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We study here the existence of solitary wave solutions of a generalized two-
component Camassa–Holm system. In addition to those smooth solitary-wave
solutions, we show that there are solitary waves with singularities: peaked and
cusped solitary waves. We also demonstrate that all smooth solitary waves are
orbitally stable in the energy space. We finally give a sufficient condition for global
strong solutions to the equation in some special case.
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1. Introduction

There are several classical models describing the motion of waves at the free surface
of shallow water under the influence of gravity. Among these models, the best
known is the Korteweg-de Vries (KdV) equation [43, 49]

ut + 6uux + uxxx = 0�

The KdV equation admits solitary wave solutions, i.e. solutions of the form u�t� x� =
��x − ct� which travel with fixed speed c, and that vanish at infinity. The KdV
solitary waves are smooth and retain their individuality under interaction and
eventually emerge with their original shapes and speeds [19]. Moreover, KdV is
an integrable infinite-dimensional Hamiltonian system [41]. However, the KdV
equation does not model the phenomenon of breaking for water waves. Instead, as
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Stability of Solitary Waves 2163

soon as the initial profile u0 ∈ H1���, the solutions are global in time [35], whereas
some shallow water waves break [49].

Another model, the Camassa–Holm (CH) equation [3]

ut − uxxt + 3uux = 2uxuxx + uuxxx (1.1)

arises as a model for the unidirectional propagation of shallow water waves over
a flat bottom [3, 12, 20–22, 33], as well as water waves moving over an underlying
shear flow [34]. Equation (1.1) is completely integrable with the Lax pair [3] and
with infinitely many conservation laws as an bi-Hamiltonian system [25].

The CH equation has many remarkable properties that KdV does not have
like solitary waves with singularities and breaking waves. The CH equation
admits peaked solitary waves or “peakons” [1, 3, 38]: u�t� x� = ce−�x−ct�, c �= 0,
which are smooth except at the crests, where they are continuous, but have a
jump discontinuity in the first derivative. The peakons capture a feature that is
characteristic for the waves of great height–waves of the largest amplitude that are
exact solutions of the governing equations for water waves [8, 13, 48]. The CH
equation also models wave breaking (i.e. the solution remains bounded while its
slope becomes unbounded in finite time) (see [3, 5–7, 10, 41, 49]).

The CH equation also admits many multi-component generalizations. It is
intriguing to know if the above two properties may persist in the systems. In this
paper we consider the following generalized two-component CH system established
in [4] which can be derived from shallow water theory with nonzero constant
vorticity {

ut − utxx − Aux + 3uux − ��2uxuxx + uuxxx�+ ��x = 0�

�t + ��u�x = 0�
(1.2)

or equivalently, using the linear momentum m = u− uxx,{
mt + �umx − Aux + 2�mux + 3�1− ��uux + ��x = 0�

�t + ��u�x = 0�

where u�t� x� is the horizontal velocity and ��t� x� is related to the free surface
elevation from equilibrium (or scalar density) with the boundary assumptions u →
0, � → 1 as �x� → �. The scalar A > 0 characterizes a linear underlying shear flow
and hence system (1.2) models wave-current interactions. The real dimensionless
constant � is a parameter which provides the competition, or balance, in fluid
convection between nonlinear steepening and amplification due to stretching.

When � = 1 it recovers the standard two-component CH system. Mathematical
properties of the system have been also studied further in many works, cf. [11,
24, 27–30, 42, 44, 50] and references therein. The two-component CH system is
completely integrable [11, 32, 45, 46] as it can be written as compatibility condition
of two linear systems (Lax pair) with a spectral parameter �, that is,

	xx =
[
−�2�2 + �

(
m− A

2
+ 1

4

)]
	�

	t =
(

1
2�

− u

)
	x +

1
2
ux	�
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2164 Chen et al.

In the case � ≡ 0, it becomes

ut − uxxt + 3uux = � �2uxuxx + uuxxx� � (1.3)

which models finite length, small amplitude radial deformation waves in cylindrical
hyperelastic rods [18]. System (1.2) has the following two Hamiltonians

H1 =
1
2

∫
�

(
u2 + u2

x + ��− 1�2
)
dx�

H2 =
1
2

∫
�

(
u3 + �uu2

x + 2u��− 1�+ u��− 1�2 − Au2
)
dx�

We study solitary wave solutions of (1.2), i.e. solutions of the form

�u�x� t�� ��x� t�� = ���x − ct�� ��x − ct��� c ∈ �

for some �� � 
 � → � such that � → 0, � → 1 as �x� → �. In the study of the
CH traveling waves it was observed through phase-plane analysis [40] that both
peaked and cusped traveling waves exist. Subsequently, Lenells [38, 39] used a
suitable framework for weak solutions to classify all weak traveling waves of the
CH equation (1.1) and the hyperelastic rod equation (1.3).

Using a natural weak formulation of the two-component CH system, we will
establish exactly in what sense the peaked and cusped solitary waves are solutions.
It was shown in [11, 42, 50] that when � = 1 the two component system (1.2)
has only smooth solitary waves, with a single crest profile and exponential decay
far out. In [31], the authors considered a modified two-component CH equation
which allows dependence on average density as well as pointwise density and a
linear dispersion is added to the first equation of the system. They showed that the
modified system admits peakon solutions in both u and �. However it is unclear
whether the generalized two-component CH system (1.2) has solitary waves with
singularities. We show here peaked solitary waves exist when � > 1. We also provide
an implicit formula for the peaked solitary waves. However whether these peaked
solitary waves are solitons still remains open.

The stability of solitary waves is one of the fundamental qualitative properties
of the solutions of nonlinear wave equations [47]. Due to the fact that the solitons
hardly interact with each other at all it is reasonable to expect that they are
stable. It has been proved that for the CH equation, the smooth solitary waves
are orbitally stable [17]. Moreover, the peakons, whether solitary waves or periodic
waves, are also orbitally stable [14, 15, 36, 37]. It was shown in [50] that when � =
1 all solitary waves are orbitally stable. We prove in this paper that when � ≤ 1
all smooth solitary waves are orbitally stable. The proof of the stability basically
follows the general approach in [26]. In comparison with the spectral arguments on
the Hessian operator in [26], here we require more precise analysis on the spectrum
of a linearized operator around the solitary waves for the system (1.2).

A special case of system (1.2) is when � = 0. In the scalar equation case when
� = 0 it is the BBM equation [2]. The solutions are shown to be global in time. We
show that the same results hold in the system case.

This paper is organized as follows. In Section 2 we classify the solitary waves
of (1.2). In particular we show the existence of peaked solitary waves for � > 1.
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Stability of Solitary Waves 2165

In Section 3 we prove that when � ≤ 1 all smooth solitary waves are nonlinearly
stable. Finally in Section 4, we show that the system (1.2) is globally well-posed for
� = 0.

