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Abstract

This paper gives two new families of nonlinear partial differential equations (PDEs). One has cusp soliton solution

while the other possesses the cusp-like singular traveling wave solution. A typical integrable system: Harry–Dym (HD)

equation is able to be contained in both families and has cusp soliton solution as well as cusp-like singular traveling

wave solution. We prove that the cusp solution of the HD equation is not stable and the cusp-like solution is not

included in the parametric solutions of the HD equation.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The Harry–Dym (HD) equation is an important integrable model in soliton theory [2]. This equation is related to the

classical string problem [10] and has many applications in theoretical and experimental physics [3]. It has the bi-Ham-

iltonian structures, Lax pair, and cusp soliton solution [11] by the inverse scattering transformation [1,12,13]. The HD

equation is able to work out from the Wadati–Konno–Ichikawa (WKI) hierarchy [13,9] through some reductions. Be-

sides the HD equation, other nonlinear partial differential equations (PDEs), such as normalized Boussinesq equation

and Ito-type wave equation, were also found to possess the cusp solutions [5–7]. However, the discussion about the cusp

and cusp-like solutions is very few in the literature. In this paper, we will present two new families of nonlinear PDEs.

One possesses the cusp soliton solution and includes the HD equation as its special case, while the other has the cusp-

like singular traveling wave solution which also involves the HD equation. That is, the typical integrable system: the

HD equation has cusp soliton solution (see Section 2.3) as well as cusp-like singular traveling wave solution (see Section

3). We prove that the cusp solution of the HD equation is not stable (see Section 2.3) and the cusp-like solution is not

included in the parametric solutions of the HD equation (see Section 4).
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Throughout this paper, we give the following conventions: unx ¼ onu
oxn, n ¼ 0; 1; 2; . . ., ut ¼ ou

ot, o ¼ o
ox, o

n ¼ on

oxn. Denote

the set of all real numbers and integers by R and Z, respectively. a, A represent two arbitrary constants in R.
2. A family of nonlinear PDEs and cusp solutions

2.1. 1st order PDE

Let us first start from the simplest PDE
ut þ ux ¼ 0: ð1Þ
Apparently, this equation has the general solution
u ¼ f ðx� tÞ; 8f : ð2Þ
Thus, the following cusp solution
u ¼ cosh�2n; n ¼ aðx� tÞ þ tanh nþ A; ð3Þ
is a special form of (2).

2.2. 2nd order PDE

Next, we consider the second order PDE
ð2� uÞut � ð1� uÞ3=2u2x ¼ 0: ð4Þ
This equation possesses the following cusp solution
u ¼ cosh�2n; n ¼ aðx� atÞ þ tanh nþ A: ð5Þ
In fact, computing
nx ¼ acoth2n; nt ¼ �a2coth2n;

ux ¼
�4a

sinh 2n
; ut ¼

4a2

sinh 2n
;

u2x ¼ 2a2
cosh 2n

sinh4n
;

implies (2 � u)ut � (1 � u)3/2u2x = 0.

2.3. 3rd order PDE i.e. Harry–Dym (HD) equation

In the case of the 3rd order PDE, we take the Harry–Dym (HD) equation
ut þ ð1� uÞ3u3x ¼ 0; ð6Þ
as a typical example. It possesses the following cusp solution
u ¼ cosh�2n; n ¼ aðx� 4a2tÞ þ tanh nþ A: ð7Þ
This coincides with the result of Wadati, Ichikawa and Shimizu [11] obtained by using the inverse scattering trans-

formation method [12,13,1].

In fact, making a transformation U�1/2 = 1�u, T = 2t, X = x casts Eq. (6) to the standard Harry–Dym (HD)

equation:
UT ¼ 1ffiffiffiffi
U

p
� �

3X

¼ o3XU
�1=2; ð8Þ
where o3X ¼ o3

oX 3. Therefore, the HD equation (8) has the following cusp soliton solution
U ¼ coth4n; n ¼ aðX � 2a2T Þ þ tanh nþ A: ð9Þ



Z. Qiao, X.B. Qiao / Chaos, Solitons and Fractals 25 (2005) 153–163 155
In Section 3, we will study a family of higher-order Harry–Dym type equations having the co-called cusp-like sin-

gular solutions other than cusp solutions.

