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Abstract—Compressive sensing (CS) theory indicates that
the optimal reconstruction of an unknown sparse signal can be
achieved from limited noisy measurements by solving a spar-
sity-driven optimization problem. For inverse synthetic aperture
radar (ISAR) imagery, the scattering field of the target is usually
composed of only a limited number of strong scattering centers,
representing strong spatial sparsity. This paper derives a new
autofocus algorithm to exploit the sparse apertures (SAs) data for
ISAR imagery. A sparsity-driven optimization based on Bayesian
compressive sensing (BCS) is developed. In addition, we also
propose an approach to determine the sparsity coefficient in the
optimization by using constant-false-alarm-rate (CFAR) detec-
tion. Solving the sparsity-driven optimization with a modified
Quasi-Newton algorithm, the phase error is corrected by com-
bining a two-step phase correction approach, and well-focused
image with effective noise suppression is obtained from SA data.
Real data experiments show the validity of the proposed method.

Index Terms—Bayesian compressive sensing (BCS), compressive
sensing (CS), inverse synthetic aperture radar (ISAR), sparse aper-
ture (SA).

I. INTRODUCTION

D UE TO the superiorities over other remote sensing tools,
such as high probability of target identification, robust

performance under all-weather circumstances, and very long
operating distance, inverse synthetic aperture radar (ISAR) is
widely applied in many civilian and military fields [1], [2].
To realize these applications, the two-dimensional (2-D) high
resolution is usually required to characterize target features in
detail. In general, high down-range resolution depends on the
system bandwidth. To mitigate this dependence, stepped fre-
quency waveforms (SFWs) [3] are employed. High cross-range
resolution is obtained by exploiting the multiple diversities of
radar-viewing angles to the target, and then Doppler analysis
can resolve scattering centers into different Doppler bins. The
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cross-range resolution depends on both the available CPI and
intrinsic motion characteristics of the target. As is known,
achieving high cross-range resolution usually requires a long
CPI. However, in the situation of multitargets, long observa-
tion for a single target imaging is no longer acceptable in a
modern radar system, attributed to its multiple functions, such
as searching, locating, and tracking multiple targets simultane-
ously. Since targets may locate in different channels and beams
as well as with different velocity vectors, radar system has to
switch among different line-of-sight (LOS) angles to capture
them. As a result, observation interval is assigned evenly to
each target, resulting in sparse apertures (SAs) and gaps in
the collected data. SAs would be also introduced in synthetic
aperture radar (SAR) imaging with multiply angular diversi-
ties [4], [5], where a target is illuminated by several sensors
from different angles independently and each sensor collects
only a small angular region composing a sparse aperture. In
SA-ISAR imaging, if the motion error is eliminated, a simple
way to achieve image would be to apply Fourier transform with
the missing data set to zero, bringing serious grating lobes in
the image.
To reduce the discontinuous aperture effects on ISAR