2. Solitary Waves

Let X = H1���× L2��� be a real Hilbert space with inner product �� �, and denote
its element by �u = �u� ��. The dual of X is X∗ = H−1���× L2��� and a natural
isomorphism I from X to X∗ can be defined by

I =
(
1− �2x 0

0 1

)
�

Using the map I , the paring 
� � between X and X∗ can be represented as


I�u� �v� = 
u� v�1 + 
�� 
�0� for �u = �u� �� ∈ X� �v = �v� 
� ∈ X∗�

where 
� �s denotes the Hs���×H−s��� dual pairing. We will identify the second
dual X∗∗ with X in a natural way.

Since � → 1 as �x� → � in (1.2), we can let � = 1+ � with � → 0 as �x� → �
and hence we can rewrite system (1.2) as{

ut − utxx − Aux + 3uux − ��2uxuxx + uuxxx�+ �1+ ���x = 0�

�t + ��1+ ��u�x = 0�
(2.1)

The two Hamiltonians introduced in the Introduction define the following two
functionals on X

E��u� = 1
2

∫
�

(
u2 + u2

x + �2
)
dx� (2.2)

F��u� = 1
2

∫
�

(
u3 + �uu2

x + 2u�+ u�2 − Au2
)
dx� (2.3)

with �u = �u� �� ∈ X. The quantity E��u� associates with the translation invariance of
(2.1). Using functional F��u�, system (2.1) can be written in an abstract Hamiltonian
form

�ut = JF ′��u�� (2.4)

where J is a closed skew symmetric operator given by

J =
(−�x�1− �2x�

−1 0

0 −�x

)

and F ′��u� 
 X → X∗ is the variational derivative of F in X at �u.
Note that if

p�x� 
= 1
2
e−�x�� x ∈ �� (2.5)
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2166 Chen et al.

then �1− �2x�
−1f = p ∗ f for all f ∈ L2���. We can then further rewrite system (2.1)

in a weak form as

ut + �uux + �xp ∗

(
−Au+ 3− �

2
u2 + �

2
u2
x +

1
2
�1+ ��2

)
= 0�

�t + ��1+ ��u�x = 0�

(2.6)

Definition 2.1. Let 0 < T ≤ �. A function �u = �u� �� ∈ C ��0� T�� X� is called a
solution of (2.1) on �0� T� if it satisfies (2.6) in the distribution sense on �0� T� and
E��u� and F��u� are conserved.

Applying the transport equation theory combined with the method of Besov
spaces, one may follow the similar argument as in [29] to obtain the following local
well-posedness result for the system (2.1).

Theorem 2.2. If �u0� �0� ∈ Hs ×Hs−1, s > 3/2, then there exist a maximal time T =
T�
�u0� �0�
Hs×Hs−1� > 0 and a unique solution �u� �� of (1.2) in C��0� T��Hs ×Hs−1� ∩
C1��0� T��Hs−1 ×Hs−2� with �u� ���t=0 = �u0� �0�. Moreover, the solution depends
continuously on the initial data and T is independent of s.

It is easily seen from the embedding H1��� ↪→ L���� that E��u� and F��u� are
both well defined in Hs ×Hs−1 with s > 3/2, and E��u� is conserved, as suggested in
the local wellposedness Theorem 2.2. From (2.4) we see that

d

dt
F��u� = 
F ′��u�� �ut� = 
F ′��u�� JF ′��u�� = 0�

So F��u� is also invariant.
Now we give the definition of solitary waves of (2.1).

Definition 2.3. A solitary wave of (2.1) is a nontrivial traveling wave solution of
(2.1) of the form ��c�t� x� = ��c�x − ct�� �c�x − ct�� ∈ H1���×H1��� with c ∈ �
and �c� �c vanishing at infinity.

For a solitary wave �� = ��� �� with speed c ∈ �, it satisfies

[
−c�+ �

2
�2 + p ∗

(
−A�+ 3− �

2
�2 + �

2
�2
x +

1
2
�1+ ��2

)]
x

= 0�

�−c�+ �1+ ����x = 0�

in �′����

(2.7)

Integrating the above system and applying �1− �2x� to the first equation we get

−�c + A��+ c�xx +

3
2
�2 = ���xx +

�

2
�2
x −

1
2
�1+ ��2 + 1

2
�

−c�+ �1+ ��� = 0�

in �′���� (2.8)

The fact that the second equation of the above holds in a strong sense comes from
the regularity of � and �.
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Stability of Solitary Waves 2167

Proposition 2.4. If ��� �� is a solitary wave of (2.1) for some c ∈ �, then c �= 0 and
��x� �= c for any x ∈ �.

Proof. From the definition of solitary waves and the embedding theorem we know
that � and � are both continuous. If c = 0, then (2.8) becomes


−A�+ 3

2
�2 = ���xx +

�

2
�2
x −

1
2
�1+ ��2 + 1

2
�

�1+ ��� = 0�

(2.9)

Since � vanishes at infinity, the second equation of the above system indicates that
��x� = 0 for �x� large enough. Denote x0 = max�x 
 ��x� �= 0�. Hence ��x� = 0 on
�x0��� and � �≡ 0 on �x0 − �� x0� for any � > 0. Consider now the first equation of
(2.9) on �x0��� we see that � ≡ 0 on �x0���. Then the continuity of � implies that
there exists a �1 > 0 such that 1+ ��x� > 0 on �x0 − �1� x0�. This together with the
second equation of (2.9) leads to ��x� ≡ 0 on �x0 − �1� x0�, which is a contradiction.
Therefore c �= 0.

Next we show � �= c. If not and there is some x1 ∈ � such that ��x1� = c. Then
the second equation of (2.8) infers that

��x1� = �c − ��x1�� ��x1� = 0�

so c = 0, which is a contraction. �

Using the above proposition we obtain from the second equation of (2.8) that

� = �

c − �
� (2.10)

Plugging this into the first equation of (2.8) we obtain an equation for the unknown
� only

−�c + A��+ c�xx +
3
2
�2 = ���xx +

�

2
�2
x −

1
2

c2

�c − ��2
+ 1

2
� in �′���� (2.11)

2.1. The Case When � = 0

When � = 0, (2.11) becomes

�xx =
c + A

c
�− 3

2c
�2 + 1

2c
− 1

2
c

�c − ��2
� in �′���� (2.12)

Since � ∈ H1��� and c − � �= 0 we know that �c − �� is bounded away from 0.
Hence from the standard local regularity theory to elliptic equation we see that
�∈C���� and so is �. Therefore in this case all solitary waves are smooth.

As for the existence, we may multiply (2.12) by �x and integrate on �−�� x�
to get

�2
x =

�2�c − �− A1��c − �− A2�

c�c − ��

= G���� (2.13)
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2168 Chen et al.

where

A1 =
−A+√

A2 + 4
2

� A2 =
−A−√

A2 + 4
2

(2.14)

are the two roots of the equation y2 + Ay − 1 = 0. Since A > 0, we know
A1 > 0 > A2.

