A new completely integrable Liouville's system produced by the Kaup-Newell eigenvalue problem

Zhijun Qiao
Department of Mathematics, Liaoning University, Shenyang, Liaoning 110036,
People's Republic of China

(Received 16 November 1992; accepted for publication 22 January 1993)

Abstract

Under the constraint between the potentials and eigenfunctions, the KaupNewell eigenvalue problem is nonlinearized as a new completely integrable Hamiltonian system $\quad\left(R^{2 N}, d p \wedge d q, H\right): \quad H=i\left\langle\Lambda^{2} p, q\right\rangle+\frac{1}{2}\langle\Lambda q, q\rangle\langle\Lambda p, p\rangle$. Furthermore, the involutive solution of the high-order Kaup-Newell equation is obtained. Specifically, the involutive solution of the well-known derivative Schrödinger equation $u_{t}=\frac{1}{2} i u_{x x}+\frac{1}{2}\left(u|u|^{2}\right)_{x}$ is developed.

I. INTRODUCTION

It is a very important task to find out new finite-dimensional completely integrable systems in soliton theory. It is a celebrated fact that the Hill-Schrödinger eigenvalue problem $-q_{x x}$ $+u q=\lambda q$ is nonlinearized by the Mckean-Trublowitz identity $\langle q, q\rangle=1$ to be a famous mechanic system owing to the Neumann system

$$
-q_{x x}+u q=\Lambda q, \quad u=\langle\Lambda q, q\rangle-\left\langle q_{x}, q_{x}\right\rangle, \quad\langle q, q\rangle=1,
$$

which is completely integrable in the Liouville sense and can be regarded as a harmonic N-oscillator constraint on sphere $S^{N} .{ }^{1,2}$ In light of this thought, some classical integrable systems generated through the nonlinearization of the eigenvalue problems are obtained. ${ }^{3-5} \mathrm{In}$ this article, we prove that the Kaup-Newell eigenvalue problem ${ }^{6}$ is nonlinearized to be a new finite-dimensional completely integrable Hamiltonian system under the Bargmann constraint.

This article is divided into four sections. In the next section we present the commutator representation (or Lax representation) of the Kaup-Newell vector field. In Sec. III a new finte-dimensional involutive system $\left\{F_{m}\right\}$ is found out and moreover the nonlinearization of the Kaup-Newell eigenvalue problem under the Bargmann constraint is proven to be a new completely integrable Hamiltonian system. Section IV gives the description that the involutive solution of the compatible system $(H)=\left(F_{0}\right),\left(F_{m}\right)$ is mapped by $f:(u, v)^{T}=f(q, p)$ which is determined by the Bargmann constraint $u=-\langle\Lambda q, q\rangle, v=\langle\Lambda p, p\rangle$ into the solution of the $m+1$ th Kaup-Newell equation and the involutive system $\left\{F_{m}\right\}$ is actually produced by the nonlinearized time part of the Lax pair of the high-order Kaup-Newell equation. Specifically, the involutive solution of the well-known derivative Schrödinger equation $u_{t}=\frac{1}{2} i u_{x x}+\frac{1}{2}\left(u|u|^{2}\right)_{x}$ is obtained.

II. COMMUTATOR REPRESENTATION OF THE KAUP-NEWELL VECTOR FIELD

Consider the Kaup-Newell eigenvalue problem ${ }^{6}$

$$
y_{x}=M y=\left(\begin{array}{cc}
-i \lambda^{2} & \lambda u(x, t) \tag{2.1}\\
\lambda v(x, t) & i \lambda^{2}
\end{array}\right) y, \quad i^{2}=-1,
$$

where λ is an eigenparameter, $y=\left(y_{1}, y_{2}\right)^{T}, y_{x}=\partial y / \partial x, u(x, t)$, and $v(x, t)$ are potential functions, $x \in \Omega$. The underlying interval Ω is $(-\infty,+\infty)$ or ($0, T$) under the decaying conditions at infinity or periodic condition, respectively.

Proposition 2.1: Let λ be an eigenvalue of Eq. (2.1). Then the functional gradient $\nabla \lambda$ of λ is

$$
\begin{equation*}
\nabla \lambda=\binom{\delta \lambda / \delta u}{\delta \lambda / \delta v}=\binom{\lambda y_{2}^{2}}{-\lambda y_{1}^{2}} \cdot\left(\int_{\Omega}\left(v y_{1}^{2}+4 i \lambda y_{y_{2}}-u y_{2}^{2}\right) d x\right)^{-1} . \tag{2.2}
\end{equation*}
$$

Proof: See Ref. 7 Sec. II.
Proposition 2.2: Let λ be an eigenvalue of Eq. (2.1). Then $\nabla \lambda$ which is defined by Eq. (2.2) satisfies

$$
\begin{equation*}
K \nabla \lambda=\lambda^{2} \cdot J \nabla \lambda, \tag{2.3}
\end{equation*}
$$

where

$$
K=\frac{1}{2}\left(\begin{array}{cc}
\partial u \partial^{-1} u \partial & i \partial^{2}+\partial u \partial^{-1} v \partial \tag{2.4}\\
-i \partial^{2}+\partial v \partial^{-1} u \partial & \partial v \partial^{-1} v \partial
\end{array}\right), \quad J=\left(\begin{array}{ll}
0 & \partial \\
\partial & 0
\end{array}\right) .
$$

$\partial=\partial / \partial x, \partial^{-1} \partial=\partial \partial^{-1}=1 . J$ is a symplectic operator. K and J are called the pair of Lenard's operators of Eq. (2.1).