Some calculations yield
u3x ¼ �8a3
cosh5n

sinh7n
; ut ¼

16a3

sinh 2n
:

Thus u = cosh�2n satisfies the HD equation ut + (1 � u)3u3x = 0. (See Figs. 1 and 2).

The initial problem
ut þ ð1� uÞ3u3x ¼ 0; uðx; t0Þ ¼ cosh�2n; n ¼ aðx� 4a2t0Þ þ tanh nþ A;
has the solution
uðx; tÞ ¼ cosh�2n; n ¼ aðx� 4a2tÞ þ tanh nþ A:
Let us now see why the cusp solution is not stable. Let �(x, t0) be a perturbation term, namely,
vðx; t0Þ ¼ uðx; t0Þ þ �ðx; t0Þ;
then corresponding to this initial value the equation ut + (1 � u)3u3x = 0 is assumed to have the solution
vðx; tÞ ¼ uðx; tÞ þ �ðx; tÞ:
Then we have
�t þ ð1� u� �Þ3�3x þ ½3ð1� uÞ�� 3ð1� uÞ2 � �2��u3x ¼ 0;
which can be linearized as
�t � 3ð1� uÞ2u3x�þ ð1� uÞ3�3x � 3ð1� uÞ2��3x ¼ 0: ð10Þ
We can choose good enough � such that �3x is also very small. Thus the above equation is approximate to
�t � 3ð1� uÞ2u3x� ¼ 0: ð11Þ
Therefore, �(x, t) has the following approximate formula
�ðx; tÞ ’ ce3ð1�uÞ2u3x ; c ¼ constant: ð12Þ
Fig. 1. Plane cusp solution for the well-known HD equation at t = 1.5, a = � 0.5.



Fig. 2. Cusp traveling wave solution for the well-known HD equation under the cusp initial condition. Apparently, it is not stable.

Mathematical reason is displayed in Section 2.3
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Note
u3x > 0; x < 0;

u3x non� existence; x ¼ 0;

u3x < 0; x > 0:
Thus, when x < 0, Eq. (12) changes more, but when x > 0, Eq. (12) changes less. That is why the cusp traveling wave

solution takes on like Fig. 2. So, the cusp solution is not stable.

But, in the case of Gaussian initial condition, the Gaussian solution is stable, see the Figure.

2.4. 4th order PDE

The fourth order PDE we propose here is
ð2þ 5uÞut � ð1� uÞ9=2u4x ¼ 0: ð13Þ
This equation has the following cusp solution
u ¼ cosh�2n; n ¼ aðx� 4a3tÞ þ tanh nþ A: ð14Þ
Because of
u4x ¼ 8a4ð6þ coshð2nÞÞ cosh
6n

sinh10n
; ut ¼

16a4

sinh 2n
;

a direct check reveals that Eq. (14) satisfies the 4th order PDE (13).

2.5. 5th order PDE

We consider the fifth order PDE
ð2þ 18uþ 15u2Þut þ ð1� uÞ6u5x ¼ 0: ð15Þ
It possesses the following cusp solution
u ¼ cosh�2n; n ¼ aðx� 8a4tÞ þ tanh nþ A: ð16Þ
The 5th order Eq. (15) does not belong to the HD hierarchy:
utj ¼ JðJ�1KÞj � u�1=2; j ¼ 1; 2; . . . ; ð17Þ
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where K = o3, J = ou + uo, and the sign Æ means the operator action on the function u�1/2. Apparently, the first one is the

HD equation (8), the second one is also 5th order PDE but not Eq. (15) and has no cusp solution.

A direct calculation of
u5x ¼ �4a5ð99þ 40 coshð2nÞ þ coshð4nÞÞ cosh
7n

sinh13n
;

ut ¼
32a5

sinh 2n
;

verifies that Eq. (16) satisfies the 5th order PDE (15).

2.6. 6th order PDE

The sixth order PDE we consider here is
ð4þ 94uþ 252u2 þ 105u3Þut � ð1� uÞ15=2u6x ¼ 0: ð18Þ
It possesses the following cusp solution
u ¼ cosh�2n; n ¼ aðx� 8a5tÞ þ tanh nþ A: ð19Þ
After computing
u6x ¼ 2a6ð2140þ 1399 coshð2nÞ þ 100 coshð4nÞ þ coshð6nÞÞ cosh
8n

sinh16n
;

ut ¼
32a6

sinh 2n
;

we find that Eq. (19) is a solution of the 6th order PDE (18).