From the decay property of � at infinity we know that a necessary condition
for the existence is c ≥ A1 or c ≤ A2. But one may prove further that

Theorem 2.5. When � = 0, (2.1) admits a solitary wave solution if and only if

c > A1 or c < A2� (2.15)

All solitary waves are smooth in this case.

Proof. The regularity is discussed as above. So we will just focus on the existence
part.

If c = A1, then (2.13) becomes

�2
x =

−�3�A1 − A2 − ��

A1�A1 − ��

= G1���� (2.16)

Hence we see that ��x� < 0 near −�. Because ��x� → 0 as x → −�, there is some
x0 sufficiently large negative so that ��x0� = −� < 0, with � sufficiently small, and
�x�x0� < 0. From standard ODE theory, we can generate a unique local solution
��x� on �x0 − L� x0 + L� for some L > 0. Since A1 > 0 > A2, we have

[−�3�A1 − A2 − ��

�A1 − ��

]′
= �2

[−3�2 + �6A1 − 2A2��− 3A1�A1 − A2�
]

�A1 − ��2
< 0� (2.17)

for � < 0. Therefore G1��� decreases for � < 0. Because �x�x0� < 0, � decreases
near x0, so G1��� increases near x0. Hence from (2.16), �x decreases near x0, and
then � and �x both decreases on �x0 − L� x0 + L�. Since

√
G1��� is locally Lipschitz

in � for � ≤ 0, we can easily continue the local solution to all of � and obtain that
��x� → −� as x → �, which fails to be in H1���. Thus there is no solitary wave
in this case.

Similarly we have that when c = A2 there is no solitary wave. Therefore the
theorem is proved. �

2.2. The Case When � �= 0

In this case we can rewrite (2.11) as((
�− c

�

)2
)

xx

= �2
x −

2�c + A�

�
�+ 3

�
�2 − 1

�
+ c2

��c − ��2
� in �′���� (2.18)

The following lemma deals with the regularity of the solitary waves. The idea is
inspired by the study of the traveling waves of Camassa–Holm equation [38].
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Stability of Solitary Waves 2169

Lemma 2.6. Let � �= 0 and ��� �� be a solitary wave of (2.1). Then

(
�− c

�

)k ∈ Cj
(
�\�−1�c/��

)
� for k ≥ 2j � (2.19)

Therefore

� ∈ C� (�\�−1�c/��
)
� (2.20)

Proof. From Proposition 2.4 we know that c �= 0 and � �= c and thus � satisfies
(2.18). Let v = �− c

�
and denote

r�v� = 3
�

(
v+ c

�

)2

− 2�c + A�

�

(
v+ c

�

)
− 1

�
�

So r�v� is a polynomial in v. From the fact that �− c �= 0 we know that

� − 1
�

c − v �= 0� (2.21)

Then v satisfies

�v2�xx = v2x + r�v�+ c2

�

(
� − 1
�

c − v

)−2

�

From the assumption we know that �v2�xx ∈ L1
loc���. Hence �v2�x is absolutely

continuous and hence

v2 ∈ C1���� and then v ∈ C1
(
�\v−1�0�

)
�

So from (2.21) and that v+ c
�
∈ H1��� ⊂ C��� we know

(
� − 1
�

c − v

)−2

∈ C��� ∩ C1
(
�\v−1�0�

)
�

Moreover,

�vk�xx = �kvk−1vx�x =
k

2

(
vk−2�v2�x

)
x

= k�k− 2�vk−2v2x +
k

2
vk−2�v2�xx

= k�k− 2�vk−2v2x +
k

2
vk−2

[
v2x + r�v�+ c2

�

(
� − 1
�

c − v

)−2
]

= k

(
k− 3

2

)
vk−2v2x +

k

2
vk−2r�v�+ kc2

2�
vk−2

(
� − 1
�

c − v

)−2

� (2.22)

For k = 3, the right-hand side of (2.22) is in L1
loc���. Thus we deduce that

v3 ∈ C1����
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2170 Chen et al.

For k ≥ 4 we see that (2.22) implies

�vk�xx =
k

4

(
k− 3

2

)
vk−4

[
�v2�x

]2 + k

2
vk−2r�v�+ kc2

2�
vk−2

(
� − 1
�

c − v

)−2

∈ C����

Therefore vk ∈ C2��� for k ≥ 4.
For k ≥ 8 we know from the above that

v4� vk−4� vk−2� vk−2r�v� ∈ C2���� and vk−2

(
� − 1
�

c − v

)−2

∈ C2
(
�\v−1�0�

)
�

Moreover we have

vk−2v2x =
1
4
�v4�x

1
k− 4

�vk−4�x ∈ C1����

Hence from (2.22) we conclude that

vk ∈ C3
(
�\v−1�0�

)
� k ≥ 8�

Applying the same argument to higher values of k we prove that vk ∈
Cj
(
�\v−1�0�

)
for k ≥ 2j , and hence (2.19). �

Denote x̄ = min�x 
 ��x� = c/�� (if � �= c/� for all x then let x̄ = +�), then x̄ ≤
+�. From Lemma 2.6, a solitary wave � is smooth on �−�� x̄� and hence (2.11)
holds pointwise on �−�� x̄�. Therefore we may multiply by �x and integrate on
�−�� x� for x < x̄ to get

�2
x =

�2�c − �− A1��c − �− A2�

�c − ���c − ���

= F���� (2.23)

where A1 and A2 are defined in (2.14).
Applying the similar arguments as introduced in [38] we make the following

conclusions.

1. When � approaches a simple zero m = c − A1 or m = c − A2 of F��� so that
F�m� = 0 and F ′�m� �= 0. The solution � of (2.23) satisfies

�2
x = ��−m�F ′�m�+ O���−m�2� as � → m�

where f = O�g� as x → a means that �f�x�/g�x�� is bounded in some interval �a−
�� a+ �� with � > 0. Hence

��x� = m+ 1
4
�x − x0�

2F ′�m�+ O��x − x0�
4� as x → x0� (2.24)

where ��x0� = m.
2. If F��� has a double zero at � = 0, so that F ′�0� = 0� F ′′�0� > 0, then

�2
x = �2F ′′�0�+ O��3� as � → 0�
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Stability of Solitary Waves 2171

We get

��x� ∼ � exp
(
−x
√
F ′′�0�

)
as x → � (2.25)

for some constant �. thus � → 0 exponentially as x → �.
3. If � approaches a simple pole ��x0� = c/� of F��� (when � �= 1). Then

��x�− c

�
= ��x − x0�2/3 + O��x − x0�

4/3� as x → x0� (2.26)

�x =



2
3
��x − x0�−1/3 + O��x − x0�

1/3� as x ↓ x0�

−2
3
��x − x0�−1/3 + O��x − x0�

1/3� as x ↑ x0�

(2.27)

for some constant �. In particular, when F��� has a pole, the solution � has a
cusp.