Proof:

$$
J^{-1} K=\frac{1}{2}\left(\begin{array}{cc}
-i \partial+v \partial^{-1} u \partial & v \partial^{-1} v \partial \\
u \partial^{-1} u \partial & i \partial+u \partial^{-1} v \partial
\end{array}\right) .
$$

Equation (2.1) implies that $u y_{2} y_{2 x}-v y_{1} y_{1 x}=i \lambda\left(y_{1} y_{2}\right)_{x}$. So we have

$$
\begin{aligned}
& \left(-i \partial+v \partial^{-1} u \partial\right)\left(\lambda y_{2}^{2}\right)+v \partial^{-1} v \partial\left(-\lambda y_{1}^{2}\right)=2 \lambda^{2} \cdot\left(\lambda y_{2}^{2}\right), \\
& u \partial^{-1} u \partial\left(\lambda y_{2}^{2}\right)+\left(i \partial+u \partial^{-1} v \partial\right)\left(-\lambda y_{1}^{2}\right)=2 \lambda^{2} \cdot\left(-\lambda y_{1}^{2}\right) .
\end{aligned}
$$

Thus $J^{-1} K \nabla \lambda=\lambda^{2} \cdot \nabla \lambda$.
Proposition 2.3: The cigenvalue problem (2.1) is equivalent to

$$
\begin{equation*}
L(u, v, \lambda) y=\lambda^{2} y \tag{2.5}
\end{equation*}
$$

in Eq. (2.5), the differential operator $L=L(u, v, \lambda)$ is

$$
L(u, v, \lambda)=\left(\begin{array}{cc}
i \partial & -i \lambda u \tag{2.6}\\
-\lambda^{-1} v \partial & -i \partial+u v
\end{array}\right) .
$$

Proof: Directly calculate.
Lemma 2.4: Let $L(u, v, \lambda)$ be expressed as (2.6), then the differential mapping of L is

$$
L_{* w}(\xi)=\left.\frac{d}{d \epsilon}\right|_{\epsilon=0} L(w+\epsilon \xi)=\left(\begin{array}{cc}
0 & -i \lambda \xi_{1} \tag{2.7}\\
-\lambda^{-1} \xi_{2} \partial & v \xi_{1}+u \xi_{2}
\end{array}\right)
$$

and $L_{* w}$ is an injective homomorphism. $L_{* w}$ is simply written as L_{*} below. In Eq. (2.7), $w=(u, v)^{T}, \xi=\left(\xi_{1}, \xi_{2}\right)^{T}, \partial=\partial / \partial x$.

Consider the commutator [V, L] of $V=V_{1}+V_{2} \partial$ and $L=L_{1}+L_{2} \partial$, here

$$
V_{1}=\left(\begin{array}{cc}
0 & A \\
0 & B
\end{array}\right), \quad V_{2}=\left(\begin{array}{cc}
C & 0 \\
D & C
\end{array}\right) ; \quad L_{1}=\left(\begin{array}{cc}
0 & -i \lambda u \\
0 & u v
\end{array}\right), \quad L_{2}=\left(\begin{array}{cc}
i & 0 \\
-\lambda^{-1} v & -i
\end{array}\right) .
$$

A, B, C, D are four undetermined functions.

$$
\begin{align*}
{[V, L]=} & V L-L V \\
= & {\left[V_{1}, L_{1}\right]-L_{2} V_{1 x}+V_{2} L_{1 x}+\left(\left[V_{1}, L_{2}\right]-\left[L_{1}, V_{2}\right]+V_{2} L_{2 x}-L_{2} V_{2 x}\right) \partial+\left[V_{2}, L_{2}\right] \partial^{2} } \\
= & \left(\begin{array}{cc}
0 & i \lambda u B+u v A-i A_{x}-i \lambda u_{x} C \\
0 & \lambda^{-1} v A_{x}+i B_{x}-i \lambda u_{x} D+(u v)_{x} C
\end{array}\right) \\
& +\left(\begin{array}{cc}
-\lambda^{-1} v A+i \lambda u D-i C_{x} & -2 i A \\
-\lambda^{-1} v B-(u v) D-\lambda^{-1} v_{x} C+\lambda^{-1} v C_{x}+i D_{x} & \lambda^{-1} v A-i \lambda u D+i C_{x}
\end{array}\right) \partial \\
& +\left(\begin{array}{cc}
0 & 0 \\
2 i D & 0
\end{array}\right) \partial^{2} . \tag{2.8}
\end{align*}
$$

We hope

$$
\begin{equation*}
[V, L]=L_{*}(K G)-L_{*}(J G) L . \tag{2.9}
\end{equation*}
$$

In Eq. (2.9), K and J are the pair of Lenard's operators, $G=\left(G^{(1)}, G^{(2)}\right)^{T} . G^{(1)}(x), G^{(2)}(x)$ are two arbitrarily smooth functions on Ω.

