2.8) and carefully calculate 

it. It is not difficult to find that the result is equal to the right-hand side of Eq. (2.11). 
DefinetheLenard’srecursivesequence{Fj}: G-l=(l,O)T, KGj=JGj+l (j=-l,O,l,...). 

Gj(X) is the polynomial of u(x),v(x) and their derivatives’ and is unique if its constant term 
is required to be zero. Xi= JGj is the Kaup-Newell vector field. The first few results of 
calculations are 

x-,=0, x0=(;;), X1=$ :;ny$&) 

The Kaup-Newell hierarchy of equations is produced by the Kaup-Newell vector field Xi, i.e., 

Wt= (U,U)T=Xj(U,U), j=O,l,.** * (2.16) 

Equation (2.16) is reduced to be the well-known derivative Schradinger equation if one lets 
j=l and u=u*. 

Let cj be constant. The equation 

w,=X,+~~X,-~+~~~+~J~, m=O,l,... (2.17) 

is called the high-order Kaup-Newell equation. 
Theorem 2.6: Let .Gj = ( Gj” ,GjJ’ ) ’ be the Lenard’s recursive sequence. Let Vj = V( Gj) , 

Wm=IZyEo Vi-IL”-‘. L is expressed as (2.6). Then 

[W,,L]=L,(X,), m=O,l,.... (2.18) 
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[W,,L]= 2 [Vj-l,wm-i 
j=O 

= 2 (L*(KGj_l)Lm-i-L*(JGj-~)Lm-i+l) 
j=O 

= L,(JG,) - L,(JG-,) Lm+’ 

=L*(Xm)* 

Corollary 2.7: The Kaup-Newell equation wt=Xm( u,v) has the commutator representa- 
tion 

L,=[W,,L], m=O,l,..., 

i.e., wt=Xm is the natural compatible condition of Ly=d*y and yr= Wd. 
Pro03 

(2.19) 

( 0 -iAu, 
L,= -A-‘VJ up+vp ) 

= L*(w,), 

L,-[ Wm,L]=L*(W,)-L*(Xm)=L*(W,--Xm). 

L, is injective, so this corollary is correct. 
Corollary 2.8: The potential function w(x) =(u(x),v(x))~ satisfies the stationary Kaup- 

Newell system 

x~+c~x~~~+~~~+c~xo=o, N=O,l,... (2.20) 

if and only if 

[~N+cl~N-l+ “‘+cgo,L] =o, (2.21) 

where c I,...&~ are. constants. 

HI. NONLlNEAFllZATlON OF EQ. (2.1) AND A FINITE-DIMENSIONAL INVOLUTIVE 
SYSTEM 

L.etA A t , *,...,AN be N different eigenvalues of Eq. (2.1). Consider the Bargmann constraint3 

N 
Go= C yj.VAj, Yj= 

s 
(v~+4iA~jqj-up~>dx, 

j=l n 

i.e., 

u= - Wq,g), u= WP,P), (3.2) 

where q= (q 1,-&,I) T, P= (pl ,-.,pN) ‘; A=diag(& ,...,ilN); ( * , * ) is the standard inner prod- 
uct in RN. 

Under the Bargmann constraint (3.2), the nonlinearization of Eq. (2.1) gives the Barg- 
mann system 
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1 qx= -iili2q- (Aq,q)Ap= -2, 

aH 
p,=iA’p+ Wp,p~&=~, 

(3.3) 

whose Hamiltonian function H is 

H=iW2p,q) +&P,P) Oh). (3.4) 

The Poisson bracket of two functions in the symplectic space (RzN,dp Adq) is de&red as9 

which is skew-symplectic, bilinear, and satisfies the Jacobi identity and Leibnitz rule: (FG,H) 
=F(G,H) +G(F,H). F, G is called an involution,s if (F,G) =O. 