imagery, many novel approaches are ready to use. These
approaches can be sorted into three groups: 1) CLEAN
techniques [6]–[8] treat image formation from SA data as a
deconvolution procedure. They estimate and subtract the main
lobes of the strong scattering centers iteratively until reach
a convergence. CLEAN techniques are usually efficient but
sensitive to noise. 2) A number of modern spectral estimate
approaches can cope with SA data effectively. They estimate
the complex-valued amplitude and position of strong scatterers
from gapped data based on interpolation of the missing data
under certain constraints. The gapped-data amplitude and
phase estimation (GAPES) [4], [9] and its extensions [10], [11]
are representative approaches of this group. They can handle
quite general SA patterns and perform well under some noisy
circumstances. 3) Interpolation and extrapolation algorithms
can be also solve the data missing problem in some situations.
By fitting the available data into linear predication models,
the missed data can be interpolated or extrapolated from
the observed data. These methods also apply some modern
spectral estimation techniques to obtain the coefficients of the
prediction model. See some detailed approaches in [12]–[16].
The conventional approaches usually perform well in coping
with SA data in some situations. However, they are more
or less sensitive to additive noise and usually take nominal
model error into consideration, especially evitable phase errors
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induced by undesired target motion. It should be emphasized
that due to the discontinuities between subapertures, current
approaches [17]–[21] are not satisfactory to be directly applied
for phase adjustment. As the complex phase errors and noise are
inevitable, conventional methods for the SA imaging encounter
inherent limitations in real applications. Therefore, the error
correction should be accounted in dealing with SA imaging to
a large extent. Another significant factor, the signal-to-noise
ratio (SNR) gain of the formatted image, also plays an important
role in SA imagery. In ISAR imaging, radar signal is usually
contaminated by strong noise, which is usually overcome by the
coherent accumulation processing, providing a high SNR in the
final image. It is well known that the SNR gain is proportional
to the amount of signal accumulated. In SA-ISAR imaging,
due to a large portion of data missed, the negative effect of
noise would degrade the performance of current approaches to
generate image with high SNR. Notably, the negative effects
from both motion error and strong noise should be accounted
seriously in SA-ISAR imaging.
The ISAR image demonstrates the distribution of strong

scattering centers of the target’s scattering field in the
range-Doppler (RD) plane. The dominant scattering cen-
ters take only a fraction of the whole bins in the plane. In
this sense, ISAR image represents strong spatial sparsity in
the RD domain. Exploiting such sparsity is meaningful to
achieve improved performance, such as super-resolution [22],
feature enhancement [23], SAR imaging with model error
correction [24], and simplicity of data acquirement [25]. More
importantly, recent developing theory of the compressive
sensing (CS) tells us that an unknown sparse signal is able
to be exactly recovered from a very limited number of mea-
surements with high probability by exploiting the sparsity of
signal. This is implemented by solving a -norm optimization
problem [26]–[28]. In other words, the ill-posed problem,
recovering high-dimensional signal from low-dimensional
observations, could be solved by exploiting sparsity of the
objective signal.
Following this idea, in this paper, we propose a novel al-

gorithm for SA-ISAR imaging. In this algorithm, we focus
on image formation from SA data and correction of the phase
errors induced by translational motion. The SA-ISAR imaging
and model error correction are converted into a problem of
solving a sparsity-driven optimization problem corresponding
to the maximum a posteriori (MAP) estimate in Bayesian com-
pressive sensing (BCS) [29]. The sparsity-driven optimization
is based on the assumption that the additive noise is subject to
a zero-mean Gaussian distribution with unknown variance
and the signal components corresponding to the dominant scat-
tering centers follow a Laplace distribution with coefficient
independently. In the sparsity-driven optimization, the sparsity
coefficient is directly related to and . In order to precisely
estimate the statistic parameters from SA data, we utilize
the constant-false-alarm-rate (CFAR) detector to discriminate
signal from noise in the subaperture images approximately.
Using the pure noise and target components, both and can
be obtained via maximum likelihood (ML). In the SA-ISAR
imaging algorithm, the phase adjustment is indispensably re-
quired as model error correction, and conventional CS solvers

Fig. 1. SA geometry.

are not directly available herein. Therefore, we apply a mod-
ified Quasi-Newton algorithm for image formation jointed
with phase adjustment, which is implemented in an iterative
manner. A two-step phase adjustment is developed for coarse
correction of motion error, which can reduce the phase error in
a small level. In order to improve the efficiency of the solver,
fast Fourier transform and conjugate gradient algorithm can
be applied in its implementation. Real data experiments show
that the sparsity-driven algorithm is capable of overcoming the
grating lobes and yielding ISAR image with high SNR, even
when the observations are very limited.
This paper is organized as follows. In Section II, we introduce

the SA-ISAR imaging algorithm and the statistic estimation of
and . In Section III, the Quasi-Newton solver is presented

in detail, together with a two-step phase adjustment for accel-
eration of the solver. In Section IV, we present results of real
data experiments to validate the proposed method, and we give
some conclusions in last section.