According to Eq. (2.7) and $L=L_{1}+L_{2} \partial$, through calculating Eq. (2.9) and sorting it out, we have [note $\partial L=L_{1 x}+\left(L_{1}+L_{2 x}\right) \partial+L_{2} \partial^{2}$]

$$
\begin{align*}
& {[V, L]=\left(\begin{array}{lc}
0 & -i \lambda(K G)^{(1)} \\
0 & v(K G)^{(1)}+u(K G)^{(2)}
\end{array}\right)-\left(\begin{array}{cc}
0 & -i \lambda(J G)^{(1)} \\
0 & v(J G)^{(1)}+u(J G)^{(2)}
\end{array}\right)-\left(\begin{array}{cc}
0 & 0 \\
-\lambda^{-1}(J G)^{(2)} & 0
\end{array}\right) L_{1 x}} \\
& +\left\{\left(\begin{array}{cc}
0 & 0 \\
-\lambda^{-1}(K G)^{(2)} & 0
\end{array}\right)-\left(\begin{array}{cc}
0 & -i \lambda(J G)^{(1)} \\
0 & v(J G)^{(1)}+u(J G)^{(2)}
\end{array}\right) L_{2}\right. \\
& \left.-\left(\begin{array}{cc}
0 & 0 \\
-\lambda^{-1}(J G)^{(2)} & 0
\end{array}\right)\left(L_{1}+L_{2 x}\right)\right\} \partial-\left(\begin{array}{cc}
0 & 0 \\
-\lambda^{-1}(J G)^{(2)} & 0
\end{array}\right) L_{2} \partial^{2} . \tag{2.10}
\end{align*}
$$

Equation (2.10), i.e.,

$$
\begin{align*}
{[V, L]=} & \left(\begin{array}{lc}
0 & -i \lambda(K G)^{(1)}+i \lambda u v(J G)^{(1)} \\
0 & v(K G)^{(1)}+u(K G)^{(2)}-u v\left(v(J G)^{(1)}+u(J G)^{(2)}\right)-i u_{x}(J G)^{(2)}
\end{array}\right) \\
& +\left(\begin{array}{cc}
-\lambda(J G)^{(1)} \\
\lambda^{-1} v\left(v(J G)^{(1)}+u(J G)^{(2)}\right)-\lambda^{-1}(K G)^{(2)} & -i(J G)^{(1)}
\end{array}\right) \partial \\
& +\left(\begin{array}{cc}
0 & 0 \\
i \lambda^{-1}(J G)^{(2)} & 0
\end{array}\right) \partial^{2}, \tag{2.11}
\end{align*}
$$

where $(\cdot)^{(i)}(i=1,2)$ is the i th component of $(\cdot), K G$ and $J G$ are

$$
\begin{equation*}
K G=\frac{1}{2}\binom{i G_{x x}^{(2)}+\partial u \partial^{-1}\left(u G_{x}^{(1)}+v G_{x}^{(2)}\right)}{-i G_{x x}^{(1)}+\partial v \partial^{-1}\left(u G_{x}^{(1)}+v G_{x}^{(2)}\right)}, \quad J G=\binom{G_{x}^{(2)}}{G_{x}^{(1)}} . \tag{2.12}
\end{equation*}
$$

Substitute Eq. (2.12) into Eq. (2.11) and compare the right-hand side of Eq. (2.8) with Eq. (2.11). We should choose

$$
\begin{gather*}
A=\frac{1}{2} i \lambda G_{x}^{(2)}, \quad B=-\frac{1}{2} u G_{x}^{(1)}, \tag{2.13}\\
C=\frac{1}{2} \partial^{-1}\left(u G_{x}^{(1)}+v G_{x}^{(2)}\right), \quad D=\frac{1}{2} \lambda^{-1} G_{x}^{(1)} .
\end{gather*}
$$

Thus, we have
Theorem 2.5: Let $G^{(1)}(x), G^{(2)}(x)$ be two arbitrarily smooth functions, $G=\left(G^{(1)}, G^{(2)}\right)^{T}$. Let

$$
V=V(G)=\frac{1}{2}\left(\begin{array}{cc}
0 & i \lambda G_{x}^{(2)} \tag{2.14}\\
0 & -u G_{x}^{(1)}
\end{array}\right)+\frac{1}{2}\left(\begin{array}{cc}
\partial^{-1}\left(u G_{x}^{(1)}+v G_{x}^{(2)}\right) & 0 \\
\lambda^{-1} G_{x}^{(1)} & \partial^{-1}\left(u G_{x}^{(1)}+v G_{x}^{(2)}\right)
\end{array}\right) \partial
$$

Then

$$
\begin{equation*}
[V, L]=L_{*}(K G)-L_{*}(J G) L \tag{2.15}
\end{equation*}
$$

where λ is an eigenvalue of Eq. (2.6), K, J are expressed as (2.4).
Proof: We substitute Eq. (2.13) into the right-hand side of Eq. (2.8) and carefully calculate it. It is not difficult to find that the result is equal to the right-hand side of Eq. (2.11).

Define the Lenard's recursive sequence $\left\{G_{j}\right\}: G_{-1}=(1,0)^{T}, K G_{j}=J G_{j+1}(j=-1,0,1, \ldots)$. $G_{j}(x)$ is the polynomial of $u(x), v(x)$ and their derivatives ${ }^{8}$ and is unique if its constant term is required to be zero. $X_{j}=J G_{j}$ is the Kaup-Newell vector field. The first few results of calculations are

$$
X_{-1}=0, \quad X_{0}=\binom{u_{x}}{v_{x}}, \quad X_{1}=\frac{1}{2}\binom{i u_{x x}+\left(u^{2} v\right)_{x}}{-i v_{x x}+\left(v^{2} u\right)_{x}} .
$$

The Kaup-Newell hierarchy of equations is produced by the Kaup-Newell vector field X_{j}, i.e.,

$$
\begin{equation*}
w_{t}=(u, v)_{t}^{T}=X_{j}(u, v), \quad j=0,1, \ldots \tag{2.16}
\end{equation*}
$$

Equation (2.16) is reduced to be the well-known derivative Schrödinger equation if one lets $j=1$ and $v=u^{*}$.