4. Peaked solitary waves occur when � suddenly changes direction: �x �→ −�x

according to (2.23).

Now we give the following theorem on the existence of solitary waves of (2.1)
for � �= 0.

Theorem 2.7. For � �= 0, we have

(1) If 0 < � ≤ 1, a solitary wave ��� �� of (2.1) exists if and only if condition (2.15)
holds.
If c > A1 then � > 0 and maxx∈� ��x� = c − A1. If c < A2 then � < 0 and
minx∈� ��x� = c − A2.

(2) If � < 0, then
• if c > A1 then there is a smooth solitary wave � > 0 with maxx∈� ��x� =
c − A1, and an anticusped solitary wave (the solution profile has a cusp
pointing downward) � < 0 with minx∈� ��x� = c/�;

• if c < A2 then there is a smooth solitary wave � < 0 with minx∈� ��x� =
c − A2, and a cusped solitary wave � > 0 with maxx∈� ��x� = c/�;

• if c = A1 then there is an anticusped solitary wave � < 0 with
minx∈� ��x� = c/�;

• if c = A2 then there is a cusped solitary wave � > 0 with maxx∈� ��x� =
c/�.

(3) If � > 1, a solitary wave exists if and only if c satisfies (2.15). If c > A1 then � > 0.
If c < A2 then � < 0. Moreover,

• If A1 < c < �
�−1A1, then the solitary waves are smooth and unique up to

translation with maxx∈� ��x� = c − A1;• If c = �
�−1A1 then the solitary wave is peaked with maxx∈� ��x� = c − A1 =

c/�;
• If c > �

�−1A1 then the solitary waves are cusped with maxx∈� ��x� = c/�;
• If �

�−1A2 < c < A2 then the solitary waves are smooth and unique up to
translation with minx∈� ��x� = c − A2;• If c = �

�−1A2 then the solitary wave is antipeaked (the solution profile has a
peak pointing downward) with minx∈� ��x� = c − A2 = c/�;

• If c < �
�−1A2 then the solitary waves are anticusped with minx∈� ��x� = c/�.
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2172 Chen et al.

Moreover, each kind of the above solitary waves is unique and even up to
translations. When c > A1 or c < A2, all solitary waves decay exponentially to zero at
infinity.

Proof. First from (2.23) and the decay of ��x� at infinity we know that a necessary
condition for the existence of solitary wave is that c ≥ A1 or c ≤ A2.

If c = A1 then (2.23) becomes

�2
x =

−�3�A1 − A2 − ��

�A1 − ���A1 − ���

= F1���� (2.28)

Hence we see that ��x� < 0 near −�. Similarly as in the proof of Theorem 2.5 , we
can find some x0 sufficiently large negative with ��x0� = −� < 0 and �x�x0� < 0, and
we can construct a unique local solution ��x� on �x0 − L� x0 + L� for some L > 0.

If � < 0, we see that 1
A1−��

is decreasing when � < 0. Together with (2.17) we
see that F1��� decreases for � < 0. Because �x�x0� < 0, � decreases near x0, so F1���

increases near x0. Hence from (2.28), �x decreases near x0, and then � and �x both
decreases on �x0 − L� x0 + L�. Since

√
F1��� is locally Lipschitz in � for A1/� < � ≤

0, we can easily continue the local solution to �−�� x0 − L� with ��x� → 0 as x →
−�. As for x ≥ x0 + L, we can solve the initial valued problem

{
�x = −√F1����

��x0 + L� = ��x0 + L�

all the way until � = A1/�, which is a simple pole of F1���. From (2.26) and (2.27)
we know that we can construct an anticusped solution with a cusp singularity at
� = A1/� = c/�.

If � > 0, a direct computation shows that

F ′
1��� < 0� for � < 0�

Therefore the same argument indicates that ��x� → −� as x → +�, which fails to
be in H1���. Hence in this case there is no solitary wave.

Similarly we conclude that when c = A2, there is no solitary wave when � > 0.
When � < 0, there is a solitary wave with a cusp of height c/�.

Now we consider c > A1 or c < A2. Again we will only look at c > A1. The
other case c < A2 can be handled in a very similar way. From (2.23) we see that �
cannot oscillate around zero near infinity. Let us consider the following two cases.

Case 1. ��x� > 0 near −�. Then there is some x0 sufficiently large negative so
that ��x0� = � > 0, with � sufficiently small, and �x�x0� > 0.

(i) When � ≤ 1,
√
F��� is locally Lipschitz in � for 0 ≤ � ≤ c − A1. Hence there is

a local solution to

{
�x =

√
F����

��x0� = �
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Stability of Solitary Waves 2173

on �x0 − L� x0 + L� for some L > 0. Therefore from (2.24) and (2.25) we see that
in this case we can obtain a smooth solitary wave with maximum height � =
c − A1 and an exponential decay to zero at infinity

��x� = O

(
exp

(
−
√
c2 + Ac − 1

c
�x�
))

as �x� → �� (2.29)

(ii) When � > 1,
√
F��� is locally Lipschitz in � for 0 ≤ � < c/�. Thus if c − A1 <

c/�, i.e., c < �
�−1A1, it becomes the same as (i) and hence we obtain smooth

solitary waves with exponential decay.

If c − A1 = c/� then the smooth solution can be constructed until � = c − A1 =
c/�. However at � = c − A1 = c/� it can make a sudden turn and so give rise to a
peak. Since � = 0 is still a double zero of F���, we still have the exponential decay
here.

Lastly if c − A1 > c/�, then � = c/� becomes a pole of F���. Hence from (2.26)
and (2.27) we see that we obtain a solitary wave with a cusp at � = c/� and decays
exponentially.

Case 2. ��x� < 0 near −�. In this case we are solving

{
�x = −√F����

��x0� = −�

for some x0 sufficiently large negative and � > 0 sufficiently small.
When � > 0 we see that F ′��� < 0 for � < 0. Thus in this case there is no

solitary wave.
When � < 0, � = c/� < 0 is a pole of F���. Hence from similar argument as

before, we obtain an anticusped solitary wave with minx∈� = c/�, which decays
exponentially.

Finally, from the standard ODE theory and the fact that the equation (2.11)
is invariant under the transformations x �→ x + d for any constant d, and x �→ −x,
we conclude that the solitary waves obtained above are unique and even up to
translations. �

Though there is no explicit expression for �, and so � in view of (2.10), as in
[50], the effects of the traveling speed c on the function � can be analyzed to provide
some general description of its profile. Similarly to the case in [50] we have

Proposition 2.8. Let c > A1 or c < A2, and � is a smooth solitary wave of (2.1) as
obtained in Theorem 2.7. Then �c� decays exponentially to zero at infinity and has at
most two zeros on �. In particular, if A1 < c < 2

A
, the �c� has exactly two zeros on �.

