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Abstract A new Lax matrix is introduced for the integrable symplectic map (ISM), and the non-dy- 
namical ( i .  e. constant) r-matrix of ISM is obtained. Moreover, an effective approach is systematically 
presented to construct the explicit solution (here, the explicit solution means algebraic-geometric solu- 
tion expressed by the Riemann-Theta function) of a soliton system or nonlinear evolution equation from 
Lax matrix, r-matrix, and the theory of nonlinearization through taking the Toda lattice as an example. 
The given algebraic-geometric solution of the Toda lattice is almost-periodic and includes the periodic 
and finite-band solution. 
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THE theoryL1] of nonlinearization is quite an effective method to produce finite-dimensional completely in- 
tegrable Harniltonian system and integrable syrnplectic map[']. In ref. [3] ,  the dynamical r-matrix of in- 
tegrable syrnplectic map was studied. This note is to present a new Lax matrix and a non-dynamical (i .  e. 
constant) r-matrix of integrable syrnplectic map, and then to further study how to construct the explicit 
representation of solution of soliton system or nonlinear evolution equation by starting from a new Lax ma- 
trix of it, the non-dynamical r-matrix and the theory of nonlinearization and using the method of variables 
separation and modern algebraic-geometric tools. 

Before displaying our main results, let us first give some conventions: (IRZN, d p  A dq)  stands for the 

standard symplectic structure in Euclidean space PN = { ( p , q ) 1 p = ( p l r  ..-, PN ) , q = ( ql , +.. , 
q N )  1 , (. , * )  is the standard inner product in FtN, [ , ] is the ordinary commutator of matrix, and in 
( I W ~ ~ ,  d p  A dq)  the Poisson brackets of two Hamiltonian functions F, G are defined byt4] 

A1, A N  are N arbitrarily given distinct constants; A and p are the two different spectral parameters; 

A = diag( A ,, , A N  ) . Denote all infinitely times differentiable functions on real field R by C" (PS) . 
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The integer n stands for the spatial discrete variable. For the following'Toda lattice the integer n is arbi- 
trary, not being restricted to be finite or periodic. 

1 New Lax matrix and r-matrix of Toda symplectic map 

Introduce the following Lax matrix L = L ( A ,  p , q ) : 

Now, choose a 2 x 2 matrix M = M ( A ,  p ,  q ) as follows: 

Then by a direct calculation, we can get the following theorem. 
Theorem 1 .  The discrete Lax equation 

L'M = ML, L'  = L(A,  p', q') 

is equivalent to a finite-dimensional syrnplectic map H : ( p ,  q ) I-'( p' , q' 

P' = gq, 
A q -  p -  ( 9 ,  q ) q  

g 
Set 

I 2 3 u, = * ( ( n q , ,  q,) - (P,, q,) - (P,, 9,) ) 
v, = (qn, qm>r 

(5) 

or simply write it as f :  ( p, , q, )T I+( u, , v, )T .  Then (4)  becomes the famous Toda spectral problem 

L+, (E- lu ,  + v, + u,E)+, = A+,, Ef, = f,+l, E-lf, = f,-1, (6) 
with A = Aj,  @ = q,, j .  Thus (4 )  is called the Toda syrnlectic map because the map H preserves the syrn- 

plectic structure d p  A dq : H "  ( d p  A dq)  = d p  A dq . Theorem 1 shows that the Toda symplectic map H 
has the discrete Lax representation ( 3 ) .  

Equation ( 5 )  is a kind of discrete Bargmann constraint relation of the Toda spectral problem (6) (al- 
so see reference [ 2 ] ) .  

Let L1(A) = L ( h ,  p, q ) @ I ,  L 2 ( p )  = I @ L ( ~ ,  p ,  q ) ,  I be the 2 x 2 unit matrix, and let 

I L ( A )@, L2 ( ) 1 be the fundamental Poisson brackets[51 . Then we have the following result. 

Theorem 2 .  

where the matrix r12(A, p ) ,  r Z l ( p ,  A) is 
2 

r12(A, p )  = - P - S ,  r 2 1 ( ~ ,  A) = P+12(kr p ) P ,  
f l -  A 

It is easy to check that the matrix r12(A, p )  given by (8)  satisfies the classical Yang-Baxter equa- 

tion: [ r12,  r13]+[ r12 ,  ? - 2 3 ] + [ ~ ) ~ .  r13]=O. SO r12(A, , U ) = ~ P - S  isan r-matrixof theToda 
P - A  

syrnplectic map ( 4) . 
Apparently, the r-matrix here found has no relation to the dynamical variables p, q , i. e. it is non- 
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dynarnical or constant. Additionally, the r-matrix r12( A ,  ,u) satisfying the fundamental brackets (7) is 

not unique. Very interesting is that the present r-matrix r, ,  = --2--~ - S of the discrete Toda syrnplec- 
,u-A 

tic map is the same as that of the continuous cKdV nonlinearized flow[61. 

2 Integrability 

Consider the determinant det L of the Lax matrix L = L ( A ,  p ,  q )  

where 

By (7) and ( l o ) ,  we can obtain 
Theorem 3. 
1 > 

{E , ,  E,j = 0 ,  a, / ? = I ,  ..., N. 