2.7. 7th order PDE

The seventh order PDE we study here is
ð1þ 54uþ 330u2 þ 420u3 þ 105u4Þut þ ð1� uÞ9u7x ¼ 0: ð20Þ
It possesses the following cusp solution
u ¼ cosh�2n; n ¼ aðx� 64a6tÞ þ tanh nþ A: ð21Þ
A lengthy calculation
u7x ¼ �a7ð58355þ 51296 coshð2nÞ þ 6604 coshð4nÞ þ 224 coshð6nÞ þ coshð8nÞÞ cosh
9n

sinh19n
;

ut ¼
256a7

sinh 2n
;

implies that Eq. (21) satisfies the 7th order PDE (20).

2.8. General case

In general, we consider the following PDE
Pn�2ðuÞut þ ð�1Þnð1� uÞ
3
2
nuðnþ1Þx ¼ 0; n ¼ 1; 2; 3; . . . ; ð22Þ
where Pn�2(u) is a (n � 2)-th order polynomial defined by:
Pn�2ðuÞ ¼
2� u; n ¼ 1;Pn�2

k¼0aku
n�2�k ; n ¼ 2; 3; . . . ;

(
ð23Þ
with the constants ak, k = 0,1,2, . . ., n � 2, to be determined. Eq. (22) possesses the cusp soliton solution:
u ¼ cosh�2n; n ¼ ax� ct þ tanh nþ A; ð24Þ
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where c = c(a,n) is a constant related to constant a and n. When we substitute Eq. (24) into Eq. (22) and expand every

term in terms of cosh2n, then each constant ak is uniquely determined and constant c is expressed in term of constant a.

We detailedly describe this procedure as follows.

Proposition 1. Assume
unx ¼ 27�nð�aÞn cosh
nþ2n

sinh3n�2n

Xn�3

k¼0

bk cosh 2kn; n P 3; bn�3 ¼ 1; ð25Þ
where the constants b0,b1, . . ., bn�4 may be determined from the solution Ansatz (24). Then
uðnþ1Þx ¼ 26�nð�aÞnþ1 cosh
nþ3n

sinh3nþ1n

Xn�2

k¼0

dk cosh 2kn; dn�2 ¼ 1; ð26Þ
where constants d0,d1, . . ., dn�3 are determined by constants b0,b1, . . ., bn�4.

Proof. Noticing the following identities
nx ¼ acoth2n;

2sinh2n ¼ cosh 2n� 1;

2cosh2n ¼ cosh 2nþ 1;

2 cosh n cosh g ¼ coshðn� gÞ þ coshðnþ gÞ;
2 sinh n sinh g ¼ � coshðn� gÞ þ coshðnþ gÞ;
and making derivative in x on both sides of Eq. (25), we obtain
uðnþ1Þx ¼ Bn
coshnþ3n

sinh3nþ1n
sinh 2n

Xn�3

k¼1

bk sinh 2knþ ðnþ 2Þsinh2n� ð3n� 2Þcosh2n
� �Xn�3

k¼0

bk cosh 2kn

" #

¼ Bnþ1

coshnþ3n

sinh3nþ1n
2 2nþ ðn� 2Þ cosh 2nð Þ

Xn�3

k¼0

bk cosh 2kn� 2 sinh 2n
Xn�3

k¼1

kbk sinh 2kn

" #

¼ Bnþ1

coshnþ3n

sinh3nþ1n
d0 þ d1 cosh 2nþ � � � þ dn�3 cosh 2ðn� 3Þnþ cosh 2ðn� 2Þnð Þ;
where Bn = 27�n(�a)n Æ a, d0,d1, . . .,dn�3 are evidently determined by constants b0,b1, . . .,bn�4 and n, and in particular

the last term cosh 2(n � 2)n is obtained through calculating
2ðn� 2Þ cosh 2ðn� 3Þn cosh 2n� 2ðn� 3Þ sinh 2ðn� 3Þn sinh 2n ¼ cosh 2ðn� 2Þnþ ð4n� 5Þ cosh 2ðn� 4Þn:
For the u defined by Eq. (24), we have
ut ¼
4c

sinh 2n
¼ 2c

cosh n sinh n
: ð27Þ
Substituting Eqs. (24) and (26) into Eq. (22) and choosing the constant c = � 25�nan+1 lead to
Xn�2

k¼0

ak
cosh2ðn�2�kÞn

þ dk

cosh2ðn�2Þn
cosh 2kn

� �
¼ 0; dn�2 ¼ 1; ð28Þ
i.e.
Xn�2

k¼0

akcosh
2knþ dk cosh 2kn

� �
¼ 0; dn�2 ¼ 1: ð29Þ
Because cosh 2kn must be a k-th degree polynomial of term cosh2n, all constants ak are able to be uniquely given

through constants d0,d1, . . .,dn�3. Thus, we obtain the following theorem.