Now we consider the function system {I;,} 

Fm=i(A2m+2P,9> +k (&,p) (*2m+1q,q) +f 
m (A2(m-i)+ lq,q) ( AXm-j) +ZqtP) 

g 
j-l (A2’9,p> (h2j+lp,p) f 

m=0,1,2,... (3.5) 

specifically Fo= H. 
Lemma 3. I: For Fm which is defined as Pq. (3.5 ), the inner-product (aFk/ap,i3FJt3q), is 

symmetrical about k, Z, i.e., 

E,f$=($2), Vk&Z+. (3.6) 

ah k 

-=iA2k+2q+ (Aq,q)AZk+lp+ c ( (~2j+1q,q)~2(k-j)+1p- (A2jq,p)A2(k-j)+2qI, 
ap j=l 

@I 
I 

-=iA2’+2P+(~,P)A21+1q+ szl ((A~+‘p,p)A2(*-~)+1q-+2J-p,q)~2(1--s)+2p)* a9 

Calculate the inner product of the left-hand and right-hand sides of the above two equalities, 
respectively. Through a series of careful calculations, it is easy to find that (aFk/ap,aF)/aq) is 
expressed as the sum of the symmetrical items about k, 1. So the required result is right. 

Theorem 3.2: The functions defined as Eq. (3.5) are in involution in pairs 

(Fk,FI) =o, Wk,leZ + 

specifically (H,F,) =0, Vm E Z+. 
Pmcg 
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Theorem 3.3: Under the Bargmann constraint (3.2), the Hamiltonian system 
(R2N,dpAdq,H=Fo) which is given by Eq. (3.3) is completely integrable in the Liouville’s 
sense and its involutive system is composed of I;,( Vm EZ+ ). 

Remark The finite-dimensional involutive systems {F,} are the stationary points of the 
corresponding higher-order flows (see Refs. 10 and 11) and therefore special cases of the 
systems considered in Refs. 10 and 11. 

Theorem 3.4: Let (q,p) T be a solution of the Bargmann system (3.3). Then u= - (Aq,q), 
v = ( Ap,p) satisfy a stationary Kaup-Newell equation 

XN+aIXN--++“+aNXO=o, (3.7) 

with suitably chosen constants aj (j= l,...,N). 
Prooj Let the operator (J-‘K) k act upon two sides of Eq. (3.1). In virtue of Eq. (2.3) and 

J- ‘K: GpGj + 1 with an extra term const * G- i ( j = - l,O, l,...,), we obtain 

N 

Gk+&%-2+ “‘+flkGo+flk+1G-~= c n;“vlj, (3.8) 
j=l 

where ~2,...t&+l are constants. 
Consider the polynomial 

N 

P(il)= n (A-~~)=p~N+pl~N-l+“‘+pN, pO=l. 
j=l 

(3.9) 

Equation (3.7) is obtained as the operator fijy=epN--k aCtS upon two sides of I%& (3.8). 
In addition, according to the proof of Theorem 3.4, we have 
Lemma 3.5: Let (q,p)T be a solution of Eq. (3.3) and Gj be the Lenard’s recursive 

sequence, then there exist constants c2,...,cm+i such that 

A,= 
(*2m+ hP> 

m+l 

- (*2m+ ‘4d 
=G,+ c c,G,-,, m=O,l,... (3.10) 

s=2 

or 

m+l 
A,= c, c,G,-,, co=l, CI=O. 

s=o 
(3.11) 

IV. THE INVOLUTIVE SOLUTIONS OF THE KAUP-NEWELL HIERARCHY 

Consider the canonical system of F,-flow 

(Fm)(;;)=( ~)=nTm, I=(JN -;), (4.1) 

where IN is the NX N unit matrix. Let gk be defined as the solution operator of the initial value 
problem (4.1)) then the solution of Eq. (4.1) is expressed as 

(4.2) 
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Since any two Fk ,F, are in involution, we have (see Ref. 9). 
Proposition 4. I: ( 1) Any two canonical systems ( Fk), (FJ are compatible; (2) the Hamil- 

tonian phase-flow g2 ,gF commute. 
Denote the flow variables of ( Fo) and (F,) by x = to, t= t, , respectively. Define 

(4.3) 

The commutativity of &,gk implies that it is a smooth function of (xJ), which is called the 
involutive solution of the consistent systems of equations (F,), (F,). 