Let c_{j} be constant. The equation

$$
\begin{equation*}
w_{t}=X_{m}+c_{1} X_{m-1}+\cdots+c_{m} X_{0}, \quad m=0,1, \ldots \tag{2.17}
\end{equation*}
$$

is called the high-order Kaup-Newell equation.
Theorem 2.6: Let $G_{j}=\left(G_{j}^{(1)}, G_{j}^{(2)}\right)^{T}$ be the Lenard's recursive sequence. Let $V_{j}=V\left(G_{j}\right)$, $W_{m}=\sum_{j=0}^{m} V_{j-1} L^{m-j} . L$ is expressed as (2.6). Then

$$
\begin{equation*}
\left[W_{m}, L\right]=L_{*}\left(X_{m}\right), \quad m=0,1, \ldots \tag{2.18}
\end{equation*}
$$

Proof:

$$
\begin{aligned}
{\left[W_{m}, L\right] } & =\sum_{j=0}^{m}\left[V_{j-1}, L\right] L^{m-j} \\
& =\sum_{j=0}^{m}\left(L_{*}\left(K G_{j-1}\right) L^{m-j}-L_{*}\left(J G_{j-1}\right) L^{m-j+1}\right) \\
& =L_{*}\left(J G_{m}\right)-L_{*}\left(J G_{-1}\right) L^{m+1} \\
& =L_{*}\left(X_{m}\right)
\end{aligned}
$$

Corollary 2.7: The Kaup-Newell equation $w_{t}=X_{m}(u, v)$ has the commutator representation

$$
\begin{equation*}
L_{t}=\left[W_{m}, L\right], \quad m=0,1, \ldots \tag{2.19}
\end{equation*}
$$

i.e., $w_{t}=X_{m}$ is the natural compatible condition of $L y=\lambda^{2} y$ and $y_{t}=W_{m} y$.

Proof:

$$
\begin{gathered}
L_{t}=\left(\begin{array}{cc}
0 & -i \lambda u_{t} \\
-\lambda^{-1} v_{t} \partial & u_{t} v+v_{t} u
\end{array}\right)=L_{*}\left(w_{t}\right), \\
L_{t}-\left[W_{m}, L\right]=L_{*}\left(w_{t}\right)-L_{*}\left(X_{m}\right)=L_{*}\left(w_{t}-X_{m}\right) .
\end{gathered}
$$

L_{*} is injective, so this corollary is correct.
Corollary 2.8: The potential function $w(x)=(u(x), v(x))^{T}$ satisfies the stationary KaupNewell system

$$
\begin{equation*}
X_{N}+c_{1} X_{N-1}+\cdots+c_{N} X_{0}=0, \quad N=0,1, \cdots \tag{2.20}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\left[W_{N}+c_{1} W_{N-1}+\cdots+c_{N} W_{0}, L\right]=0 \tag{2.21}
\end{equation*}
$$

where c_{1}, \ldots, c_{N} are constants.

III. NONLINEARIZATION OF EQ. (2.1) AND A FINITE-DIMENSIONAL INVOLUTIVE SYSTEM

Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N}$ be N different eigenvalues of Eq. (2.1). Consider the Bargmann constraint ${ }^{3}$

$$
\begin{equation*}
G_{0}=\sum_{j=1}^{N} \gamma_{j} \cdot \nabla \lambda_{j}, \quad \gamma_{j}=\int_{\Omega}\left(v q_{j}^{2}+4 i \lambda_{j} p_{j} q_{j}-u p_{j}^{2}\right) d x \tag{3.1}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
u=-\langle\Lambda q, q\rangle, \quad v=\langle\Lambda p, p\rangle \tag{3.2}
\end{equation*}
$$

where $q=\left(q_{1}, \ldots, q_{N}\right)^{T}, p=\left(p_{1}, \ldots, p_{N}\right)^{T} ; \Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right) ;\langle\cdot, \cdot\rangle$ is the standard inner product in R^{N}.

Under the Bargmann constraint (3.2), the nonlinearization of Eq. (2.1) gives the Bargmann system

$$
\left\{\begin{array}{l}
q_{x}=-i \Lambda^{2} q-\langle\Lambda q, q\rangle \Lambda p=-\frac{\partial H}{\partial p} \tag{3.3}\\
p_{x}=i \Lambda^{2} p+\langle\Lambda p, p\rangle \Lambda q=\frac{\partial H}{\partial q}
\end{array}\right.
$$

whose Hamiltonian function H is

$$
\begin{equation*}
H=i\left\langle\Lambda^{2} p, q\right\rangle+\frac{1}{2}\langle\Lambda p, p\rangle\langle\Lambda q, q\rangle \tag{3.4}
\end{equation*}
$$

The Poisson bracket of two functions in the symplectic space ($R^{2 N}, d p \wedge d q$) is defined as ${ }^{9}$

$$
(F, G)=\sum_{j=1}^{N}\left(\frac{\partial F}{\partial p_{j}} \frac{\partial G}{\partial q_{j}}-\frac{\partial F}{\partial q_{j}} \frac{\partial G}{\partial p_{j}}\right)=\left\langle\frac{\partial F}{\partial p}, \frac{\partial G}{\partial q}\right\rangle-\left\langle\frac{\partial F}{\partial q}, \frac{\partial G}{\partial p}\right\rangle
$$

which is skew-symplectic, bilinear, and satisfies the Jacobi identity and Leibnitz rule: ($F G, H$) $=F(G, H)+G(F, H) . F, G$ is called an involution, ${ }^{9}$ if $(F, G)=0$.