Theorem 1. The (n + 1)-th order equation (22) has the cusp solution given by Eq. (24) with the speed c = � 25�n an+1 (a is

an arbitrary constant). The coefficient constants ak, k = 0,1, . . ., n � 2, in Eq. (22) are determined by Eq. (29).
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By this theorem, all figures of the cusp solutions (24) for Eq. (22) have the same shape as the Harry–Dym case (see

Fig. 1), but their velocities are different with the different order n + 1 of (22). These cusp solutions (24) are unstable (see

Fig. 2).
3. Another family of nonlinear PDEs and cusp-like singular solutions

Based on the discussion of the HD equation (8), we furthermore propose the following more generalized equation:
ut ¼ olum; l P 1; m 6¼ 1; l 2 Z; m 2 R: ð30Þ
Assume this equation has the traveling wave solution
uðx; tÞ ¼ f ðnÞ; n ¼ x� ct; ð31Þ
then
cf þ dl�1

dnl�1
f m þ c0 ¼ 0; c0 ¼ constant: ð32Þ
In order to solve this equation, we set f = na where a is a constant to be determined. Substituting this into Eq. (32)

and choosing c0 = 0, we obtain
a ¼ l� 1

m� 1
; c ¼ �

Yl�2

k¼0

mðl� 1Þ
m� 1

� k
� �

: ð33Þ
Thus, the general Eq. (30) has the following traveling wave solution
uðx; tÞ ¼ xþ t
Yl�2

k¼0

mðl� 1Þ
m� 1

� k
� �" # l�1

m�1

: ð34Þ
Apparently, if m < 1 this solution has singularity at x0 = ct0 (t0 is some time), and if m > 1 this solution is a smooth

traveling wave solution.

Let us give some special cases of Eq. (30).

• Choosing m = � 1/2, l = 3, i.e. Eq. (30) becomes the HD equation (8), we have a = � 4/3, c = 2/9. Therefore the HD

equation (8) possesses a cusp-like singular traveling wave solution
uðx; tÞ ¼ x� 2

9
t

� ��4=3

: ð35Þ
Obviously, this is very different from its cusp solution (9).

• Choosing m = � 2/3, l = 5, i.e. Eq. (30) becomes ut = (u�2/3)5x, we have a = � 12/5, c = � 336/625. Therefore the

equation ut = (u�2/3)5x possesses a cusp-like singular traveling wave solution
uðx; tÞ ¼ xþ 336

625
t

� ��12=5

: ð36Þ
• Choosing m = 1/2, l = 3, i.e. Eq. (30) becomes ut = (u1/2)3x, we have a = � 4, c = � 6. Therefore the equation ut =

(u1/2)3x possesses a cusp-like singular traveling wave solution
uðx; tÞ ¼ ðxþ 6tÞ�4
: ð37Þ
• Choosing m = 2/3, l = 5, i.e. Eq. (30) becomes ut = (u2/3)5x, we have a = � 12, c = � 7920. Therefore the equation

ut = (u2/3)5x possesses a cusp-like singular traveling wave solution
uðx; tÞ ¼ ðxþ 7920tÞ�12: ð38Þ
The figures of Eqs. (37) and (38) are seen in Fig. 4.



Fig. 3. Initial value problem for the well-known HD equation under the Gaussian initial condition. No cusps appear.

Fig. 4. Two cusp-like singular traveling wave solutions.
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• For the above special cases, generally choosing m = � n/(n + 1), n > 0, n 2 R, then m < 1 and Eq. (30) becomes

ut = o2n+1u�n/(n+1), and we have a ¼ � 2nðnþ1Þ
2nþ1

, c ¼ �
Q2n�1

k¼0
2n2

2nþ1
� k

� �
. Therefore the equation ut = o2n+1u�n/(n+1) pos-

sesses a cusp-like singular traveling wave solution
uðx; tÞ ¼ xþ t
Y2n�1

k¼0

2n2

2nþ 1
� k

� �" #�2nðnþ1Þ
2nþ1

: ð39Þ
Apparently, Eqs. (35) and (36) are two reductions of Eq. (39) when n = 1, 2, respectively.