II. SPARSITY-DRIVEN OPTIMIZATION FOR SA-ISAR IMAGING

A. Signal Model for SA-ISAR Imaging

Considering that an ISAR system observes multiple tar-
gets simultaneously, radar illumination has to switch from
one target to another evenly, resulting in sparse apertures
for each target. At first, conventional range compression and
range alignment are applied to the SA data with some current
approaches [30]–[33], which are identical to those in the con-
ventional ISAR imagery. The range-compressed and aligned
signal is denoted by . Without loss of generality, we assume
that there are subapertures for a target consisting of a long
sparse aperture. Fig. 1 shows the geometry of the sparse aper-
ture. The full aperture should contain pulses with index from
0 to , and each pulse composes range bins. Suppose
that the th subaperture consists of pulses (whose index
is from to ). The range-compressed data set
corresponding to the th subaperture is given by (1), shown at
the bottom of the next page. Then, the SA data matrix is

...

...

(2)

We note that the SA data set has
pulses. Clearly, in an ideal ISAR data collection,

the returned signals can be regarded as a measuring patch of
the two-dimensional Fourier transform of the target scattering
field corresponding to some aspect angles. Due to the maneuver,
the phase errors from complex motion of the target should be
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accounted in signal modeling. Then, the echoed signals with
phase error are rewritten in the following form:

(3)

where is an matrix and denotes the 2-D
ISAR image, whose pixel values are corresponding to scattering
center amplitudes. is the additive noise matrix with the same
size as . stands for a partial Fourier matrix in size ,
whose construction is corresponding to the SA structure. It is
given by

...

...

(4)

where

...
...

. . .
...

(5)

is the partial Fourier matrix in accordance with the th sub-
aperture. In our SA-ISAR imaging, the structure of the sparse
aperture of a certain target is assumed to be obtained. In other
words, we can construct the exact partial Fourier matrix of in
advance. is an matrix and represents the phase errors
from pulse to pulse

(6)

where

...

...

(7)

and
denotes the phase error vector corresponding to the th

subaperture.

B. SA-ISAR Imaging via Exploiting Sparsity

Generally, the components of are approximated as a zero-
mean complex Gaussian noise, namely, its imaginary and real
parts (denoted by and , respectively) independently follow
Gaussian distributions with unknown variance . As a result,
its probability density function is given by

(8)

The notation for a matrix denotes
. Therefore, we have the Gaussian likeli-

hood model of the observation, which is

(9)
ISAR imagery demonstrates the distribution and amplitudes
of limited dominant centers of the target, which usually rep-
resents strong sparsity. According to Bayesian compressive
sensing [29], the sparsity can be formulized by placing a
sparseness-promoting prior on . Herein, this sparseness prior
is represented by the Laplace density function.

(10)

where . Then, SA-ISAR im-
agery is shifted into a classical problem to estimate from
noisy observation . For this purpose, the MAP estimator is
used, which is given by

(11)

Using the Bayes rule, one gets

(12)

Clearly, (11) is also equivalent to

(13)

...
...

...
...

(1)
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Substituting (9) and (10) into (13), the MAP estimator becomes

(14)

where is the sparsity coefficient, which is directly
related to the unknown statistic of noise and target signal.
The optimization problem consists of two different terms:
The -norm preserves the data fidelity of the solution, and
the -norm imposes it to be sparse. Clearly, based on the
assumption of Gaussian and Laplace distributions, the MAP
estimator of SA-ISAR imagery is corresponding to an -norm
regularization optimization problem, which is often called basis
pursuit denoising (BPDN) [34]. BPDN is often concerned as
a well-suited estimator of sparse signal from limited measure-
ments. It also can overcome the noise interference effectively.
Clearly, different from conventional SA imaging algorithms,
the MAP estimator aims at reconstructing denoised image with
full resolution. Compared to the point-enhanced algorithm [23],
the sparsity-weighting coefficient in the optimization (14) has
an analytic expression in mathematics: It is directly associated
with the statistics of noise and target in a Bayesian sense. How-
ever, besides the unknown phase error, a significant problem of
solving (14) for SA imaging lies in the determination of . Only
when a precise value of the sparsity coefficient is given can we
reconstruct an optimal ISAR image from limited noisy SA data.
Nevertheless, if is set too large, weak scatterers together with
noise will be rejected in the reconstruction of image, and only
the dominant scattering centers are preserved. If is overly
small, then a significant part of noise elements may be left
in the image, degrading the image quality. Derived from the
MAP estimation, the sparsity coefficient is deterministic if
we have the prior information about and . In Section II-C,
we propose an approach to estimate them from subaperture
images.