Now we consider the function system $\left\{F_{m}\right\}$

$$
\begin{align*}
& F_{m}= i\left\langle\Lambda^{2 m+2} p, q\right\rangle+\frac{1}{2}\langle\Lambda p, p\rangle\left\langle\Lambda^{2 m+1} q, q\right\rangle+\frac{1}{2} \sum_{j=1}^{m}\left|\begin{array}{cc}
\left\langle\Lambda^{2(m-j)+1} q, q\right\rangle & \left\langle\Lambda^{2(m-j)+2} q, p\right\rangle \\
\left\langle\Lambda^{2 j} q, p\right\rangle & \left\langle\Lambda^{2 j+1} p, p\right\rangle
\end{array}\right|, \\
& m=0,1,2, \ldots \tag{3.5}
\end{align*}
$$

specifically $F_{0}=H$.
Lemma 3.1: For F_{m} which is defined as Eq. (3.5), the inner-product $\left\langle\partial F_{k} / \partial p, \partial F_{l} / \partial q\right\rangle$, is symmetrical about k, l, i.e.,

$$
\begin{equation*}
\left\langle\frac{\partial F_{k}}{\partial p}, \frac{\partial F_{l}}{\partial q}\right\rangle=\left\langle\frac{\partial F_{l}}{\partial p}, \frac{\partial F_{k}}{\partial q}\right\rangle, \quad \forall k, l \in Z^{+} \tag{3.6}
\end{equation*}
$$

Proof:

$$
\begin{gathered}
\frac{\partial F_{k}}{\partial p}=i \Lambda^{2 k+2} q+\langle\Lambda q, q\rangle \Lambda^{2 k+1} p+\sum_{j=1}^{k}\left(\left\langle\Lambda^{2 j+1} q, q\right\rangle \Lambda^{2(k-j)+1} p-\left\langle\Lambda^{2 j} q, p\right\rangle \Lambda^{2(k-j)+2} q\right), \\
\frac{\partial F_{l}}{\partial q}=i \Lambda^{2 l+2} p+\langle\Lambda p, p\rangle \Lambda^{2 l+1} q+\sum_{s=1}^{l}\left(\left\langle\Lambda^{2 s+1} p, p\right\rangle \Lambda^{2(l-s)+1} q-\left\langle\Lambda^{2 s} p, q\right\rangle \Lambda^{2(l-s)+2} p\right)
\end{gathered}
$$

Calculate the inner product of the left-hand and right-hand sides of the above two equalities, respectively. Through a series of careful calculations, it is easy to find that $\left\langle\partial F_{k} / \partial p, \partial F_{l} / \partial q\right\rangle$ is expressed as the sum of the symmetrical items about k, l. So the required result is right.

Theorem 3.2: The functions defined as Eq. (3.5) are in involution in pairs

$$
\left(F_{k}, F_{l}\right)=0, \quad \forall k, l \in Z^{+}
$$

specifically $\left(H, F_{m}\right)=0, \forall m \in Z^{+}$.
Proof:

$$
\left(F_{k}, F_{l}\right)=\left\langle\frac{\partial F_{k}}{\partial p}, \frac{\partial F_{l}}{\partial q}\right\rangle-\left\langle\frac{\partial F_{k}}{\partial q}, \frac{\partial F_{l}}{\partial p}\right\rangle=0
$$

Theorem 3.3: Under the Bargmann constraint (3.2), the Hamiltonian system ($R^{2 N}, d p \wedge d q, H=F_{0}$) which is given by Eq. (3.3) is completely integrable in the Liouville's sense and its involutive system is composed of $F_{m}\left(\forall m \in Z^{+}\right)$.

Remark: The finite-dimensional involutive systems $\left\{F_{m}\right\}$ are the stationary points of the corresponding higher-order flows (see Refs. 10 and 11) and therefore special cases of the systems considered in Refs. 10 and 11.

Theorem 3.4: Let $(q, p)^{T}$ be a solution of the Bargmann system (3.3). Then $u=-\langle\Lambda q, q\rangle$, $v=\langle\Lambda p, p\rangle$ satisfy a stationary Kaup-Newell equation

$$
\begin{equation*}
X_{N}+\alpha_{1} X_{N-1}+\cdots+\alpha_{N} X_{0}=0 \tag{3.7}
\end{equation*}
$$

with suitably chosen constants $\alpha_{j}(j=1, \ldots, N)$.
Proof: Let the operator $\left(J^{-1} K\right)^{k}$ act upon two sides of Eq. (3.1). In virtue of Eq. (2.3) and $J^{-1} K: G_{f} \rightarrow G_{j+1}$ with an extra term const $\cdot G_{-1}(j=-1,0,1, \ldots$, , we obtain

$$
\begin{equation*}
G_{k}+\beta_{2} G_{k-2}+\cdots+\beta_{k} G_{0}+\beta_{k+1} G_{-1}=\sum_{j=1}^{N} \lambda_{j}^{2 k} \nabla \lambda_{j} \tag{3.8}
\end{equation*}
$$

where $\beta_{2}, \ldots, \beta_{k+1}$ are constants.
Consider the polynomial

$$
\begin{equation*}
P(\lambda)=\prod_{j=1}^{N}\left(\lambda-\lambda_{j}^{2}\right)=p_{0} \lambda^{N}+p_{1} \lambda^{N-1}+\cdots+p_{N}, \quad p_{0}=1 \tag{3.9}
\end{equation*}
$$