Theorem 4.2: Let (q(x,tm),p(x,tm))T be an involutive solution of the consistent system 
(Fo>,(Fm)* Let u(Xstm)=-(*q,q), v(xJ~)=(&w). Then 
( 1) the flow equations (Fo),(Fm) are reduced to be the spatial part and the time part, 
respectively, of the Lax pair for the high-order Kaup-Newell equation with u,u as their po- 
tentials (ct ,...,c, are independent of x) 

(;)=( ;f2 3)(p”)? 
Qtm 

( ) hn =(~m+CIWm_,+“‘+Cm~o) 4 
0 P * 

(4.4) 

(4.5) 

(2) u(x,t,) = - (Aq,q), v(x,t,> = (Ap,p) satisfy the high-order Kaup-Newell equation 

(~fm,Vfm)T=Xm+CIXm-l+..‘+C~O. (4.6) 

Pqj From Eq. (3.3), we immediately know (F,) is Eq. (4.4). Through careful calcu- 
lation we have (here order A- 1 =0, a-‘0=2) 

=- iA2m+2q-(Aq,q)A2m+1p+ : ( (A2jq,p)A2(m-j)+2q- (A2i+lq,q)A2(m-i)p) 
j=l 

(4.7) 

In the calculation of Eqs. (4.7) and (4.8), Eq. (4.4), u(x,t,) = -(Aq,q), v(x,t,)=(Ap,p), 
and the equality 9-l (z&j!! I,x+ vAs2_) I,x) =i( A2’q,p) are used. 

Substituting Eq. (3.11) into Eqs. (4.7) and (4.8), respectively, we obtain 
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ap aFm -=- 
at, a9 

In virtue of Eqs. (4.9) and (4.10), we get 

(;;) = i. C, z; v,-, ($“=;) 
m 

= s?.. cs ;.i; vk-lLm-s-k(;) 

=4 (:) 
Cswm-s 

=(Wm+ClWm-,+“‘+CmWO> i 9 

0 

where W,-,=I;~:~ vkFIL m-s-k, V&-l is expressed as one in Theorem 2.6. 

t=-2(A9~~)=2(*9s -~)=2i(n2m+3q,q)+2(Aq,q)(h’“+2q,p~=~~~~4 11) m 

g=2( hp, $-) =2( Ap, 2) =2i(A2m+3p,p) +2(Ap,p)(A2m+2q,p) =A:;. (4.12) 

BY using Ms. (3.11), (4.11), (4.12), and Xk=JGk, we have (note JGwI=O) 

J. Math. Phys., Vol. 34, No. 7, July 1993 

Downloaded 26 Aug 2003 to 128.165.156.80. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



Zhijun Qiao: Integrable Liouville system from Kaup-Newell eigenvalue 3119 

As a special case of Theorem 4.2, we can get the involutive solution of the well-known 
derivative Schrodinger equation (DSE) 

if we choose m= 1, u=v*. 

ut=$u,+f(ulu12), (4.13) 

Corollary 4.3: Let (q(x,t,),p(x,t,))T be the involution of the compatible system (Fo) 
= (HLW,). J.xt 4w,) = - (*q,q), 4-w,) = (*P,P>, and u = v*. Then ( 1) the flow equations 
(F,), (F, ) are reduced to the spatial part and the time part, respectively, of the Lax pair for the 
derivative Schriidinger equation (4.13 ) with II as their potential 

(4.14) 

(4.15) 

(2) u(x,tl) satisfies the DSE (4.13). 
Proofi According to u = v*, Eq. (4.4) is evidently Eq. (4.14). Choosing m = 1, ct =0 in Eqs. 

(4.5) and (4.6), we have 

(Ej = W’(i) =(V-,*+Vo) (4.16) 

where 

IN is the NXN unit matrix. 
Substituting the expression of Vml and V. into Eq. (4.16), through some calculation we 

know Eq. (4.16) implies Eq. (4.15). 
The required result (2) is obtained because of (2) of Theorem 4.2 and 

% ( 1 =x1, x,2 ( iu,+ (u2v), 

% 2 -iv,+(v2u), ’ 
) 

u=v*. 
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