C. Estimation of and

The estimation of and from SA data can be used as
prior information. Estimation of the noise variance is available
since Gaussian noise usually distributes evenly, and there exists
a large number of cells containing only noise in the RD plane.
Given enough noise samples by those pure noise bins, we can
estimate with high accuracy. Meanwhile, of the Laplace
distribution placed on can be estimated from the signal bins.
Herein, the estimation of the statistical parameters of noise and
ISAR image contains the following two steps.
Step 1) SA images are generated by conventional ISAR

imaging procedure. Noise variance is estimated by
using pure noise samples.

Step 2) Scattering centers of target are determined by CFAR
detector in the SA images. Meanwhile, the noise
bins are set to be zero, and maximum likelihood
estimation of is performed by using the denoised
SA images.

In Step 1, we first perform conventional imaging processing
to each SA data, including translational motion removal and

azimuth compression. As conventional range alignment and
phase adjustment are suitable to correction of translational
motion within the subaperture data, each self-organized sub-
aperture is ready to generate a low-resolution image with the
range-Doppler algorithm. In the SA image, the target is placed
round the zero Doppler as the Doppler shift is removed in the
translational motion compensation, which indicates that the
cells corresponding to high Doppler frequency contain noise
only. Herein, we use these bins as noise samples. As we assume
the noise follows zero-mean Gaussian distribution, the ML
estimator of is the variance of all real and imaginary parts of
noise samples (defined as ). Because there are SA images,
one usually has enough noise samples, and trends to the
exact value.
In Step 2, the first is the detection process to separate scat-

tering centers from noise in the SA images. Due to high SNR
gained from the 2-D coherent integration, strong scattering
centers are distinctive from noise in the SA images. Herein,
discriminating target bins from noise in the SA images corre-
sponds to a problem of distributed target detection under the
background of Gaussian noise. Utilizing the noise samples
from Step 1, a CFAR detector for target scatters detection
is straightforward. Then, we can use these noise samples to
develop a CFAR detector for strong scattering centers. For
an extensive study of CFAR detector, [35] and [36] can be
consulted. Then, bins with amplitudes larger than the CFAR
threshold are determined as target components, and the rest are
regarded as noise and set to be zero. After the above denoising
processing, the th SA image is defined as . The ML esti-
mator of is found by maximizing

(15)

It is equivalent to maximizing . Differentiating
with respect to produces

(16)

Setting (24) equal to zero yields the ML estimator of the th SA
image

(17)

Clearly, the ML estimator of is the the reciprocal of the mean
of all pixel values. Finally, we average the estimates of all SA
images to obtain the estimation of , which gives

(18)

By using and , the sparsity coefficient is obtained easily,
which is given by . For clarity, we give conceptual
flowchart by using the Yak-42 data in Fig. 2.
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Fig. 2. Statistic estimation from SA image.

Generally, as we use the target samples from subaperture im-
ages to estimate the statistics of the full aperture image, some
estimation error is inevitable. However, in real applications, we
find performs well in different situations, although it usually
trends to be excessively large. A drawback of the estimator for
lies in the need of a considerable amount of pulses in a subaper-
ture, which may limit its usage in some special cases, such as
very short SA and random sampled SA patterns. In these cases,
the high SNR gain by the 2-D coherent integration may not be
achievable, and thus signal components are submerged by the
strong noise, which will be studied in our future work.