Equation (3.7) is obtained as the operator $J \Sigma_{k=0}^{N} p_{N-k}$ acts upon two sides of Eq. (3.8).
In addition, according to the proof of Theorem 3.4, we have
Lemma 3.5: Let $(q, p)^{T}$ be a solution of Eq. (3.3) and G_{j} be the Lenard's recursive sequence, then there exist constants c_{2}, \ldots, c_{m+1} such that

$$
\begin{equation*}
A_{m}=\binom{A_{m}^{(1)}}{A_{m}^{(2)}}=\binom{\left\langle\Lambda^{2 m+1} p, p\right\rangle}{-\left\langle\Lambda^{2 m+1} q, q\right\rangle}=G_{m}+\sum_{s=2}^{m+1} c_{s} G_{m-s}, \quad m=0,1, \ldots \tag{3.10}
\end{equation*}
$$

or

$$
\begin{equation*}
A_{m}=\sum_{s=0}^{m+1} c_{s} G_{m-s}, \quad c_{0}=1, \quad c_{1}=0 \tag{3.11}
\end{equation*}
$$

IV. THE INVOLUTIVE SOLUTIONS OF THE KAUP-NEWELL HIERARCHY

Consider the canonical system of F_{m}-flow

$$
\left(F_{m}\right)\binom{q_{t_{m}}}{p_{t_{m}}}=\binom{-\frac{\partial F_{m}}{\partial p}}{\frac{\partial F_{m}}{\partial q}}=I \nabla F_{m}, \quad I=\left(\begin{array}{cc}
0 & -I_{N} \tag{4.1}\\
I_{N} & 0
\end{array}\right)
$$

where I_{N} is the $N \times N$ unit matrix. Let $g_{m}^{t_{m}}$ be defined as the solution operator of the initial value problem (4.1), then the solution of Eq. (4.1) is expressed as

$$
\begin{equation*}
\binom{q\left(t_{m}\right)}{p\left(t_{m}\right)}=g_{m}^{t_{m}}\binom{q(0)}{p(0)} . \tag{4.2}
\end{equation*}
$$

Since any two F_{k}, F_{l} are in involution, we have (see Ref. 9).
Proposition 4.1: (1) Any two canonical systems $\left(F_{k}\right),\left(F_{l}\right)$ are compatible; (2) the Hamiltonian phase-flow $g_{k}^{t_{k}}, g_{l}^{t_{l}}$ commute.

Denote the flow variables of $\left(F_{0}\right)$ and $\left(F_{m}\right)$ by $x=t_{0}, t=t_{m}$, respectively. Define

$$
\begin{equation*}
\binom{q\left(x, t_{m}\right)}{p\left(x, t_{m}\right)}=g_{0}^{x} g_{m}^{t_{m}}\binom{q(0,0)}{p(0,0)} . \tag{4.3}
\end{equation*}
$$

The commutativity of $g_{0}^{x}, g_{m}^{t_{m}}$ implies that it is a smooth function of (x, t), which is called the involutive solution of the consistent systems of equations $\left(F_{0}\right),\left(F_{m}\right)$.

Theorem 4.2: Let $\left(q\left(x, t_{m}\right), p\left(x, t_{m}\right)\right)^{T}$ be an involutive solution of the consistent system $\left(F_{0}\right),\left(F_{m}\right)$ Let $u\left(x, t_{m}\right)=-\langle\Lambda q, q\rangle, v\left(x, t_{m}\right)=\langle\Lambda p, p\rangle$. Then
(1) the flow equations $\left(F_{0}\right),\left(F_{m}\right)$ are reduced to be the spatial part and the time part, respectively, of the Lax pair for the high-order Kaup-Newell equation with u, v as their potentials (c_{1}, \ldots, c_{m} are independent of \boldsymbol{x})

$$
\begin{gather*}
\binom{q_{x}}{p_{x}}=\left(\begin{array}{cc}
-i \Lambda^{2} & u \Lambda \\
v \Lambda & i \Lambda^{2}
\end{array}\right)\binom{q}{p}, \tag{4.4}\\
\binom{q_{t_{m}}}{p_{t_{m}}}=\left(W_{m}+c_{1} W_{m-1}+\cdots+c_{m} W_{0}\right)\binom{q}{p} . \tag{4.5}
\end{gather*}
$$

(2) $u\left(x, t_{m}\right)=-\langle\Lambda q, q\rangle, v\left(x, t_{m}\right)=\langle\Lambda p, p\rangle$ satisfy the high-order Kaup-Newell equation

$$
\begin{equation*}
\left(u_{t_{m}}, v_{t_{m}}\right)^{T}=X_{m}+c_{1} X_{m-1}+\cdots+c_{m} X_{0} \tag{4.6}
\end{equation*}
$$

Proof: From Eq. (3.3), we immediately know (F_{0}) is Eq. (4.4). Through careful calculation we have (here order $A_{-1}=0, \partial^{-1} 0=2$)

$$
\begin{align*}
& \frac{1}{2} \sum_{j=0}^{m}\left\{\partial^{-1}\left(u A_{j-1, x}^{(1)}+v A_{j-1, x}^{(2)}\right) \Lambda^{2(m-j)} q_{x}+i A_{j-1, x}^{(2)} \Lambda^{2(m-j)+1} p\right\} \\
& \quad=-i \Lambda^{2 m+2} q-\langle\Lambda q, q\rangle \Lambda^{2 m+1} p+\sum_{j=1}^{m}\left(\left\langle\Lambda^{2 j} q, p\right\rangle \Lambda^{2(m-j)+2} q-\left\langle\Lambda^{2 j+1} q, q\right\rangle \Lambda^{2(m-j)} p\right) \\
& \quad=-\frac{\partial F_{m}}{\partial p}, \tag{4.7}\\
& \frac{1}{2} \sum_{j=0}^{m}\left\{\partial^{-1}\left(u A_{j-1, x}^{(1)}+v A_{j-1, x}^{(2)}\right) \Lambda^{2(m-j)} p_{x}+A_{j-1, x}^{(1)} \Lambda^{2(m-j)-1} q_{x}-u A_{j-1, x}^{(1)} \Lambda^{2(m-j)} p\right\} \\
& \quad=i \Lambda^{2 m+2} p+\langle\Lambda p, p\rangle \Lambda^{2 m+1} q+\sum_{j=1}^{m}\left(\left\langle\Lambda^{2 j+1} p, p\right\rangle \Lambda^{2(m-j)+1} q-\left\langle\Lambda^{2 j} q, p\right\rangle \Lambda^{2(m-j)+2} p\right) \\
& \quad=\frac{\partial F_{m}}{\partial q} . \tag{4.8}
\end{align*}
$$