If choosing l = 2n + 2, we obtain the following simpler cusp-like singular traveling wave solution
uðx; tÞ ¼ xþ t
Y2n
k¼0

ðn� kÞ
 !�ðnþ1Þ

; ð40Þ
for equation ut = o2n+2u�n/(n+1).

Choosing m = n/(n + 1), n > 0, n 2 R, then m < 1 and Eq. (30) becomes ut = olun/(n+1), we have a = � (n + 1)(l � 1),

c ¼ ð�1Þl
Ql�2

k¼0ðnðl� 1Þ þ kÞ. Therefore the equation ut = olun/(n+1) possesses a cusp-like singular traveling wave solution



Fig. 5. Two smooth traveling wave solutions.
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uðx; tÞ ¼ xþ tð�1Þlþ1
Yl�2

k¼0

ðnðl� 1Þ þ kÞ
" #�ðnþ1Þðl�1Þ

: ð41Þ
Obviously, Eqs. (37) and (38) are two reductions of Eq. (41) when n = 1, l = 3; n = 2, l = 5, respectively.

• Choosing m = (n + 1)/n, n > 0, n 2 R, then m > 1 and Eq. (30) becomes ut = olu(n+1)/n, we have a = n(l � 1),

c ¼ �
Ql�2

k¼0ððnþ 1Þðl� 1Þ � kÞ. Therefore this equation possesses a smooth traveling wave solution
uðx; tÞ ¼ xþ t
Yl�2

k¼0

ððnþ 1Þðl� 1Þ � kÞ
" #nðl�1Þ

: ð42Þ
For example, let m = 4/3, l = 5, then the equation ut = o5u4/3 has the following smooth traveling wave solution
uðx; tÞ ¼ ðxþ 43680tÞ12; ð43Þ
and let m = 3/2, l = 2, then the equation ut = (u3/2)2x has the smooth traveling wave solution
uðx; tÞ ¼ ðxþ 3tÞ2: ð44Þ
The figures of Eqs. (44) and (43) are seen in Fig. 5.
4. Comparison with the parametric solutions for the HD equation

Paper [8] dealt with the parametric solution for the Harry–Dym hierarchy, especially gave the parametric solution of

the HD equation (6). Let us briefly recall this result. The spectral problem associated with the HD equation (6) is
yx ¼ My; ð45Þ
where
y ¼ ðy1; y2Þ
T
; M ¼

�ik kðu� 1Þ
�k ik

� �
; i2 ¼ �1:
As shown in Ref. [8], we provided the following constraint
u ¼ 1

hKp; pi2
; ð46Þ
which is located between the potential u and the spectral functions yj = (pj,qj)
T of spectral parameters kj (j = 1, . . .,N).

Here K = diag(k1, . . .,kN), p = (p1, . . .,pN)
T, q = (q1, . . .,qN)

T, and hÆ, Æirepresents the standard inner-product in RN.
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Under this constraint the spectral problem (45) is nonlinearized as a canonical Hamiltonian system in R2N:
ðHÞ :
qx ¼ �iKqþ ðhKp; pi�2 � 1ÞKp ¼ oH

op ;

px ¼ �Kqþ iKp ¼ � oH
oq ;

(
ð47Þ
with
H ¼ �ihKp; qi þ 1

2
hKq; qi � 1

2
hKp; pi � 1

2
hKp; pi�1

: ð48Þ
This Hamiltonian system (H) is completely integrable [8], and
u ¼ 1

hKpðx; tÞ; pðx; tÞi2
; ð49Þ
is a solution of the HD equation (6), where q(x, t), p(x, t) is a common solution of the compatible Hamiltonian systems

(H) and (F0). Here
ðF 0Þ :
qt ¼ oF 0

op ;

pt ¼ � oF 0

oq ;

(
ð50Þ
with
F 0 ¼ hK3p; pihKp; pi�1 þ hK2p; pi2 � hK3p; pihKp; pi þ hK3q; qihKp; pi
� hK2p; qi2 þ 2iðhK2p; qihK2p; pi � hK3p; qihKp; piÞ:
The cusp solution (9) of the HD equation (8) cannot be included in its parametric solution (49). In fact, Eq. (47) is

equivalent to
pxx ¼ �hKp; pi�2K2p: ð51Þ
When N = 1, this equation becomes
p3pxx ¼ �1; ð52Þ
which has the general solution
pðxÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1x2 � 2c1c2xþ c1c22 �

1

c1

s
; 8 constants c1 6¼ 0; c2 2 R: ð53Þ
Therefore,
u ¼ k�2p�4 ¼ k�2 c1x2 � 2c1c2xþ c1c22 �
1

c1

� ��2

: ð54Þ
Apparently, this is NOT the single cusp solution (9).