III. MODIFIED QUASI-NEWTON SOLVER FOR SA-ISAR
IMAGING

A. Modified Quasi-Newton Solver for Image Formation and
Phase Adjustment

Clearly, formation of the full-aperture resolution image by SA
data is an ill-posed problem. Due to the data missing among the
subapertures, the pulse amount is much less than that of
Doppler bins of the high-resolution image. According to
the theory of the compressive sensing, SA-ISAR imagery is pos-
sible by solving the -norm optimization problem in (13), and
it is also widely accepted that the problem is equivalent to the
-norm constraint optimization in compressive sensing [37],
for which many efficient solvers are available [38]–[40]. Never-
theless, these methods are not directly applicable to (13) due to
the phase errors induced by unexpected target motion. In this
section, we present a modified Quasi-Newton solver for ISAR
imaging from SA data, joint with correction of phase error from
translational motion. At first, in order to overcome the nondif-
ferentiability of the -norm around the origin in (13), a useful
approximation [23], [41], [42] is employed by

(19)

where stands for the modulus operator, and is a small
nonnegative parameter. Clearly, to ensure the approximation as
rigid as possible, should be set small. Thus, theMAP estimator
of the image in (13) can be reformatted as

(20)

This problem is a 2-D optimization. To make it is easy to solve.
We first convert it to one-dimensional (1-D) problems. The op-
timization (20) can be rewritten as

(21)

where and denote the SA signal
of the th range cell and the th column of the high resolu-
tion 2-D image, respectively. Due to the independence between
the range cells, solving the 2-D optimization (20) is equivalent
to figure out the following 1-D optimization for all range cells
separately. For the reconstruction of the th column of , we
have the following optimization:

(22)
Hence, the conjugate gradient function of

with respect to is cal-
culated through

(23)

where the Hessian matrix is approximately given by

(24)

and

(25)

Because the Hessian approximation relies on the objective ,
an iterative solver to (22) is presented through the following
formula:

(26)

where and are the estimators of and in the
th iteration, respectively. To accelerate the update, conjugate
gradient algorithm (CGA) can be applied to avoid the matrix
inverse calculation. In the case of no prior information about
the phase error, starting from the initial value and

, then we have the estimator of the phase error
in the th iteration (denoted by )

(27)
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Here, the updating exponential term of the phase error is given
by

(28)

and

(29)

In the sparstiy-driven SA-ISAR algorithm, we consider the
phase error among the pulses. The phase error is corrected
during the image formation in an iterative manner. It should be
noted that there are no constraints on concrete form of phase
errors in the solver, and even when the phase errors vary ran-
domly from pulse to pulse, it is capable of achieving high quality
SA-ISAR images. The computational load of the Quasi-Newton
solver is a significant to its real applications. We note that major
computational load of in each update sources from the matrix
inversion calculation of in (24), which is implemented
by CGA. However, due to the iterative property of CGA, its
efficiency may be slow as one need to perform the calculation
of the linear equation many
times. Its major computational load lies in the multiplication of

in . As the term corresponds
to the partial Fourier matrix, allowing us to use fast Fourier
transform (FFT) to implement ( denotes an -dimen-
sional vector) efficiently: We perform the inverse FFT to and
obtain , then set the components corresponding to the vacant
apertures to zero and followed FFT. For simplicity, only the
multiple operations are accounted. Therefore, taking only the
multiple operations into account, can be implemented
with only flops corresponding to two FFTs. For
the number of the CGA iterations to solve (26) being
case, the computational cost of CGA is about
flops. Assuming there are times of iterations in the
Quasi-Newton solver, the computational cost by using FFT is

flops approximately.