In the calculation of Eqs. (4.7) and (4.8), Eq. (4.4), $u\left(x, t_{m}\right)=-\langle\Lambda q, q\rangle, v\left(x, t_{m}\right)=\langle\Lambda p, p\rangle$, and the equality $\frac{1}{2} \partial^{-1}\left(u A_{j-1, x}^{(1)}+v A_{j-1, x}^{(2)}\right)=i\left\langle\Lambda^{2 j} q, p\right\rangle$ are used.

Substituting Eq. (3.11) into Eqs. (4.7) and (4.8), respectively, we obtain

$$
\begin{align*}
\frac{\partial q}{\partial t_{m}}= & -\frac{\partial F_{m}}{\partial p} \\
= & \frac{1}{2} \sum_{j=0}^{m} \sum_{s=0}^{j} c_{s}\left\{\partial^{-1}\left(u G_{j-1-s, x}^{(1)}+v G_{j-1-s, x}^{(2)} \Lambda^{2(m-j)} q_{x}+i G_{j-1-s, x}^{(2)} \Lambda^{2(m-j)+1} p\right\}\right. \\
= & \frac{1}{2} \sum_{s=0}^{m} c_{s} \sum_{k=0}^{m-s}\left\{\partial^{-1}\left(u G_{k-1, x}^{(1)}+v G_{k-1, x}^{(2)}\right) \Lambda^{2(m-s-k)} q_{x}+i G_{k-1, x}^{(2)} \Lambda^{2(m-s-k)+1} p\right\} \tag{4.9}\\
\frac{\partial p}{\partial t_{m}}= & \frac{\partial F_{m}}{\partial q} \\
= & \frac{1}{2} \sum_{j=0}^{m} \sum_{s=0}^{j} c_{s}\left\{\partial^{-1}\left(u G_{j-1-s, x}^{(1)}+v G_{j-1-s, x}^{(2)}\right) \Lambda^{2(m-j)} p_{x}+G_{j-1-s, x}^{(1)} \Lambda^{2(m-j)-1} q_{x}\right. \\
& \left.-u G_{j-1-s, x}^{(1)} \Lambda^{2(m-j)} p\right\} \\
= & \frac{1}{2} \sum_{s=0}^{m} c_{s}^{m-s} \sum_{k=0}^{m-s}\left\{\partial^{-1}\left(u G_{k-1, x}^{(1)}+v G_{k-1, x}^{(2)}\right) \Lambda^{2(m-s-k)} p_{x}+G_{k-1, x}^{(1)} \Lambda^{2(m-k-s)-1} q_{x}\right. \\
& \left.-u G_{k-1, x}^{(1)} \Lambda^{2(m-k-s)} p\right\} . \tag{4.10}
\end{align*}
$$

In virtue of Eqs. (4.9) and (4.10), we get

$$
\begin{aligned}
\binom{q_{t_{m}}}{p_{t_{m}}} & =\sum_{s=0}^{m} c_{s} \sum_{k=0}^{m-s} V_{k-1}\binom{\Lambda^{2(m-s-k)} q}{\Lambda^{2(m-s-k)} p} \\
& =\sum_{s=0}^{m} c_{s} \sum_{k=0}^{m-s} V_{k-1} L^{m-s-k}\binom{q}{p} \\
& =\sum_{s=0}^{m} c_{s} W_{m-s}\binom{q}{p} \\
& =\left(W_{m}+c_{1} W_{m-1}+\cdots+c_{m} W_{0}\right)\binom{q}{p}
\end{aligned}
$$

where $W_{m-s}=\Sigma_{k=0}^{m}{ }^{s} V_{k-1} L^{m-s-k}, V_{k-1}$ is expressed as one in Theorem 2.6.

$$
\begin{gather*}
\frac{\partial u}{\partial t_{m}}=-2\left\langle\Lambda q, \frac{\partial q}{\partial t_{m}}\right\rangle=2\left\langle\Lambda q,-\frac{\partial F_{m}}{\partial p}\right\rangle=2 i\left\langle\Lambda^{2 m+3} q, q\right\rangle+2\langle\Lambda q, q\rangle\left\langle\Lambda^{2 m+2} q, p\right\rangle=A_{m, x}^{(2)} \tag{4.11}\\
\frac{\partial v}{\partial t_{m}}=2\left\langle\Lambda p, \frac{\partial p}{\partial t_{m}}\right\rangle=2\left\langle\Lambda p, \frac{\partial F_{m}}{\partial q}\right\rangle=2 i\left\langle\Lambda^{2 m+3} p, p\right\rangle+2\langle\Lambda p, p\rangle\left\langle\Lambda^{2 m+2} q, p\right\rangle=A_{m, x}^{(1)} \tag{4.12}
\end{gather*}
$$