Proof. Again we only discuss the case c > A1. The other case c < A2 can be
handled in the same way.

Denote � = �c�. The exponential decay of � can be inferred from (2.29). Since
� is unique and even up to translations, we may assume that ��0� = c − A1. Hence
��0� = 1 and � is even. Assume ��x0� = 0 for some x0 > 0. Differentiating (2.23)
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2174 Chen et al.

with respect to c and evaluating at x = x0 we get

2�x�x =
�2

c − ��

[
1+ 1

�c − ��2
+ �c − ��2 + A�c − ��− 1

�c − ���c − ���

]

= �2

c − ��

[
1+ 1

�c − ��2
+ �2

x

�2

]
> 0�

since c − �� > 0. Because �x�x0� < 0, we see from the above inequality that
�x�x0� < 0. So � is strictly decreasing near x0. It is then deduced from the continuity
of � that it has at most two zeros on �.

If A1 < c < 2
A
, then from the decay estimate (2.29) we see that � decays faster

at infinity as c gets larger, since

�c

(√
c2 + Ac − 1

c

)
= 2− Ac

2c2
√
c2 + Ac − 1

> 0�

Hence ��x� < 0 at infinity. Therefore � has at least two zeros. Thus combining the
above argument we proved that ��x� has exactly two zeros ±x0 in this case. �

Next we try to find an implicit formula for the peaked solitary waves. Let us
consider only the case c > A1. Then from Theorem 2.7 we know that peaked solitary
waves exist only when c = �

�−1A1. In this case we have

�2
x =

�2�c − A2 − ��

c − �
�

Since � is positive, even with respect to some x0 and decreasing on �x0���, so for
x > x0 we have

�x = −�

√
1− A2

c − �
�

Hence from the separation of variables we get

−�x − x0� =
∫ �

c−A1

dt

t
√
1− A2

c−t

�

Letting w = 1− A2
c−t

and the above becomes

−�x − x0� =
∫ 1− A2

c−�

1− A2
A1

−A2

�cw − �c − A2�� �w − 1�
√
w
dw

=
∫ 1− A2

c−�

1− A2
A1

1√
w

[
c

cw − �c − A2�
− 1

w − 1

]
dw

=
(√

c

c − A2

ln

∣∣∣∣∣
√
cw −√c − A2√
cw +√c − A2

∣∣∣∣∣− ln

∣∣∣∣
√
w − 1√
w + 1

∣∣∣∣
)∣∣∣∣∣

1− A2
c−�

1− A2
A1

�
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Stability of Solitary Waves 2175

Figure 1. A peaked solitary wave with x0 = 0, A = 0, and c = � = 2.

Therefore we obtain an implicit formula for the peaked solitary waves.

−�x − x0� =
(√

c

c − A2

ln

∣∣∣∣∣
√
cw −√c − A2√
cw +√c − A2

∣∣∣∣∣− ln

∣∣∣∣
√
w − 1√
w + 1

∣∣∣∣
)∣∣∣∣∣

1− A2
c−�

w=1− A2
A1

� (2.30)

Figure 1 shows such.

3. Stability

In this section, we want to discuss the stability of the smooth solitary waves of (2.1).
For fixed c and � > 0, we define the “�-tube” of a solitary wave ��c to be

U� =
{
�u ∈ X 
 inf

s∈�

�u− ��c�· − s�
X < �

}
� (3.1)

According to Theorem 2.7, the solitary waves for (2.1) travel with speeds
proportional to their maximal heights. This consideration suggests that the
appropriate notion of stability for the solitary waves is orbital stability: a wave
starting close to a solitary wave should stay close, as long as it exists, to some
translate of the solitary wave. The orbit of a solitary wave is the set of all its
translates.

Let us now discuss the appropriate notion of stability for the solitary waves of
(2.1).

Definition 3.1. The solitary wave ��c of (2.1) is stable in X if for every � > 0, there
exists a � > 0 such that for any �u0 ∈ U�, if �u ∈ C��0� T�� X� for some 0 < T ≤ � is
a solution to (2.1) with �u�0� = �u0, then �u�t� ∈ U� for all t ∈ �0� T�. Otherwise the
solitary wave ��c is said to be unstable in X.

As is discussed in [4], some solutions of (2.1) are defined globally in time (e.g.
for 0 < � < 2 and infx∈� �0 > −1, or the solitary waves constructed in Section 2)
while other waves break in finite time. Note that by stability we mean that even if
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2176 Chen et al.

a solution which is initially close to a solitary wave blows up in a finite time, it will
stay close to some translate of the solitary wave up to the breaking time.

Our main theorem in this section is the following.

Theorem 3.2. Let � ≤ 1. All smooth solitary waves of (2.1) are stable.

First from Theorem 2.7 we know that smooth solitary waves exist only when
c > A1 or c < A2. For convenience we assume c > A1.

The special case � = 1 is settled in [50]. We will show that for general � < 1, the
problem can be analyzed using the method provided by Grillakis et al. [26].

Let us now make some functional analysis setup. Recalling the functionals E
and F are well-defined on X, we may compute their Fréchet derivatives as follows

{
E′

u = −uxx + u

E′
� = ��


F

′
u =

3
2
u2 − �

2
u2
x − �uuxx + �+ 1

2
�2 − Au

F ′
� = u+ u��

Using these notation we see that a solitary wave ��c of (2.1) satisfies

cE′���c�− F ′���c� = 0� (3.2)

Denote

Lc = −�x ��c − ����x�− 3�+ ��xx + c + A�

Then the linearized operator Hc 
 X → X∗ of cE′ − F ′ at ��c can be computed as

Hc = cE′′���c�− F ′′���c� =
(

Lc −�1+ ��

−�1+ �� c − �

)
�

Using (2.10) we have

Hc =

 Lc − c

c − �

− c

c − �
c − �


 � (3.3)

We see easily that Hc is self-adjoint and bounded from below, i.e., Hc ≥ aI for some
constant a and I is the identity operator.

The next lemma states some spectral properties about Hc.

Lemma 3.3. Let c > A1 and ��c be a smooth solitary wave of (2.1). The spectrum of
Hc satisfies the following properties.

(1) The essential spectrum of Hc is positive and bounded away from zero.
(2) The kernel of Hc is spanned by �x ��c.
(3) Hc has exactly one negative simple eigenvalue �1 corresponding to eigenfunction

�� = ��� ��.