B. Efficiency Improvement by Combining Conventional Phase
Adjustment

The major problem of the Quasi-Newton solver in dealing
with severe phase errors lies in its low efficiency. From the
viewpoint of optimization, appropriate initialization of and
is essential to improve the efficiency and accuracy of the

Quasi-Newton solver. Precise initialization can dramatically re-
duce the iteration number to achieve a satisfactory solution to
the optimization problem. However, precise prior information
of and is usually not achievable. Herein, the initialization
of is achieved by setting the vacant apertures to zero and ap-
plying FFT. Preprocessing of motion compensation should be
carried out to suppress the phase errors as much as possible,
which would put much less burden on the Quasi-Newton solver
and enhance its convergence with much less iterations. Due to
the data discontinuity, phase adjustment for the SA data is quite

different from the conventional ISAR scenarios. Herein, we pro-
pose two-step preprocessing for phase error reduction.
In the first step, we utilize the Doppler tracking technique.

Without assumption of even and full aperture, the Doppler
tracking technique still works by multiple prominent points
processing (PPP) [2]. The basic idea of the multiple PPP
algorithm is to track the phase history of one or more isolated
point-scatters in aligned range profiles in order to extract
phase errors. The main challenge in applying the multiple
PPP algorithm is the selection of the point-like prominent
scatterers, which should be well isolated in their respective
range cells. It is easily found that this method performs well in
artificial targets with dominant scatters, for instance, airplanes,
missiles and ships, etc. The PPP procedure includes three steps:
1) searching for one or several reference range cells by using
some criteria like minimum variance; 2) taking conjugate phase
at the reference range cells and combining them together by
weighting; and 3) making phase correction for all range cells
by the conjugate phase. However, in the presence of strong
noise or absence of prominent points, the precision of the
Doppler tracking may degrade. Therefore, Doppler tracking by
the multiple PPP serves as a coarse step.
In the second step, we perform conventional phase ad-

justment to each subaperture to suppress phase errors within
subaperture effectively. Note that each subaperture has a
self-organized structure where the pulses are distributed con-
tinuously and evenly. Therefore, we can apply precise phase
adjustment to eliminate the residual phase errors for each sub-
aperture. Many phase adjustment algorithms could be applied
to implement this step, such as the weighted least-squares
phase estimation (WLSPE) [18] and the time-frequency trans-
form-based auto-focusing [19]. This step can be regarded as
a fine step for the phase error correction. Nevertheless, phase
correction is performed on each subaperture independently,
and thus phase errors within a subaperture can be eliminated to
a nominal level. WLSPE is robust to noise, and as it directly
extracts phase error rather than phase gradient, there is no
significant additional linear phase in each SA data. In real
application, we always apply it to implement the fine correc-
tion. However, residual phase errors still exist among different
subapertures. By two-step preprocessing for phase adjustment,
the majority of phase errors are removed, and only a fraction
of them are left for the sparsity-driven algorithm, improving its
efficiency dramatically. Considering the phase error difference
within a subaperture is removed in the second step, for the th
subaperture, we have

(30)

In the phase error estimations (27) and (28) of the sparsity-
driven SA-ISAR imaging, we may reformat the update of phase
error for the th subaperture in a simpler way

(31)
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Fig. 3. Flowchart of the SA-ISAR imaging.

Here, the updating exponential term of the phase error is refor-
matted as

(32)

and

(33)

where denotes the operator to sum up all the matrix
elements; is the conjugate operator, and represents
Hadamard multiplication. The convergence for the iteration is
straightforward. Let increase, then we may repeat the itera-
tive procedure in the optimization problem until we have

(34)

where the constant is chosen as small as the predetermined
threshold. Additionally, we can terminate the iteration, when
exceeds a predetermined number. Due to the two-step phase ad-
justment, the residual phase error is small. Therefore, an optimal
solution can be obtained by the Quasi-Newton algorithm with
only several iterations. For example, in the following experi-
ments, only five iterations are used for the SA with a quarter of
pulses missing. To make it clear, a flowchart for the SA-ISAR
imaging is given in Fig. 3.