Furthermore, the cusp-like singular traveling wave solution (35) of the HD equation (8) cannot be included in its

parametric solution (49), either. In fact, let X ¼ x� 2
9
t and substitute Eq. (35) into the HD spectral problem

wxx + k2uw = 0. Then we obtain
X 4=3wXX þ k2w ¼ 0: ð55Þ
Solving this equation gives its general solution
w ¼ c2
3k

� c1X 1=3
� �

sinð3kX 1=3Þ � c1
3k

þ c2X 1=3
� �

cosð3kX 1=3Þ; ð56Þ
where c1, c2 are two arbitrary constants, and k 5 0. Let k1, . . .,kN be N spectral parameters of the HD spectral problem

wxx + k2uw = 0, and each pj the spectral function corresponding to kj 5 0. Then
pj ¼
cj2
3kj

� cj1X 1=3

� �
sinð3kjX 1=3Þ � cj1

3kj
þ cj2X 1=3

� �
cosð3kjX 1=3Þ; 8cj1; cj2 2 R; j ¼ 1; . . . ;N :
Thus, under choosing cj1 = cj2, we have
hKp; pi ¼ X 2=3hKc1; c1i þ
1

9
hK�1c1; c1i �

XN
j¼1

c2j1
2

3
X 1=3 cosð6kjX 1=3Þ þ kjX 2=3 � 1

9kj

� �
sinð6kjX 1=3Þ

� 	
;
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where c1 = (c11, . . .,cN1)
T. Apparently, this is NOT equal to X2/3 regardless of how to select the constant vector c1.

Therefore
1

hKpðx; tÞ; pðx; tÞi2
6¼ x� 2

9
t

� ��4=3

; ð57Þ
i.e. the cusp-like singular traveling wave solution (35) cannot be included in its parametric solution (49).
5. Conclusions

In this paper, we give an approach how to get the cusp soliton solution for the family of PDE (22). All cusp solutions

for this family have the same shape figure as the HD equation has, but their velocities are different with the different

order n + 1 of PDE.

We also propose another new family of PDE (30), which has the so-called cusp-like singular traveling wave solution

(34) instead of cusp solution (24). As we discussed in Section 3, if m < 1 in Eq. (30), then the solution (34) looks like a

cusp, but not a cusp because it has singularity at x0 = ct0 (here c ¼ �
Ql�2

k¼0ð
mðl�1Þ
m�1

� kÞ and t0 is some time), and its all

plane figures are same in shape as Fig. 4 except different velocities c. If m > 1 in Eq. (30), then the solution (34) is a

smooth traveling wave solution, which has the same shape as Fig. 5 except different velocities c.

In Ref. [4], we obtained a parametric solution of the 5th-order equation ut = (u�2/3)5x. The parametric solution can-

not include its traveling wave solution u ¼ ðxþ 336
625

tÞ�
12
5 because the parametric solution is smooth, but the traveling

wave solution is singular.

Traveling wave solution u ¼ ðxþ 336
625

tÞ�
12
5 for equation ut = o5u�2/3 is singular at some certain point x with the differ-

ent time t. That is, this singularity travels with the time t (also see Ref. [4]). Actually, when m < 1 the traveling wave

solution (34) for general Eq. (30) is also matching this case. A natural question arises here: is Eq. (30) integrable for

all l P 1, m 2 R or for what kind of lP 1, m 2 R it is integrable? We will in detail discuss this elsewhere.

The Harry–Dym equation has the cusp-like singular traveling wave solution uðx; tÞ ¼ ðx� 2
9
tÞ�4=3

, but this is not the

cusp soliton which Wadati, Ichikawa and Shimizu described this in Ref. [11], because the traveling wave solution is sin-

gular, but the cusp is continuous.
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