Proof. The proof is inspired by Lemma 3.2 in [50]. The details are as follows.
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Stability of Solitary Waves 2177

(1) Since ���x and �xx all decay exponentially at infinity, it follows from
Weyl’s essential spectrum theorem that the essential spectrum of Hc is the same as
that of its asymptotic operator O� as �x� → �, where

O� =
(−c�xx + c + A −1

−1 c

)
�

When c > A1, we have c2 + Ac − 1 > 0. Hence there is some constant � = ��c� A� ∈
�0� 1� such that

2���� ≤ 2�1− ��
√
c�c + A�����

≤ �1− ��
[
�c + A��2 + c�2

]
for any �� = ����� ∈ H1���× L2���. Therefore

�O� ��� ��T�L2×L2 =
∫
�

[
c�2

x + �c + A��2 − 2��+ c�2
]
dx

≥
∫
�

[
��c + A��2 + �c�2

]
dx ≥ �c
��
2L2×L2 �

Hence O� is positive when c > A1, and then the essential spectrum of Hc is �a0���
for some a0 > 0 and there are finitely many eigenvalues located to the left of a0.

(2) If �� = ����� is an eigenfunction of Hc corresponding to the eigenvalue
zero, then

−�x ��c − ����x�+ �−3�+ ��xx + c + A��− c

c − �
� = 0�

− c

c − �
�+ �c − ��� = 0�

From the second equation we get � = c�

�c−��2
. Hence the first equation can be

expressed as a zero eigenvalue problem for �c 
 H
1 → H−1:

�c� 
= −�x ��c − ����x�+
(
−3�+ ��xx + c + A− c2

�c − ��3

)
� = 0� (3.4)

We now use the fact that ��x�� �x�x�� �xx�x� → 0 exponentially fast as �x� → �
while c − �� is positive and bounded away from zero when � is smooth. Similar
to [16], it follows that the spectral equation �c� = 0 can be transformed by the
Liouville substitution

z =
∫ x

0

dy√
c − ���y�

� ��z� = �c − ���x��1/4��x��

into

�c��z� 
=
(
−�2z + qc�z�+ c + A− 1

c

)
��z� = 0�
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2178 Chen et al.

where

qc�z� = −3��x�+ 3�
4
�xx�x�−

c2

�c − ��x��3
+ 1

c
− �2�2

x�x�

8�c − ���x��
�

Since qc → 0 exponentially as �z� → �, we deduce that �c 
 H
1��� → H−1��� is

self-adjoint with essential spectrum �c + A− 1
c
���. Because c > A1, we know c +

A− 1
c
> 0. We may have finitely many eigenvalues of �c located to the left of c +

A− 1
c
. The nth eigenvalue (in increasing order) has, up to a constant multiple, a

unique eigenfunction with precisely �n− 1� zeros (see for example, [23] for details).
Thus the operator �c has the same spectral properties.

Note that �x = c�x

�c−��2
and (2.7) imply that �c��x� = 0. Since �x has exactly one

zero. Therefore the zero eigenvalue of �c is simple, and there is exactly one negative
eigenvalue while the rest of the spectrum is positive and bounded away from zero.
Hence the zero eigenvalue of Hc is simple and the kernel is spanned by ��x.

(3) The operator Hc is related to a quadratic form Qc���� with �� = ����� ∈ X,
which is defined as the coefficient of �2 in the Taylor’s expansion of cE���c + ����−
F���c + ���� and is given by

Qc���� = 1
2

∫
�

[
�c − ����2

x + �−3�+ ��xx + c + A��2 − 2c
c − �

��+ �c − ���2

]
dx

= 1
2

∫
�

[
�c − ����2

x +
(
−3�+ ��xx + c + A− c2

�c − ��3

)
�2

]
dx

+ 1
2

∫
�

[
�c − ��

(
c

�c − ��2
�− �

)2
]
dx


= Q�1�
c ���+G�����

Note that the quadratic form Q�1�
c ��� is related to the operator �c and G���� is

nonnegative.
Let f be a nontrivial eigenfunction corresponding to the unique negative

eigenvalue of �c. Then

Qc

(
f�

c

�c − ��2
f

)
= Q�1�

c �f� < 0�

So Hc has a negative eigenvalue, say, �1 < 0. Applying the min-max characterization
of eigenvalues to Hc yields

�2 = max
��∈X

min
�� ∈ X\�0�
���� ��� = 0

Qc����

�
2X

�
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Stability of Solitary Waves 2179

Choosing �� = �f� 0� leads to

�2 ≥ min
�� ∈ X\�0�

��f� 0�� ��� = 0

Qc����

�
2X

= min
�g� h� ∈ X\�0�

��f� 0�� �g� h�� = 0

Q�1�
c �g�+G�g� h�


�g� h�
2X
≥ 0�

The last inequality is due to Q�1�
c �g� ≥ 0 for all g such that �g� f�H1 = 0 and that

G�g� h� ≥ 0. Therefore �1 is simple. Denote the corresponding eigenfunction by �� =
��� ��. From the result in (2) we see that �2 = 0 is also simple. This completes the
proof of the lemma. �

Remark 3.4. (i) Notice that the above lemma applies to all smooth solitary waves
of (2.1) without the restriction that � ≤ 1.

Under the assumption c < A2, we can consider the operator

Hc = −

 Lc − c

c − �

− c

c − �
c − �


 =


 −Lc

c

c − �
c

c − �
−c + �


 �

In this setting we have for smooth solitary wave that c < c − A2 ≤ ��x� < 0 and
c − �� is bounded away from zero. By a similar argument, all properties of Hc in
Lemma 3.3 are still valid.

(ii) We will apply the method of Grillakis et al. [26] to establish the stability of
smooth solitary waves. However our problem does not exactly fall into the
framework there since the operator J is not onto. But in fact the invertibility of
J is only needed to get instability and is not required for stability (see Sections 3
and 4 in [26] for more details). Hence the argument in Section 3 of [26] can still
be used here.

Let ��c = ��� �� be a solitary wave of (2.1). Consider the following scalar
function

d�c� =
{
cE���c�− F���c� if c > A1�

F���c�− cE���c� if c < A2�
(3.5)

The next lemma shows that for � ≤ 1, c > A1 or c < A2 and ��c = ��� �� ∈ X being
a smooth solitary wave of (2.1), d�c� is convex in c.

Lemma 3.5. Assume � ≤ 1, c > A1 or c < A2 and ��c = ��� �� is a smooth solitary
wave of (2.1). Then d′′�c� > 0.