IV. PERFORMANCE ANALYSIS WITH EXPERIMENTS

In this section, real ground-based measurements are used to
generate synthetic data for carrying out a performance analysis
of the SA-ISAR imaging by the sparsity-driven optimization.
Accounting for the special cases of the ISAR imagingwith noisy
SA measurements, the performance analysis is carried out by
considering two aspects: the phase error and the sparse aperture
pattern. The experiments here are vital to validate the effective-
ness of our approach.

Fig. 4. Aligned range profiles.

Fig. 5. RD image after auto-focusing.

A. Data Set and Experimental Conditions

In our algorithm for the SA-ISAR imaging, the sparsity of the
target scattering field is exploited to overcome the model error
and form a well-focused image. We believe that the inherent
sparsity of a real ISAR target is difficult to be represented by
simple simulated data. To make it convincing, we utilize the
real measured ISAR data to perform different experiments. A
data set of Yak-42 airplane is recorded by a C-band (5.52 GHz)
ISAR experimental system. The system transmits 400-MHz
linear modulated chirp signal with 25.6- s pulse width, pro-
viding a range resolution of 0.375 m. The received signal is
dechirped and I/Q sampled for range compression. We notice
that since tracking errors are involved in the reference distances
for the dechirping on receiving, random initial phase is intro-
duced for each pulse. Range alignment and phase adjustment
are required before we perform azimuth compression to the
full-aperture data. The pulse repetition frequency is 400 Hz
without undersampling. The data set consists of 1024 pulses.
Conventional range alignment is applied to the data set elim-
inating the MTRC. The aligned profiles are shown in Fig. 4.
From the aligned profiles, we know that several prominent
scattering centers are available. For comparison, we apply the
WLSPE to the data set and then generate the RD image shown
in Fig. 5. The generated image is well focused, which can be
used as a standard image for evaluating experimental results
from sparse apertures. The estimated phase errors from a full
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Fig. 6. Full aperture phase errors with WLSPE.

aperture are shown in Fig. 6, from which we note that due to the
complex motion and dechirping on receiving, the phase errors
are in a random pattern. In the following SA-ISAR imaging
experiments, these phase errors are overcome by the two-step
phase correction and the sparsity-driven imaging algorithm
jointly. Phase error estimation in Fig. 6 is utilized as the crite-
rion to evaluate the precision of the SA phase adjustment.
To provide a quantitative evaluation for the following

SA-ISAR imaging experiment, we consider two metrics.
The first evaluation metric could be the target-to-background
ratio (TBR). By applying an adaptive threshold on the full-reso-
lution image in Fig. 5 to separate the target and the background
regions and then counting the target energy (within the target
region) and noise energy of the reconstructed image, the TBR
is given by

(35)

where and are the predetermined target and background
region shown in Fig. 7. It can also measure the target energy
preservation with the help of the target region. Herein, we use
the signal energy within the target region as the other metric,
which is given by

(36)

In the following SA imaging experiment, both TBR and SE
are utilized as the quantitative metric to evaluate the SA image
quality.

B. SA-ISAR Imagery Comparison With GAPES

In this section, we simulate the SA data of one target col-
lected by a radar system observing multiple targets. In this sce-
nario, the data amount corresponding to one target decreases
along with the increase of the target amount. In the following
experiment, we extract echoes from the complete aperture data

Fig. 7. Target region.

TABLE I
ESTIMATED AND IDEAL IN SA1 PATTERN

set of Yak-42 plane as SA samples for simulation. The SAs with
512, 256, and 128 pulses are regarded as Case 1, 2, and 3 re-
spectively. To test the robustness of the approach, we add com-
plex-valued Gaussian noise into the SA data sets to generate
different SNRs (20, 10, and 5 dB). Herein, the SNR is defined
as the energy ratio between the original data set and the added
noise. In our experiments, we consider that the pulse amount
within a subaperture is 128. Collecting 128 pulses is achieved
within a very short observation for a conventional ISAR system
(0.32 s), which should not conflict with other radar activities
including tracking and locating for multiple targets. In all ex-
periments, the SA-ISAR imaging procedure in Fig. 3 is ap-
plied. The weights in the optimizations are estimated with
the CFAR-based approach, and the CFAR is set to . For
the purpose of comparison, we also provide the ideal sparsity
coefficients calculated by using the ideal ML-estimated from
the image in Fig. 5 and the real noise variances under different
SNRs. The estimated sparsity coefficients and the ideal ones are
all listed in Table I. Clearly, there is some difference between the
estimated and ideal sparsity coefficients; one can note that the
difference within a single SA are very small. By using the esti-
mated sparsity coefficients, optimizations under different SNRs
and SA cases are developed.
For all cases above, we first exploit the two-step phase ad-