By using Eqs. (3.11), (4.11), (4.12), and $X_{k}=J G_{k}$, we have (note $J G_{-1}=0$)

$$
\binom{u_{t_{m}}}{v_{t_{m}}}=\left(\begin{array}{ll}
0 & \partial \\
\partial & 0
\end{array}\right)\binom{A_{m}^{(1)}}{A_{m}^{(2)}}=J A_{m}=J\left(\sum_{s=0}^{m+1} c_{s} G_{m-s}\right)=X_{m}+c_{1} X_{m-1}+\cdots+c_{m} X_{0} .
$$

As a special case of Theorem 4.2, we can get the involutive solution of the well-known derivative Schrödinger equation (DSE)

$$
\begin{equation*}
u_{t}=\frac{1}{2} i u_{x x}+\frac{1}{2}\left(u|u|^{2}\right)_{x} \tag{4.13}
\end{equation*}
$$

if we choose $m=1, u=v^{*}$.
Corollary 4.3: Let $\left(q\left(x, t_{1}\right), p\left(x, t_{1}\right)\right)^{T}$ be the involution of the compatible system (F_{0}) $=(H),\left(F_{1}\right)$. Let $u\left(x, t_{1}\right)=-\langle\Lambda q, q\rangle, v\left(x, t_{1}\right)=\langle\Lambda p, p\rangle$, and $u=v^{*}$. Then (1) the flow equations $\left(F_{0}\right),\left(F_{1}\right)$ are reduced to the spatial part and the time part, respectively, of the Lax pair for the derivative Schrödinger equation (4.13) with u as their potential

$$
\begin{gather*}
\binom{q_{x}}{p_{x}}=\left(\begin{array}{cc}
-i \Lambda^{2} & u \Lambda \\
u^{*} \Lambda & i \Lambda^{2}
\end{array}\right)\binom{q}{p}, \tag{4.14}\\
\binom{q_{t_{1}}}{p_{t_{1}}}=\left(\begin{array}{cc}
-i \Lambda^{3}-\frac{1}{2} i|u|^{2} \Lambda^{2} & \frac{1}{2}\left(i u_{x}+|u|^{2} u\right) \Lambda \\
\frac{1}{2}\left(-i u_{x}^{*}+|u|^{2} u^{*}\right) \Lambda & i \Lambda^{3}+\frac{1}{2} i|u|^{2} \Lambda^{2}
\end{array}\right)\binom{q}{p} . \tag{4.15}
\end{gather*}
$$

(2) $u\left(x, t_{1}\right)$ satisfies the DSE (4.13).

Proof: According to $u=v^{*}$, Eq. (4.4) is evidently Eq. (4.14). Choosing $m=1, c_{1}=0$ in Eqs. (4.5) and (4.6), we have

$$
\begin{equation*}
\binom{q_{t_{1}}}{p_{t_{1}}}=W_{1}\binom{q}{p}=\left(V_{-1} \Lambda+V_{0}\right)\binom{q}{p}, \tag{4.16}
\end{equation*}
$$

where

$$
V_{-1}=\left(\begin{array}{cc}
\partial I_{N} & 0 \\
0 & \partial I_{N}
\end{array}\right), \quad V_{0}=\frac{1}{2}\left(\begin{array}{cc}
u v \partial I_{N} & i \Lambda u_{x} I_{N} \\
\Lambda^{-1} v_{x} \partial I_{N} & -u v_{x} I_{N}+u v \partial I_{N}
\end{array}\right) .
$$

I_{N} is the $N \times N$ unit matrix.
Substituting the expression of V_{-1} and V_{0} into Eq. (4.16), through some calculation we know Eq. (4.16) implies Eq. (4.15).

The required result (2) is obtained because of (2) of Theorem 4.2 and

$$
\binom{u_{t_{1}}}{v_{t_{1}}}=X_{1}, \quad X_{1}=\frac{1}{2}\binom{i u_{x x}+\left(u^{2} v\right)_{x}}{-i v_{x x}+\left(v^{2} u\right)_{x}}, \quad u=v^{*} .
$$

ACKNOWLEDGMENTS

The author is very indebted to Professor Cao Cewen for his instruction and expresses his sincere thanks to the referee for the advised opinions.

This work has been supported by the Natural Science Foundation of Education Committee, Liaoning Province, China.

[^0]${ }^{3}$ C. Cao and X. Geng, Classical integrable systems generated through nonlinearization of eigenvalue problems, in Nonlinear Physics, Research Reports in Physics, edited by C. Gu et al. (Springer-Verlag, Berlin, 1990), pp. 68-78.
${ }^{4}$ C. Cao and X. Geng, J. Phys. A 23, 4117 (1990).
${ }^{5}$ Z. Qiao, Master paper, Zhengzhou University, PRC, 1989.
${ }^{6}$ J. D. Kaup and A. C. Newell, J. Math. Phys. 19, 789 (1978).
${ }^{7}$ C. Cao, Sci. China A 33, 528 (1990).
${ }^{8}$ P. D. Lax, SIAM Rev. 18, 351 (1976).
${ }^{9}$ V. I. Arnol'd, Mathematical Methods of Classical Mechanics (Springer-Verlag, Berlin, 1978).
${ }^{10}$ A. G. Reyman and M. A. Semenov-Tian-Shansky, Inv. Math. 54, 81 (1979).
${ }^{11}$ A. G. Reyman and M. A. Semenov-Tian-Shansky, Inv. Math. 63, 423 (1981).

[^0]: ${ }^{1}$ H. Knorrer, J. Rein. Angew. Math. 334, 69 (1982).
 ${ }^{2}$ J. Moser, Integrable Hamiltonian System and Spectral Theory, Proceedings of the 1983 Beijing Symposium on Differential Geometry and Differential Equations (Science, Beijing, 1986), pp. 157-229.