Proof. Consider first c > A1. Differentiating d�c� with respect to c and then
applying (3.2) we obtain

d′�c� = 
cE′���c�− F ′���c�� �c ��c� + E���c� = E���c�� (3.6)
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In view of the even symmetry of �, it follows from (2.10) and (2.23) that

d′�c� = E���c� =
∫ �

0

[
�2
x + �2 + �2

�c − ��2

]
dx

=
∫ �

0
�2

[
�c − �− A1��c − �− A2�

�c − ���c − ���
+ 1+ 1

�c − ��2

]
dx�

Recall that 0 < ��x� ≤ c − A1 and �′�x� < 0 on �0��� when c > A1. We have from
(2.23) that

d′�c� = −
∫ �

0
��x

√
�c − ���c − ���

�c − �− A1��c − �− A2�
·

×
[
�c − �− A1��c − �− A2�

�c − ���c − ���
+ 1+ 1

�c − ��2

]
dx� (3.7)

Introducing a change of variable y = c − ��x� the above becomes

d′�c� =
∫ c

A1

�c − y�

√
y ��1− ��c + �y�

�y − A1��y − A2�

[
�y − A1��y − A2�

y ��1− ��c + �y�
+ 1+ 1

y2

]
dx�

Differentiating the above with respect to c we have

d′′�c� = 0+
∫ c

A1

�c

{
�c − y�

√
�y − A1��y − A2�

y ��1− ��c + �y�

}
dy

+
∫ c

A1

�c

{
�c − y�

√
y ��1− ��c + �y�

�y − A1��y − A2�

(
1+ 1

y2

)}
dy


=
∫ C

A1

I1�y�dy +
∫ C

A1

I2�y�dy�

Since � is smooth, we have that c − �� > 0. Hence �1− ��c + �y = c − �� > 0.
Moreover, we know that A2 < 0 < A1 < y < c. Further explicit computation shows
that

I1�y� =
√
�y − A1��y − A2�

y ��1− ��c + �y�
·
(
��1− ��c + �y�+ y

2��1− ��c + �y�

)
> 0�

Here we don’t need to assume � ≤ 1. If � ≤ 1, we have

I2�y� =
�y2 + 1�

[
�1− ��c + �y + 1

2 �1− ���c − y�
]

y
√
�y − A1��y − A2�y��1− ��c + �y�

> 0�

Therefore d′′�c� > 0.
The other case c < A2 can be handled in a very similar way and hence we

omit it. �

The next lemma can be obtained by exactly the same proof as in [26].
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Stability of Solitary Waves 2181

Lemma 3.6. Let � ≤ 1 and ��c = ��� �� be a solitary wave of (2.1). There exist � > 0
and a unique C1 map s 
 U� → � such that for every �u ∈ U� and r ∈ �

(1)

��u�· + s��u��� ��x� = 0�

(2)

s��u�· + r�� = s��u�− r�

By the spectrum analysis in Lemma 3.3 and the convexity of d�c� in Lemma
3.5, we can follow exactly the same idea as in [26] Theorem 3.3 to get

Lemma 3.7. Let the assumptions of Lemma 3.5 hold. There exists a constant k =
k�c� > 0 such that


Hc����� ��� ≥ k
��
2X� (3.8)

for all �� ∈ X satisfying ���c� ��� = ���′
c�
��� = 0.

The following lemma can be obtained directly from Lemma 3.6 and Lemma 3.7.

Lemma 3.8. Let the assumptions of Lemma 3.5 hold. There exists an � > 0 such that

F���c�− F��u� ≥ k

4

�u�· + s��u��− ��c
2X�

for �u ∈ U� satisfying E��u� = E���c�.

Proof of Theorem 3.2. In view of Lemma 3.3 and Lemma 3.8, the result of theorem
is then a direct consequence of Theorem 3.5 in [26]. �

4. Global Solutions When � = 0

In [4], the authors established a blow-up criterion for � �= 0 (cf. Theorem 3.3 in [4]).
In fact, the restriction of � �= 0 can be removed using the same argument and hence
we get

Theorem 4.1. Let �u� �� be the solution of (1.2) with initial data �u0� �0 − 1� ∈
Hs���×Hs−1���, s > 3/2, and T the maximal time of existence. Then

T < � ⇒
∫ T

0

ux���
L�d� = �� (4.1)

The wave-breaking phenomena for system (1.2) when � �= 0 was discussed in
details in [4]. Here we show that when � = 0 the solutions constructed in Theorem
2.2 are global-in-time.

Theorem 4.2. Let � = 0. If �u0� �0 − 1� ∈ Hs ×Hs−1, s > 3/2, then there exists a
unique solution �u� �− 1� of (1.2) in C��0����Hs ×Hs−1� ∩ C1��0����Hs−1 ×Hs−2�
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2182 Chen et al.

with �u� ���t=0 = �u0� �0�. Moreover, the solution depends continuously on the initial
data and the Hamiltonian H1 is independent of the existence time.

As discussed in [4], system (1.2) has two associated characteristics q and q̃ given
by the following initial-value problems



�q

�t
= u�t� q�� 0 < t < T�

q�0� x� = x� x ∈ ��
(4.2)



�q̃

�t
= �u�t� q̃�� 0 < t < T�

q̃�0� x� = x� x ∈ ��
(4.3)

where u ∈ C1��0� T��Hs−1� is the first component of the solution �u� �� to (1.2) with
initial data �u0� �0� ∈ Hs ×Hs−1 with s > 3/2 and T > 0 is the maximal time of
existence. When � = 0, the second one q̃ becomes stationary. Thus we will perform
the estimates along the first characteristics q.

A direct calculation shows that for t > 0� x ∈ �

qx�t� x� = e
∫ t
0 ux���q���x��d� > 0�

Hence q�t� ·� 
 � → � is a diffeomorphism of the line for each t ∈ �0� T�. Hence the
L� norm of any function v�t� ·� ∈ L����� t ∈ �0� T� is preserved under q�t� ·� with
t ∈ �0� T�, i.e.,


v�t� ·�
L���� = 
v�t� q�t� ·��
L����� t ∈ �0� T�� (4.4)

Similarly we have

inf
x∈�

v�t� x� = inf
x∈�

v�t� q�t� x��� t ∈ �0� T�� (4.5)

sup
x∈�

v�t� x� = sup
x∈�

v�t� q�t� x��� t ∈ �0� T�� (4.6)

When � = 0, we can rewrite system (1.2) as


ut + �xp ∗

(
−Au+ 3

2
u2 + 1

2
�2

)
= 0�

�t + ��u�x = 0�
(4.7)

where p�x� is defined in (2.5)
The following lemma is needed in carrying out the estimates along the

“extremal” characteristics.

Lemma 4.3 ([9]). Let T > 0 and v ∈ C1
(
�0� T��H2���

)
. Then for every t ∈ �0� T�

there exists at least one point 
�t� ∈ � with

m�t� 
= inf
x∈�

�vx�t� x�� = vx �t� 
�t�� �
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Stability of Solitary Waves 2183

The function m�t� is absolutely continuous on �0� T� with

dm�t�

dt
= vtx �t� 
�t�� a.e. on �0� T��

To prove Theorem 4.2 of global well-posedness of solutions, we need the
following estimates for ux.