justment to reduce the phase error. However, by comparing the
results to those via WLSPE in Fig. 6, there still exist residual
phase errors, as plotted in red in Fig. 8. Note that we only show
the outcomes of Cases 1 and 2 since the results of Case 3 are
identical to those in the first SA of the other two cases corre-
spondingly. Although the residual phase errors are small within
a single SA, among different SAs they vary in a large range al-
most one radian difference. The proposed sparsity-driven algo-
rithm with (32) is expected to correct the rest phase difference
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Fig. 8. Phase adjustment evaluation.

Fig. 9. Results with the proposed approach.

between SAs. The residual phase errors via sparsity-driven cor-
rection with 20 iterations are plotted in blue in Fig. 8. It is ex-
plicit to see that since the constant difference between different
SAs is removed effectively via sparsity-driven correction, the
residual phase errors are at the same level. Therefore, the phase
difference becomes nominal which promises good performance
of imaging.
Fig. 9 shows the SA imaging results by using the proposed

approach under different SNRs. The first column of Fig. 9 gives
the sparse aperture patterns with different SA numbers (4, 2, and
1). Different rows in Fig. 9 correspond to imaging results with
different cases. The second, third, and right columns give the

imaging results under 20, 10, and 5 dB, respectively.
One notes that, in all cases, well-focused images are achieved,
which validates the effectiveness of our algorithm. For compar-
ison, we also use the GAPES to process SA data under the same
conditions. It should be emphasized that, as GAPES requires
no phase error within the SA data, the phase error is precor-
rected before we extract SAs from original data in Fig. 6. The
image results obtained by GAPES are given in Fig. 10. For both
SA approaches, the decrease of measurements amount yields
some noise increase in the reconstructed image, as we can see
from Figs. 9 and 10. However, the sparsity-driven SA-ISAR
imaging generally removes major noise producing image with
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Fig. 10. Results with GAPES.

TABLE II
TBR OF IMAGES (dB)

TABLE III
SE OF IMAGES (dB)

much higher TBRs than GAPES as one can note from Table II.
High TBR indicates that the sparsity-driven method has promi-
nent capability of denoising. In Table III, we list the signal en-
ergy of the reconstructed images. Generally, GAPES via images
has identical signal energy, while the sparsity-driven approach
generates images with lower signal energy, which indicates that
to achieve the denoising performance, the sparsity-driven ap-
proach pays a price of some signal energy loss. However, loss
of some weak scatters will not affect the geometrical construc-
tion of ISAR image, therefore we believe the sparsity-driven
approach for SA-ISAR imaging is useful in real applications.

V. CONCLUSION

In this paper, we present a sparsity-driven algorithm to
generate high-resolution ISAR images with sparse apertures,
in which SA-ISAR imaging problem is converted into a spar-
sity-constrained optimization based on Bayesian compressive
sensing. By using conventional Doppler tracking and autofocus,
a two-step preprocessing for phase adjustment is developed to
improve the efficiency and precision of the sparsity-constrained
SA-ISAR imaging effectively. Real data experiments and the
results manifest the effectiveness of the proposed approach in
different conditions. For the issue of SA-ISAR imaging, there
are still some open problems. For example, the SA imaging for
maneuvering targets may be much involved, and distributed
ISAR can also generate SA data with very short CPI [43], but
the synchronization is a significant problem. They remain to be
carried out in the future work.
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