2 )  Let F, = C AZ,, s = 0 ,  1, 2 ,  - a * .  Then 
.=l 

F, = (A"+'P, q )  - ( A ~ P ,  p )  - ( P ,  4 )  ( A % ,  q )  
- ( ( A l p ,  P )  (Akq ,  q )  - ( A J p ,  q )  (Akq ,  p)  ), s = 0 ,  1 ,  ..., 

, + i?=s -1  

(13) 

and {F,,  Fl j=O, V m ,  L E Z ' .  
Theorem 4.  The finite-dimensional Toda syrnplectic map H determined by ( 4 )  is completely inte- 

grable in Liouville' s sense. 
Similar to the checking procedure in ref. [ 2 ] ,  we can know that the following process: 

produces a solution of the Toda lattice 

U ,  = U , ( ' U , + ~  - v , ) ,  h, = 2(u2, - u ; - J .  (15)  
Thus, via the transformation u ,  = ex+l - "m , v, = x, , ( 15) becomes the standard Toda lattice 

5, = 2 ( e 2 ( x m + , - 3 a )  - e2(5,-rn-1) 1, ( 16 )  
which has the following form of solution: 

d 
- z l ( t )  = ( q , ( t ) ,  q l ( t ) ) ,  i . e  x . ( t )  = J ( q . ( t ) ,  q . ( t ) ) d t .  dt  ( 17 )  

3 Explicit (algebraic-geometric) solution 

The method of variable separation is shown to be effective for continuous system by ~ k l ~ a n i n ' ~ ] .  
Now, we apply this method to discrete system, and concretely solve formula ( q, ( t  ) , q, ( t )) through 
using further mordern algebraic-geometric tools. In the following it shall be seen that ( q ,  ( t ) , q, ( t  )) 

can be expressed as an explicit form. In order to do that, we set C ( A )= - - Q ( A )  K ( A )  = f i ( ~  - A J ,  
K ( A ) '  m = l  

and choose N distinct real zero points p  , p,,, of Q  ( A ) . Then we have 

Let xj = A ( p,) . Then r, and pJ are conjugated, and thus they are the separable variablesL7'. 

Write detL = - - where P ( A ) is an N + 2-order polynomial of A whose first item' s coeffi- K ( A ) '  
1  

cient is - . Then r: = 
4 

( ) , j = 1  ... , N . Now, we choose the generating function 
K( ,u j )  
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where ,uj(0) is an arbitrarily given constant. View E, ( j  = 1,  . . a ,  N )  as actional variables. Then angle 
aw coordinates Q, are chosen as Qj=-, ~ = 1 ,  ..-, N, i .e.  a Ej 

Hence, on the syrnplectic manifold ( E X z N ,  dE, A dQ,) the Hamiltonian function Fo = $E, produces a 
.=l 

linearized flow 

thus 

where c, are dependent on E l ,  ... , E N ,  and independent of t  ; Q; is an arbitrary fixed constant. 

Choose closed paths a, ,  Pi, i = 1, N of Riemann surface r : p2 = P ( A ) K  ( A ) with N  han- 
N - 

dles. Then &, can be normed as w, = , z r , ,  ,w,, i. e.  w, satisfy $ w, = ail, f = Bg, where B = 
as 

( Bl j )  N x  is symmetric and the imaginary part ImB of B is a positive definite matrix. 

By Riemann  heo or em'^] through a lengthy calculation, we can get 

where constant ? is independent of fi ( n ,  L ) ' ~ ] ,  O is the Riernann-Theta function on Riernann surface 
T 

r,  I ( n ,  t ) = ( + l ( n ,  t ) ,  ..-, h(n, t ) ) ' - ( e r , ,  I = l  , ( Q f + t + c , n ) ,  ---. I = l  $rN ,  i ( ~ f + t + c L n ) )  , 

and K E cN is the Riemann constant vector. The j-th component of 7 ,  is 7,, - w, , here a, = 

( 0 ,  k ./ P( z - ') K (  z -') I .=,). Po is arbitrarily chosen on Riemann surface r.  So the standard Toda 
lattice (16 )  has the following representation of explicit solution, called algebraic-geometric solution: 

where U = R c ,  V = N ,  Z = R Q O + K +  v l .  Here c = ( c l ,  - a + ,  c,,,)~, j = ( l ,  ..-, Q 0 = ( Q : ,  

Q\)T, matrix R = ( r,, l ) N x  is determined by the relation equality 5 rJ, , $ a;l = ai ,  the symmet- 
i = 1  

N N - 
ric matrix B = ( B i j )  Nx in O function is given by C r,, , 4 ,@, = Bi, ; R = C A. - C, and C  is a certain 

i = 1  o = l  

constant to be determined by the algebraic-geometric attributes on the Riemann surface I'[lol 

Thus, the algebraic-geometric solution of the Toda lattice (15) is 

M 
Obviously, u, ( t  ) and v, ( t  ) are almost periodic functions, and they are periodic if U  = -, where M is N 
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an N-dimensional integer column vector. Apparently they are the finite-band solution of ( 15) 

The method described above can be also applied to other soliton systems. 
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