Lemma 4.4. Let � = 0 and �u� �� be the solution of (4.7) with initial data
�u0� �0 − 1� ∈
Hs���×Hs−1���, s > 3/2, and T the maximal time of existence. Then

sup
x∈�

ux�t� x� ≤ sup
x∈�

u0�x�x�+
1
2

(
sup
x∈�

�2
0�x�+ C2

1

)
t� (4.8)

inf
x∈�

ux�t� x� ≥ inf
x∈�

u0�x�x�+
1
2

(
inf
x∈�

�2
0�x�− C2

2

)
t� (4.9)

where the constants above are defined as follows.

C1 =
√
3+ A2

2

�u0� �0 − 1�
H1×L2� (4.10)

C2 =
√
2+ C2

1 � (4.11)

Proof. The local well-posedness theorem and a density argument implies that it
suffices to prove the desired estimates for s ≥ 3. Thus we take s = 3 in the proof.
Also we may assume that

u0 �≡ 0� (4.12)

Otherwise the results become trivial. Since now s ≥ 3, we have u ∈ C1
0���. Therefore

inf
x∈�

ux�t� x� ≤ 0� sup
x∈�

ux�t� x� ≥ 0� t ∈ �0� T�� (4.13)

Differentiating the first equation of (4.7) with respect to x and using the identity
−�2xp ∗ f = f − p ∗ f we obtain

utx =
1
2
�2 + 3

2
u2 + A�2xp ∗ u− p ∗

(
3
2
u2 + 1

2
�2

)
� (4.14)

Using Lemma 4.3 and the fact that

sup
x∈�

�vx�t� x�� = − inf
x∈�

�−vx�t� x�� �

we can consider m̄�t� and 
̄�t� as follows

m̄�t� 
= ux

(
t� 
̄�t�

) = sup
x∈�

�ux�t� x�� � t ∈ �0� T�� (4.15)

D
ow

nl
oa

de
d 

by
 [

U
T

 P
an

 A
m

er
ic

an
] 

at
 1

3:
33

 3
1 

O
ct

ob
er

 2
01

1 



2184 Chen et al.

Hence

uxx

(
t� 
̄�t�

) = 0� a.e. t ∈ �0� T�� (4.16)

Take the trajectory q�t� x� defined in (4.2). Then we know that q�t� ·� 
 � → � is a
diffeomorphism for every t ∈ �0� T�. Therefore there exists x1�t� ∈ � such that

q �t� x1�t�� = 
̄�t� t ∈ �0� T�� (4.17)

Now let

�̄�t� = ��t� q�t� x1��� t ∈ �0� T�� (4.18)

Therefore along this trajectory q�t� x1� equation (4.14) and the second equation of
(4.7) become

m̄′�t� = 1
2
�̄2 + f�t� q�t� x1���

(4.19)
�̄′�t� = −�̄m̄�

for t ∈ �0� T�, where ′ denotes the derivative with respect to t and f�t� q�t� x�� is
given by

f = 3
2
u2 + A�2xp ∗ u− p ∗

(
3
2
u2 + 1

2
�2

)
� (4.20)

We first derive the upper and lower bounds for f for later use in getting the
wave-breaking result. Using that �2xp ∗ u = px ∗ ux, we have

f = 3
2
u2 + Apx ∗ ux −

3
2
p ∗ u2 − 1

2
p ∗ 1− p ∗ ��− 1�− 1

2
p ∗ ��− 1�2

≤ 3
2
u2 + A�px ∗ ux� −

1
2
+ �p ∗ ��− 1���

Since

A�px ∗ ux� ≤ A
px
L2
ux
L2 = 1
2
A
ux
L2 ≤ 1

4
+ 1

4
A2
ux
2L2� (4.21)

�p ∗ ��− 1�� ≤ 
p
L2
�− 1
L2 = 1
2

�− 1
L2 ≤ 1

4
+ 1

4

�− 1
2L2� (4.22)

u2 ≤ 1
2

∫
�
�u2 + u2

x�dx� (4.23)

we obtain the upper bound of f

f ≤ 1
4

�− 1
2L2 + 3

4

u
2L2 + 3+ A2

4

ux
L2

≤ 3+ A2

4

�u0� �0 − 1�
2H1×L2 = 1

2
C2

1 � (4.24)
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Stability of Solitary Waves 2185

Now we turn to the lower bound of f . Similar as before, we get

−f ≤ A�px ∗ ux� +
3
2
p ∗ u2 + 1

2
+ �p ∗ ��− 1�� + 1

2
p ∗ ��− 1�2�

≤ 1+ A2

4

ux
2L2 + 3

4

u
2L2 + 1

2

�− 1
2L2

≤ 1+ 3+ A2

4

�u0� �0 − 1�
2H1×L2 = 1

2
C2

2 � (4.25)

where we have used the inequality

p ∗ g2 ≤ 1
2

g2
L1 = 1

2

g
2L2 �

Combining (4.24) and (4.25) we obtain

�f � ≤ 1+ 3+ A2

4

�u0� �0 − 1�
2H1×L2 � (4.26)

From (4.13) we know m̄�t� ≥ 0 for t ∈ �0� T�. From the second equation of
(4.19) we obtain that

�̄�t� = �̄�0�e−
∫ t
0 m̄���d�� (4.27)

Hence

���t� q�t� x1��� = ��̄�t�� ≤ ��̄�0���

Therefore we have

m̄′�t� = 1
2
�̄2�t�+ f ≤ 1

2
�̄2�0�+ 1

2
C2

1 ≤ 1
2

(
sup
x∈�

�2
0�x�+ C2

1

)
�

Integrating the above from over �0� t� we prove (4.8).
To obtain a lower bound for infx∈� ux�t� x�, we use the similar idea. Consider

the functions m�t� and 
�t� as in Lemma 4.3

m�t� 
= ux �t� 
�t�� = inf
x∈�

�ux�t� x�� � t ∈ �0� T�� (4.28)

Hence

uxx �t� 
�t�� = 0 a.e. t ∈ �0� T�� (4.29)

Again take the characteristics q�t� x� defined in (4.2) and choose x2�t� ∈ � such that

q �t� x2�t�� = 
�t� t ∈ �0� T�� (4.30)

Let

��t� = � �t� q�t� x2�� � t ∈ �0� T�� (4.31)
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2186 Chen et al.

Hence along this trajectory q�t� x2� equation (4.14) and the second equation of (4.7)
become

m′�t� = 1
2
�2 + f�t� q�t� x2���

(4.32)
�′�t� = −�m�

Since m�t� ≤ 0, we have from the second equation of the above that

���t� q�t� x2��� = ���t�� ≥ ���0���

Then

m′�t� ≥ 1
2
�2�0�− 1

2
C2

2 ≥ 1
2

(
inf
x∈�

�2
0�x�− C2

2

)
�

Integrating the above from over �0� t� we obtain (4.9). This completes the proof of
Lemma 4.4. �

Proof of Theorem 4.2. Combining Lemma 4.4 and Theorem 4.1 we easily see that
the local solution obtained in Theorem 2.2 can be extended to all of the interval
�0���. �
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